
Supplement to pursuit tracks chase
Matúš Šimkovic1 and Birgit Träuble1

1Universität zu Köln, Germany

ABSTRACT

Keywords:

1 CLASSIFICATION WITH SUPPORT VECTOR MACHINES
We use a support vector machine (SVM) to obtain a classifier that best discriminates ES and CS1. SVM
requires a similarity matrix S as input. This matrix describes the pair-wise distance between all samples.
In our case, the samples are the ES and CS1 targets xn. We compute similarity euclidean distance between
two samples S(xm,xn) = ∑ f ∑i ∑ j(xm(f , i, j)− xn(f , i, j))2 where x(f , i, j) is the value of a pixel at the
i-th position from left, j-th position from top of the window and at the f -th frame in the sequence. SVM
minimizes F(w,b) = ∑m[1− ym(∑n wn ·K(xm,xn)+b)]++ γ

2 |w|
2. Function [·]+ is [x]+ = x for x > 0 and

[x]+ = 0 for x < 0. K(a,b) is the Gaussian function K(a,b) = exp
(

S(a,b)
β

)
. The variables β and γ are free

parameters. β is the precision of the Gaussian function. For large β the similarity becomes K(a,b) = 1
for all a and b and the distance between two samples does not play any role. For smaller β the similarity
increases more severely with constant distance increments. γ determines the complexity of the classifier
(e.g. the number of support vectors). Small γ means a complex model. We use grid search and cross
validation to determine β and γ that maximize the classification rate.
Table 1 euclidean distance between two samples shows the results of classifier training. The table also

SID CL CH #ES #CS1 #SV %SV log(γ) log(β)
1 75.98 75.03 10760 3580 12863 89.70 1.0 0.0
2 71.29 69.88 8272 3566 11640 98.33 0.5 1.0
3 74.44 73.52 11859 4271 15977 99.05 0.5 1.5
4 76.85 75.51 7606 2467 8876 88.12 0.5 0.5

Table 1. Results of SVM training. SID - Subject, CL - classification performance, CH - chance
performance CH=#ES/(#ES+#CS1), #ES - number of ES samples, #CS1 - number of CS1 samples, #SV -
number of support vectors %SV - percentage of support vectors from the maximum number of support
vectors %SV= #SV/(#ES+#CS1)

shows the optimal values obtained for β and γ . By comparing the classification performance to the chance
performance it can be seen that SVM performs poorly. The performance is 1-1.5 percentage point above
the chance level. In addition, we did obtain non-sparse solutions that use most of the available samples as
support vectors.
We look at motion patterns that are used by the SVM to discriminate the two samples. We optimize func-
tion F but this time with respect to x while w, b, γ and δ are treated as constants. High F score indicates
a CS1 event. In our case x is a vector with 64×64×68 = 278528 elements (pixel values). To simplify
optimization we optimize a 32×32×34 vector which is then up-scaled to 64×64×68. Furthermore,
we use binary values (on/off pixels) instead of a continuous values. We use simple hillclimbing search
to find the maximum and minimum score of F with respect to x. First we generate thousand random
vectors (with 10% bright pixels). We select the vector with the highest/lowest score. The selected vector
is then further improved. One after another, in random order, we flip each pixel. If a flip results in a more
extreme score we keep this change. Otherwise we discard it. We terminate the search when no pixel flip
improves F . The search algorithm will always terminate, though it doesn’t warrant that we will find the

global optimum of F(x). To see whether there are multiple local optima, we replicate the above analysis
four times for different random seeds. All replications showed similar, in most cases identical, results.
The obtained optima are presented in the familiar movie format. Movie 8 shows the minimum and maxi-
mum for each subject. Subjects are shown in rows. Replications are shown in columns. The background
of maxima is black. The maxima show the motion of a single point. The minima show noise. There is no
trace of chasing pattern. As the replications are identical and the minima show only background noise, the
classification performance can be summed up by any of the maxima. We focus on the left-most column in
text.
Finally, we mention some caveats to our interpretation of the SVM results. In the report we claim based on
the SVM results that there are no notable differences between the ES and the CS1 events. With negative
results (no difference between ES and CS1) there are always multiple reasons why the analysis may have
failed. In particular, if we failed to align the samples correctly with respect to their rotation, this would
make the classification problem impossibly difficult. What are alternative ways to rotate the samples?
Since catch-up saccades are followed by pursuit, we can use the direction of the immediately following
smooth eye movement to rotate and align the samples. Unfortunately, SS events are mostly followed by
fixations which do not have any direction. We can nevertheless compare our alignment algorithm with
the gaze-based alignment by letting SVM classify CS1 against CS2, with each of the algorithms. The
classification performance was poor for both sample alignment algorithms (0-3% over chance). Finally,
one may be concerned that we made a mistake during the complex analysis. First, we note that in our
experience in working with SVM, it is actually harder to produce poor performance. The SVM will
exploit any bug during the extraction and filtering of the samples that differently affects ES and CS1
event. Second, we performed a CS1 vs. CS2 classification experiment where we aligned the samples
with respect to the saccade direction. CS1 starts at rather random location and ends at the location of
the tracked agents. CS2 starts and ends at the location of the tracked agents. Hence the CS2 direction is
aligned with the agents’ motion direction while the direction of CS1 is not aligned. The SVM exploited
the difference in alignment and performed 4-8 % above the chance level. Thus, our implementation of the
classification algorithm works, it just fails at the ES vs. CS1 classification

2 NON-PARAMETRIC REGRESSION ON GAZE COORDINATES
Why do we use coordinate representation instead of pixel representation? A pixel representation of a
sample consists of PxPxT values, where P is the number of pixels and T is the number of frames. In
contrast, a sample in the coordinates consists of 2xAxT values, where we represent the position on the
horizontal and vertical axis for each of A agents. A is mostly two, but there are pursuit episodes where
subjects pursue one or more than two agents. To create template movies with high resolution P and T
need to be large. As a consequence the pixel representation is computationally much more intensive.
The details of the analysis of pursuit templates are as follows: Smooth movement episodes are located
between two consecutive catch-up saccades. The end of the preceding saccade marks the start of a
pursuit episode and the episode ends with the onset of the next saccade. We performed multiple analyses
with start, middle, and end of the pursuit episode as time lock. The positional lock varies across
frames. It is given by the gaze position at the corresponding frame. The angle used for sample rotation
and alignment also varies across frames. It is given by the direction of gaze movement between two
consecutive frames. We obtain the value of the average template image I at position x and y and time
t as I(x,y, t) = 1

N ∑
N
n wn([x− xn,t ,y− yn,t]) where N is the total number of agents over all samples and

wn(h)∼ exp
(
− 1

2 hTΣ−1h
)

is the Gaussian function. Recall that we used Gaussian filter to smooth the
pixel-based samples when we analyzed saccades. The Gaussian kernel does a similar job. Indeed, we use
the same values for the standard deviation of the filter (Σ) as we did in the pixel-based analyses. In order
to further improve the speed of the algorithm, we do not smooth over the time dimension.

2/2

