Supporting Information

Bacterial Curli Protein Promotes the Conversion of PAP(248-286) into the Amyloid SEVI: Cross-Seeding of Dissimilar Amyloid Sequences

Kevin Hartman,^{a,b} Jeffrey R. Brender,^{a,b} Kazuaki Monde,^{c,1} Akira Ono,^c Margery L. Evans,^d Nataliya Popovych,^{a,b,2} Matthew R. Chapman,^d Ayyalusamy Ramamoorthy^{a,b}

^a Departments of Chemistry, ^b Biophysics, and ^d Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1055, USA.

^c Department of Microbiology and Immunology, University of Michigan Medical School, MI 48109-1055, USA..

¹ Present Address: Department of Medical Virology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-0811 Japan.

² Present Address: Genentech, 1 DNA Way South San Francisco, CA 94080.

Corresponding Author: Ayyalusamy Ramamoorthy, ramamoor@umich.edu, 930 North University, Ann Arbor, MI 48109-1055, USA.

CsgA R1: S E L N I Y Q Y G G G N S A L A L Q T D A R N R2: S D L T I T W H G G G N G A D V G Q – G S D D R3: S S I D L T Q R G F G N S A T L D Q W N G K N R4: S E M T V K Q F G G G N G A A V D Q – T A S N R5: S S V N V T Q V G F G N N A T A H Q Y

CsgB R1: Q A A I I G Q A G T N N S A Q L R Q G G S K R2: L L A V V A Q E G S S N R A K I D Q T G D Y R3: N L A Y I D Q A G S A N D A S I S Q G A Y G R4: N T A M I I Q K G S G N K A N I T Q Y G T Q R5: K T A I V V Q R Q S Q M A I R V T Q R

PAP₂₄₈₋₂₈₆ GIHKQKEKSRLQGGVLVNEILNHMKRATQIPSYKKLIMY

Figure S1. Amino acid sequences of CsgA, CsgB, and PAP₂₄₈₋₂₈₆. CsgA and B consist of five homologous subunits (R1-R5) that are believed to correspond to five β -sheets in the amyloid fiber.

Figure S2 Distributions of fiber length (A), width (B), and aspect ratio (C) for seeded and unseeded samples as indicated.

Figure S3. Kinetics of $A\beta_{1.40}$ and IAPP amyloid fiber formation in the presence of preformed fibers of CsgA and CsgB. ThT fluorescence measurements of A β 1-40 (Top) and IAPP (Bottom) as a

function of CsgA (left) and CsgB (right) seeding concentration, expressed as a mole percentage of the $A\beta_{1-40}$ and IAPP concentrations (5 μ M and 2.5 μ M respectively). Curves are averages for 3 measurements.

Figure S4. Seeding $A\beta_{1-40}$ amyloid formation with preformed $A\beta_{1-40}$ significantly affects the lagtime but has less impact on the elongation rate. Impact of preformed $A\beta_{1-40}$ fibers on the lag time (A) and elongation time (B) of amyloid formation 5 μ M $A\beta_{1-40}$ (bottom) as molar percentage of the $A\beta_{1-40}$ concentration.