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Derivation of the Flow Equations

Lets consider a group of agents moving in a square lattice according with a strategy e function of actual location and neighbors
density. The probability of finding an agent in an arbitrary node (i∆x, j∆y) at the time k∆t, as in Figure 1, is

P (i∆x, j∆y, k∆t) . (1)

The probability of an agent originally in (i0∆x, j0∆y) at the time k0∆t walk to (i∆x, j∆y) at the next time k∆t =
(k + 1) ∆t is

P (i∆x, j∆y, k∆t)− P (i0∆x, j0∆y, k0∆t) = etUij [P (i∆x, (j + 1)∆y, k∆t)− P (i0∆x, j0∆y, k0∆t)]

+ etDij [P (i∆x, (j − 1)∆y, k∆t)− P (i0∆x, j0∆y, k0∆t)]

+ etRij [P ((i+ 1)∆x, j∆y, k∆t)− P (i0∆x, j0∆y, k0∆t)]

+ etLij [P ((i− 1)∆x, j∆y, k∆t)− P (i0∆x, j0∆y, k0∆t)]

(2)

Where etdij is the strategy that the agent adopt based on the density neighbors difference between his actual position and
the next one in d direction, so
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If we define δP tUij = P (i∆x, (j + 1)∆y, k∆t)−P (i0∆x, j0∆y, k0∆t), and so for the rest of directions, then Eq.2 became

P (i∆x, j∆y, k∆t) = P (i0∆x, j0∆y, k0∆t) +etUijδP
t
Uij + etDijδP

t
Dij + etRijδP

t
Rij + etLijδP

t
Lij . (4)

Which is the discrete form of the anisotropic diffusion equation[1]

∂P (x, y, t)

∂t
= div [e (‖∇P‖)∇P ] . (5)

The discrete anisotropic diffusion equation 4 could be rewritten as[2]

P t+1
a = P ta +

λ

|ηa|
∑
b∈ηa

e (δPa,b) δPa,b (6)

with a the actual position, ηs the neighboring position of a, |ηa| the number of first neighbors of the the agent in a and
λ ∈ R+ a constant that define the diffusion rate.

Of course, the functional form of etdij could be a more generic one as

etdij = etdij (x, y, t) (7)
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Tab. 1: Canonical payoff matrix for classical Prisoner’s dilemma. Where T stands for Temptation to defect, R for Reward for
mutual cooperation, P for Punishment for mutual defection and S for Sucker’s payoff. To be defined as prisoner’s
dilemma, the following inequalities must hold: T > R > P > S

in which case the general anisotropic diffusion equation is obtained

∂P (x, y, t)

∂t
= div [e (x, y, t)∇P ] = ∇e · ∇P + e (x, y, t)∇2P. (8)

Fig. 1: Diagram1

Even more, one could extend this analisis to a n players game and use the Evolutionary Theory of Nowak. In that context,
if we relate e with a particular game with payoff matrix A, and then ethij is the fraction of agents in the (i, j) position that
adopt strategy h at time t. The corresponding replication equation is then

ek∆t
hij − e

k0∆t
hij = ek0∆t

hij (fh − φh) (9)
where fh, φh are the fitness and mean fitness of strategy h.
As an example, let be the matrix A with elements ahh′ the payoff of a Prisoner’s dilemma game given in Table, then the

corresponding fitness are

h = C ⇒ fC = (R) ek0∆t
hij + (S) ek0∆t

hij

h = D ⇒ fD = (T ) ek0∆t
hij + (P ) ek0∆t

hij

. (10)

And the mean fitness is
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(11)

Taking into account equations 10 and 11 and that ek∆t
hij − e

k0∆t
hij is the discrete form of the time derivative, the replicator

equation can be rewritten [3] in matrix form as

dE

dt
= [Λ (t) , E (t)] . (12)

Where E,Λ are two matrix with elements
Ehh′ = (eheh′)1/2 (13)
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and

Λhh′ =
1

2

[(
n∑
k=1

ahkek

)
(eheh′)

1/2 − (eheh′)
1/2

(
n∑
k=1

ahkek

)]
, (14)

and the square brackets [] in equation 12, stands for commutation operation. It has been demonstrated that quantum

game theory is a generalization of game theory an that the replicator equation 12 is equivalent to von Neumann equation

i~
dρ

dt
= [H, ρ] (15)

Where ρ is the density matrix, a a self-adjoint (or Hermitian) positive-semidefinite matrix of trace one, that describes the
statistical state of a quantum system. The H operator is the hamiltonian of the system. The equivalence between the replicator
and von Neumann equations are given by [3]

E ↔ ρ, Λ↔ − i
~
H. (16)

Via the master equation, it can be demonstrated [4, 5, 6] that the von Neumann equation leads to a Fokker-Planck equation
of the form

∂e (x, y, t)

∂t
= −div [D1 (x, y, t) e (x, y, t)] +∇ [D2 (x, y, t) e (x, y, t)] (17)

where D1 and D2 are traditionally associated with drift and diffusion.
In this game theory context D1 (x, y, t) is associated with the fitness f (x, y, t) (Eq.10)and D2 (x, y, t) with the mean fitness

φ (x, y, t) (Eq.11).
The master equation is a first-order differential equation that describe the time evolution of the probability of the system to

be in a particular set of states. Typically the master equation is given by

d
−→
P

dt
= A(t)

−→
P (18)

where −→P is a column vector of the states i , and A(t) is the matrix of connections. Many physical problems in classical,
quantum mechanics and other sciences, can be expressed in terms of a master equation. Examples of these are the Lindblad
equation in quantum mechanics and as we mention above, the Fokker–Planck equation which describes the time evolution of a
continuous probability distribution. For more hydrologically aplications of the master equation the reader may refer to [7].

We can finally enunciate the discrete spatially extended game in continuum terms. The probability of finding an agent in
the position (x, y) at the time t is given by

∂P (x, y, t)

∂t
= div [e (x, y, t)∇P ] . (19)

Where e (x, y, t)is the strategy that the player in (x, y) plays at the time t and that obeys the equation

∂e (x, y, t)

∂t
= −div [D1 (x, y, t) e (x, y, t)] +∇2 [D2 (x, y, t) e (x, y, t)] . (20)
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