
Estimating Complexity of RNAseq Libraries

The presence of a PCR amplification step in most RNA-seq protocols has the
potential to introduce a significant number of duplicated reads that arise from
the same cDNA fragment (Benjamini and Speed 2012; Xu et al. 2012). Al-
though there are experimental approaches to mitigate this effect (Mamanova
et al. 2010), another computational option is to simply remove reads that
map to identical locations(Li et al. 2009; Xu et al. 2012). However, this has
the potential to remove bonafide duplicates—those that came from different
cDNA fragments, but due perhaps to the high expression level of a gene or
deep sequencing for a library, came from the same location along a transcript.
Moreover, we have found that libraries with high levels of PCR duplication
tend to be less reliable when compared to replicates, and so prefer to sim-
ply discard those libraries, regenerating them from the initial RNA when
possible.

However, there is not to our knowledge an accepted method to determine
whether a sample has a high level of duplication. While examining GBrowse
tracks for “blockiness” can qualitatively identify problems (as in Figure 1),
it is both time consuming and not particularly rigorous. Noting the fraction
of reads that map to unique locations is imperfect, as it will be sensitive to
the depth of sequencing, and therefore potentially difficult to compare across
libraries.

Comparing the number of unique read start sites to the total number of
bases in a gene offers one potential way to quantify the amount of PCR du-
plication actually present in the library. We simulated drawing unique, inde-
pendent positions from a 1.5kb transcript (the average Drosophila transcript
size, according to Daines et al. (2011))., and noting the fraction of unique
start sites. We recognize that this simulation is highly idealized: there is
a position-dependent bias, most often favoring the 5′ end of the read (Mor-
tazavi et al. 2008; Hansen, Brenner, and Dudoit 2010; Picelli et al. 2014); not
all read start sites are equally likely, as fragmentation followed size selection
can lose the reads closest to either end; and in a stranded protocol (which
we have not tested here) the “forward” read must, necessarily, come before
the “reverse” read. Nevertheless, this captures the essence of the problem,
and we will show that it closely matches real data.

For each gene, we calculated f , the fraction of bases in that gene that had
a read start at that position. We plotted this quantity in figure 2 against the
number of reads mapping to that gene divided by the gene length (that is,
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Figure 1: GBrowse views of the same 2kb region of Chromosome 3R
in two libraries with different levels of duplication. Despite the similar
number of reads in each sample, the lower library has much less information,
due to a relatively high level of PCR duplication.
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the total coverage, c). As expected, as the average coverage for each gene in-
creased, the fraction of unique start sites increased as well, until the coverage
approached 1x, at which point the available start sites became saturated.

Figure 2: Log-log plot of simulated unique sites as a function of
coverage. Simulated values are in blue, and the fit to the portion of the
graph below 10% of the unique start sites is the dotted red line.

Crucially, when we plotted these on a log-log plot, the region below about
10% of the occupied start sites was approximately linear for at least 3 logs
below that. The fit equation was:

log10 f = msim · log10 c + bsim ≈ .986 log10 c− 0.031 (1)

or
f = 10bsimxm (2)

We expect the slope m to be slightly less than 1, to indicate that increasing
the coverage should increase the fraction of start sites occupied, but with
some chance of multiple, independent reads coming from the same location,
even in the absence of duplication.

This leads to an easy interpretation of the score B = 10bsim−b as the
average level of PCR duplication. A lower intercept corresponds to a shift to
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Figure 3: Log-log plot of actual of fractions of unique sites vs cov-
erage. A) Previously published RNAseq data. Green points from modEN-
CODE Consortium et al. 2010, with a B-score of 1.3. Blue points from Lott
et al. 2011, with a B-score of 2.6. B) Unpublished, low-quality RNAseq data.
Green points have a B-score of 5.7, blue points have a B-score of 36.5

the right on the plot, which in turn means that the coverage to yield a given
number of unique sites must be higher.

When we calculated the B-score for samples from previously published
datasets, both from our lab (Lott et al. 2011) and the modENCODE con-
sortium (modENCODE Consortium et al. 2010), we found that the scores
were all less than 3 (Figure 3A). By contrast, previous libraries from our lab
that have been unpublished due to our lack of confidence that the data was
not highly enriched for duplicates (including the lower panel of Figure 1) had
B-scores in excess of 5 and up to 30 (Figure 3B). RNAseq data used in the
main text of this study had B-scores as shown in table 1 in this document.
Although in many cases they are higher than ideal, they are comparable to
previously published data, and only one is greater than 4.3.
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Protocol % Virilis b m B score
TruS 0 -0.6546 0.9195 4.2030
TruS 5 -0.4405 1.0584 2.5676
TruS 10 -0.5567 0.9998 3.3550
TruS 20 -0.5245 1.0224 3.1149
CT 0 -0.9669 0.8645 8.6285
CT 5 -0.5320 1.0386 3.1701
CT 10 -0.3784 1.1027 2.2254
CT 20 -0.5421 1.0335 3.2442

TotS 0 -0.2840 1.0871 1.7907
TotS 5 -0.2583 1.0769 1.6877
TotS 10 -0.4882 1.0199 2.8659
TotS 20 -0.4940 1.0202 2.9046
S2 0 -0.2139 1.1206 1.5238
S2 5 -0.1748 1.1303 1.3927
S2 10 -0.1586 1.1324 1.3416
S2 20 -0.1607 1.1302 1.3483

S2—2.5× 0 -0.5398 1.0036 3.2275
S2—2.5× 1 -0.6005 0.9771 3.7118
S2—2.5× 5 -0.5448 1.0038 3.2645
S2—2.5× 10 -0.6117 0.9713 3.8084
S2—2.5× 20 -0.5532 0.9987 3.3284
S2—5× 0 -0.5944 0.9815 3.6599
S2—5× 1 -0.6373 0.9620 4.0397
S2—5× 5 -0.5707 0.9842 3.4650
S2—5× 10 -0.5695 0.9951 3.4557
S2—5× 20 -0.5831 0.9930 3.5658

Table 1: Fit parameters and estimate duplication rate (B-score) of libraries
used in the main text of this paper
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We also simulated the fits for various sizes between 100bp and 10kb.
Although the fit parameters did have a clear, increasing trend in response
to increasing the simulated transcript size (Figure 4), the increase was small
compared to the actual values. A variation of 0.005 in the intercept, which
is used to calculate the B-score, corresponds to an actual difference of about
1%. We are thus not concerned about the choice of 1.5kb to simulate the
ideal scenario.

Figure 4: Regression coefficients vs size of transcript. Simulated at
100, 500, 1000, 1500, 3000, 5000, and 10,000 bp transcript sizes.

Simulation Code

1 from __future__ import division

2 from scipy import random

3 from numpy import (zeros , zeros_like , arange ,

4 unique , mean , log10)

5 from scipy.stats import linregress

6 from progressbar import ProgressBar

7
8 avg_size = 1500.
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9 n_reps = 100

10
11 regs = []

12 all_sizes = [100. , 500., 1000. , 1500. , 3000. , 5000. , 10000.]

13
14 for avg_size in all_sizes:

15 cs = arange(1, 5* avg_size)

16 fs = zeros_like(cs)

17
18 pb = ProgressBar ()

19
20 all_fracs = []

21 for c in pb(cs):

22 fracs = zeros(n_reps)

23 for i in range(n_reps ):

24 fracs[i] = len(unique(

25 random.randint(0, avg_size , c))

26 )/ avg_size

27 # Use randint to generate random read positions ,

28 # then count the number of unique start sites

29 # and normalize by size of the transcript

30 all_fracs.append ((c/avg_size , fracs[i]))

31 fs[c-1] = mean(fracs)

32
33 print(’-’*30)

34 print(avg_size)

35 print(’-’*30)

36 regs.append(linregress(log10(cs[fs <.1]/ avg_size),

37 log10(fs[fs <.1])))

38 print(regs [-1])
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