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1 Preamble

DISCLAIMER: This is an evolving package, please read instructions fhere| for
installation and to see what dependencies are required. If you find a bug or
want so suggest improvements, please submit an issue, collaborations and con-
tributions are very welcome!

DISCLAIMER 2: This tutorial is by no means a real analysis, which should
proceed more carefully, and with longer MCMC runs. The example is designed
to run through in a few minutes, and is therefore only an illustration of how an
analysis of real data could proceed.

## Loading required package: methods

library(fastinR, warn.conflicts = F)

## Loading required package: Trjags
## Loading required package: coda
## Loading required package: lattice
## Linked to JAGS 3.4.0

## Loaded modules: basemod,bugs

2 Introduction

We start with a very simple simulated example. It is possible to simulate rele-
vant data using the built in simulation GUI, which is called from the command
line once fastinR has been loaded. Please type 7simulation to obtain help on
simulating your own ’dataset’. Note, however, that the recommended way to


https://github.com/Philipp-Neubauer/fastinR/blob/master/README.md
https://github.com/Philipp-Neubauer/fastinR/issues?state=open

interact with the package is the command line - the GUI is somewhat unstable
and has a mind of its own (see warnings in GUT help files).

3 Loading data from files

Raw data should be stored in .csv files in a prescribed format, see add_FA, add_SI
and add_Covs for details on formatting. You can also inspect saved output from
simulation() to get a better idea of the correct file format.

Files are imported with the help of three constructor functions: add_FAto
import fatty acid data, add_SI to import stable isotope data and add-Covs to
import data on covariates or groupings that may be influencing predator diets.

The package comes with a simulated dataset which can be called with , which
loads an object called datas into the current environment.

The package also comes with the same simulated data in .csv files to illustrate
the file format and load procedure. These .csv files can be found using the
system.file function which finds package internal files. The add_SI constructor
takes separate files for predator and prey stable isotope data, as well as files for
additive fractionation coefficient means and variances - these are optional and
can be specified manually in the function call, see the function help for details.

SI.predators <- system.file("extdata", "Simdata_SI_preds.csv",
package = "fastinR")

SI.preys <- system.file("extdata", "Simdata_SI_preys.csv",
package = "fastinR")

Frac.Coeffs.mean <- system.file("extdata", "Simdata_SI_fc_means.csv",
package = "fastinR")
Frac.Coeffs.var <- system.file("extdata", "Simdata_SI_fc_var.csv",

package = "fastinR")

dats <- add_SI(SI.predators = SI.predators, SI.preys = SI.preys,
Frac.Coeffs.mean = Frac.Coeffs.mean, Frac.Coeffs.var = Frac.Coeffs.var)

We can now visualize the data on a plot like so:

dataplot (dats)

The dats object now has a set of data in the right format for further analysis.
We’ll add fatty acids before we proceed. As with add_SI, the add_FA constructor
takes separate files for predator and prey fatty acid data, conversion coefficient
means and variances as well as fat content - these are again optional and can
be specified manually in the function call, see the function help for details.



- Predators +
+ + 4 +
o Prey 1 + +4
o |4 Prey_2 + ¢t +
Y T4+
+ Prey 3 + + + T F +
T+ 4
+ T
o t+
—
=
o ee} o )
— 7 © ©
.. o °
°o3% o
A A 0 o ° %o 0® ° o °
° o
S A : ° °
o
as AL s ° ° °
o
A TAm A A
© An A A
a A © a N

-135 -13.0 -125 -12.0 -11.5 -11.0 -10.5

X

Figure 1: SI for simualted data

FAP.predators <- system.file("extdata", "Simdata_FA_preds.csv",
package = "fastinR")

FAP.preys <- system.file("extdata", "Simdata_FA_preys.csv",
package = "fastinR")

Conv.Coeffs.mean <- system.file("extdata", "Simdata_FA_cc_means.csv",
package = "fastinR")

Conv.Coeffs.var <- system.file("extdata", "Simdata_ FA_cc_var.csv",
package = "fastinR")

fat.conts <- system.file("extdata", "Simdata_fat_cont.csv",
package = "fastinR")

dats <- add_FA(FA.predators = FAP.predators, FA.preys = FAP.preys,
fat.conts = fat.conts, Conv.Coeffs.mean = Conv.Coeffs.mean,
Conv.Coeffs.var = Conv.Coeffs.var, datas = dats)

*Note* the last argument in add_FA now contains a reference to the data
object that was constructed from the Stable Isotopes beforehand. add_FA just
adds fatty acid data to the mix - the same would apply if data were added the
other way around (only add_Couvs works separately, it needs it’s own object).

Plotting the joint dataset:

dataplot (dats)
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Figure 2: Combined dataset projected using NMDS

4 Data Grooming

The grooming step in this case corresponds to selecting relevant variables for
the analysis. In practice, one could measure lots of Fatty Acids, and researchers
often choose arbitrary cutoff points in proportions to reduce the dataset. How-
ever, even Fatty Acids occurring in low proportions may be useful for source
discrimination and diet estimation if they introduce systematic differences be-
tween sources (prey items). The select_vars function provides a graphical way
to choose a subset of Fatty Acids according to their contribution to prey sepa-
ration and reduction in co-linearity in the prey matrix. Using select_vars in the
simulated example shows that only really 2 Fatty Acids contribute to source
separation - the cumulative separation displayed in the console converges to one
after adding the two most important fatty acid proportions: all remaining FAs
only add to co-linearity in the source matrix. We choose Fatty Acid no 3,2 and
6 for analysis (the second function call does this directly without prompting the
user, by giving the index of the fatty acids to choose).

dats.subset <- select_vars(dats)
or

dats.subset <- select_vars(dats, c(3, 2, 6))
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Figure 3: FA subset projected by NMDS

dats.subset$datas.FA$n.fats

The data object dats is now ready for analysis, we can plot the dataset with
it’s new subset of fatty acids as before:

dataplot(dats.subset)

Apart from a rotation, the overall configuration should be similar.

5 Bayesian Analysis

The actual analysis uses Markov Chain Monte Carlo to estimate posterior dis-
tributions for diet parameters. Estimation can be performed locally (in the
active R session) or in a distributed way, using as many R sessions as Markov
Chains. A good strategy is usually to run a few chains locally for short runs,
and then run 3 or more chains in parallel in a distributed way once a satisfac-
tory set of priors, thinning interval etc has been found (setting the number of
chains to a maximum of n-1 cores on your CPU is a good idea to not hog ALL
resources). The run-MCMC functions sets up the MCMC runs and takes spawn



= T or spawn = F as parameter to run chains in R slave processes or locally,
respectively.

The Rnot parameter sets the prior scale for the predator logistic normal
covariance matrix, and will often determine how well the chain mixes, that is,
how well it explores the parameter space, or if it gets stuck in local modes
(that can be of low probability). In the latter case, one would see strong auto-
correlation in the Markov Chains for individual parameters. Increasing Rnot
and/or Rnot_SI can help, but will make it harder to get precise estimates. There
is thus a trade-off between accuracy and mixing here, and often one will just
have to run an analysis for many iterations and with a large thinning interval
(e.g., {100k iterations with a thinning interval of ;100). This should be done
after finding reasonable parameters for Rnot on a shorter run, and then letting
the final analysis run with long chains.

For a combined analysis of stable isotopes and fatty acids, it is often useful
to run the two data types separately to assure that good priors can be found
for both datasets independently, and then combining them for a final analysis.
The analysis type is chosen in the appropriate option in the function call.

5.1 Estimating population proportions
5.1.1 Stable Isotopes alone

Lets start with an analysis of the stable isotopes, estimating only global (pop-
ulation) level diets. We will use the default prior on the predator covariance
matrix, and will adjust this prior subsequently. *WARNING* This might take
a while depending on your resources, the size of the dataset and the parameters
used for the MCMC.

Pop.SI <- run_MCMC(datas = dats.subset, nIter = 20000,
nBurnin = 10000, nChains = 3, nThin = 20, Data.Type = "Stable.Isotopes",
Analysis.Type = "Population.proportions", Rnot_SI = 0.1,
plott = F, spawn = F)

Plotting the MCMC is the easiest way to ensure that the sampler is mixing
- meaning that the chain explores the posterior distribution of each parameter
efficiently.

MCMCplot (Pop.SI)

The mixing isn’t great, meaning that some auto-correlation is evident in the
Markov Chain time series in left-hand plots. The diags function gives more
information, displaying two types of diagnostics in the console.:
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Correlation of proportion estimates
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Figure 5: Posterior distributions for diet proportions from SI

diags(Pop.SI)

Based on the diagnostics, it seems that we’re doing OK, but that the Stable
Isotopes don’t give much certainty about diet proportions:

summary (Pop.SI)

plot(Pop.SI, save = F)

## Loading required package: grid
## Using as id variables

The credible intervals are very large for Prey items 1 and 2, and the correla-
tion plot suggests that there is a reasonably strong posterior correlation between
estimates of prey items 1 & 2.

Increasing the default prior Rnot_SI on the predator covariance matrix some-
times leads to better mixing. We’ll also run more iterations and set spawn =T
for this.

Pop.SI2 <- run_MCMC(datas = dats.subset, nlter = 1le+05,
nBurnin = 10000, nChains = 3, nThin = 100, Data.Type = "Stable.Isotopes",
Analysis.Type = "Population.proportions", Rnot_SI = 1,
plott = F, spawn = T)
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Figure 6: Posterior distributions for diet proportions from SI
MCMCplot (Pop.SI2)

diags(Pop.SI2)

Mixing only improves marginally, indicating that this may be good as it gets
with stable isotopes alone.

5.1.2 Fatty Acids alone

We repeat this analysis with Fatty Acids, again starting with the default prior.
Note that spawn = T this time to save some time by calling 3 R processes
at once - a recommendation is to use the number of cores of the computer
-1. (to know how many cores you have, get the multicore package and use
multicore:::detectCores(), or look at the number of CPUs displayed in your
system monitor (resmon on windows))

Pop.FA <- run_MCMC(datas = dats.subset, nIter = 10000,
nBurnin = 1000, nChains = 3, nThin = 10, Data.Type =
Analysis.Type = "Population.proportions", Rnot = 0.2,
plott = F, spawn = T)

"Fatty.Acid.Profiles",
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Figure 8: MCMC traces from FAP analysis showing 3 individual Markov Chains
(colours)
MCMCplot (Pop.FA)

Once again the mixing isn’t great:
diags(Pop.FA)

Again not too bad according to the diagnostics, although the chains should
be run for longer (see Raftery-Lewis diagnostics ) - but lets try again with Rnot
=1
Pop.FA2 <- run_MCMC(datas = dats.subset, nIter = 10000,

nBurnin = 1000, nChains = 3, nThin = 10, Data.Type = "Fatty.Acid.Profiles",

Analysis.Type = "Population.proportions", Rnot = 1,
plott = F, spawn = T)

MCMCplot (Pop.FA2)

11
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Figure 9: MCMC traces from the second run of the FAP analysis showing 3
individual Markov Chains (colours)

diags(Pop.FA2)

Looks very similar, so we do a final run with 30k iterations as suggested by
the diags output and a thinning interval of 30 should be better. (Note that
values suggested by the diagnostics may vary from one run to the next. Also
note that we already ran 30k as we ran 3 parallel chains here...).

Pop.FA3 <- run_MCMC(datas = dats.subset, nIter = 30000,

nBurnin = 10000, nChains = 3, nThin = 30, Data.Type = "Fatty.Acid.Profiles",

Analysis.Type = "Population.proportions", Rnot =1,
plott = F, spawn = T)

MCMCplot (Pop.FA3)

diags(Pop.FA3)
summary (Pop.FA3)

12
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Figure 10: MCMC traces from the third run of the FAP analysis showing 3
individual Markov Chains (colours)

plot(Pop.FA3, save = F)

## Using as id variables
There is still substantial uncertainty about the diet proportions: it looks
as though Prey 1 is a dominant source, but the credible intervals are large.

Combining stable isotopes and fatty acids to see if there is a gain in information:

5.1.3 Combining fatty acids and stable isotopes

Pop.Combined <- run_MCMC(datas = dats.subset, nIter = 30000,
nBurnin = 10000, nChains = 3, nThin = 30, Data.Type = "Combined.Analysis",
Analysis.Type = "Population.proportions", Rnot = 1,
Rnot_SI = 1, plott = F, spawn = T)

MCMCplot (Pop.Combined)

13
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diags (Pop.Combined)
summary (Pop.Combined)

plot(Pop.Combined, save = F, types = "post")

## Using as id variables

The combined analysis reduces uncertainty slightly, especially for source 3,
but dietary sources remain uncertain with somewhat large credible intervals.

To compare the three approaches explicitly, we can use multiplot. For mul-
tiplot the three results need to be combined in a list:

Pop.list <- list(Stable.Isotopes = Pop.SI2, Fatty.Acids = Pop.FA3,
Combined = Pop.Combined)

15
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Figure 13: Posterior distributions for diet proportions from the combined anal-
ysis

multiplot(Pop.list, save = F, types = "violin")

## Using V1 as td wvariables

The original data was simulated to include groups of predators with rather
different proportions (visible in the dataplots above). Taking a look at the
proportions that were used to simulate the dataset:

proportions.path <- system.file("extdata", "Simdata_props.csv",
package = "fastinR")

proportions <- read.csv(proportions.path, header = F,
row.names = 1)

colnames (proportions) <- unique(dats$prey.ix)

# show simualted proportions
proportions

# overall mean proportions
colMeans (proportions)

Looking at the proportions, it is clear that there are two groups of predators
(e.g., juveniles and adults), one group preys preferentially on Prey 1 while the

16
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other preys mostly on Prey 2. Let’s see if we can pick this up by estimating
individual predator proportions:

5.2 Estimating individual proportions

Lets try this with fatty acids first - given that there was limited information
about diets in the stable isotopes alone, they can’t be expected SI alone to
provide the extra information we're after.

We now need to deal with one extra prior to be set: the prior for the vari-
ance of diet proportions. After some exploratory runs, even=2 seems like a
reasonable compromise between our ability to detect differences (facilitated for
smaller values of even) and the ability of the Markov Chains to mix properly
(easier for larger even- see the documentation of run_MCMC).

5.2.1 From Fatty Acids

Ind.FA <- run_MCMC(datas = dats.subset, nIter = 1le+05,
nBurnin = 10000, nChains = 3, nThin = 10, Data.Type = "Fatty.Acid.Profiles",
Analysis.Type = "Individual.proportions", Rnot = 1,
even = 1, plott = F, spawn = T)

We won’t show the output of the next commands anymore since it is far too
long. The commands are the same as for a population proportion analysis:

MCMCplot (Ind.FA)
diags(Ind.FA)

summary (Ind.FA)

plot(Ind.FA, save = F, type = "post")

## Using as id variables
## Using rep (i, nrow(outs)) as id variables

Despite this MCMC run being an order of magnitude too short, we can
see that the grouped pattern emerges quite clearly in the last plot. Neverthe-
less, posterior correlations remain for prey items 1&2 remain strong (we’ll soon
see why!). First, let’s see if the grouping becomes more pronounced with the
inclusion of stable isotopes:

18
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5.2.2 Combined analysis

Ind.Combined <- run_MCMC(datas = dats.subset, nlIter = 1le+05,
nBurnin = 10000, nChains = 3, nThin = 100, Data.Type = "Combined.Analysis",
Analysis.Type = "Individual.proportions", Rnot = 1,
Rnot_SI = 1, even = 2, plott = F, spawn = T)

Again looking at diagnostics output:

MCMCplot (Ind.Combined)
diags(Ind.Combined)

summary (Ind.Combined)

plot(Ind.Combined, save = F, types = "post")

## Using as 1d variables
## Using rep (i, nrow(outs)) as id variables

The uncertainty for predators preying predominantly on Prey 2 is signif-
icantly reduced (but once again the analysis should be run for an order of
magnitude longer with a larger thinning interval to ensure that the estimates
are reliable).

While the patterns here offer great insights into individual diet proportions,
they do not provide a means to estimate the population distribution of diet
proportions for these two groups. This can be achieved in an anova type linear
model:

5.3 Estimating group proportions

We now need to add covariates in the form of group membership. The reasoning
and procedure is the same for continuous covariates (e.g., size). To add the
covariates, we use the add_Covsconstructor:

group.path <- system.file("extdata", "Simdata_Groups.csv",
package = "fastinR")
Covs <- add_Covs(Groups = group.path)

Cov.Combined <- run_MCMC(datas = dats.subset, Covs = Covs,
nlter = 1e+05, nBurnin = 10000, nChains = 3, nThin = 100,
Data.Type = "Combined.Analysis", Analysis.Type = "Analysis.with.Covariates",
Rnot = 1, Rnot_SI = 1, even = 2, plott = F, spawn = T)
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Figure 17: Posterior distributions for individual diet proportions from the com-
bined analysis
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Figure 18: Posterior distributions for individual diet proportions from the com-
bined analysis
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MCMCplot (Cov.Combined)
diags(Cov.Combined)

summary (Cov.Combined)

plot(Cov.Combined, save = F, types = "post")

## Using as id variables
## Using as 1d variables
## Using rep (i, nrow(outs)) as id variables

We can now clearly see the difference between the two group’s diet propor-
tions.
6 Sensitivity illustration

This section illustrates the model sensitivity to source separation and diet even-
ness. The package has simulated datasets for this illustration, names for their
diet evenness (even vs uneven) and source separation (good vs bad). These can
be loaded with:

data(sensitivity)
To visualize, as above,

dataplot (even_good)

This is an exaggerated example of well separated diets and relatively even
diet proportions in predators. Consequently, the model should estimate diet
proportions accurately.

A table to compare against plots:

rg <- rbind(colMeans(good_prop), apply(good_prop, 2,

range))

ru <- rbind(colMeans(uneven_prop), apply(uneven_prop,
2, range))

rb <- rbind(colMeans(bad_prop), apply(bad_prop, 2,
range))

colnames(rg) <- sprintf("Prey %d", 1:4)
colnames(ru) <- sprintf("Prey %d", 1:4)
colnames(rb) <- sprintf("Prey %d", 1:4)
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Figure 19: Posterior distributions for individual and group diet proportions from
the combined analysis

Table 1: Simulated diet proportions for a simulation with even diet proportions
and good resolution of diet items
Mean 7 Minnw® Max 7w

Prey 1 0.19 0.02 0.34
Prey 2 0.27 0.03 0.45
Prey 3 0.16 0.06 0.38
Prey 4 0.39 0.27 0.50
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Figure 20: Posterior distributions for individual and group diet proportions from
the combined analysis
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Figure 21: FAP from simulation with even diet proportions and good resolution
of diet items projected by NMDS

Table 2: Simulated diet proportions for a simulation with uneven diet propor-

tions and good resolution of diet items
Meanm Min7m Max 7

Prey 1 0.15 003 0.35
Prey 2 0.70  0.39 0.83
Prey 3 0.07 0.0l 0.12
Prey 4 0.08  0.00 0.25

dataplot (uneven_good)

Here, prey separation is good, but diets are skewed towards prey 2.

dataplot (even_bad)

Lastly, the prey separation is OK for prey species 1, 3 & 4 but prey species
2 has highly variable FA signatures leading to a wide distribution of Prey 2
signatures on the NMDS plot.

For all three examples, we’ll use all 10 simulated FAs to make sure that the
results are not affected by variable selection. We can run the MCMC directly:
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Figure 22: FAP from simulation with uneven diet proportions and good resolu-
tion of diet items projected by NMDS
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Figure 23: FAP from simulation with somewhat even diet proportions and bad
resolution of diet items projected by NMDS

Table 3: Simulated diet proportions for a simulation with somewhat even diet
proportions and bad resolution of diet items

Mean 7 Minnw® Max
Prey 1 0.52 0.41 0.67
Prey 2 0.19 0.11 0.31
Prey 3 0.14 0.01 0.33
Prey 4 0.16 0.06 0.21
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even.good.mcmc <- run_MCMC(datas = even_good, nIter = 30000,
nBurnin = 5000, nChains = 3, nThin = 30, Data.Type = "Fatty.Acid.Profiles",
Analysis.Type = "Population.proportions", Rnot = 2,
plott = F, spawn = T)

uneven.good.mcmc <- run_MCMC(datas = uneven_good, nIter = 30000,
nBurnin = 5000, nChains = 3, nThin = 30, Data.Type = "Fatty.Acid.Profiles",
Analysis.Type = "Population.proportions", Rnot = 2,
plott = F, spawn = T)

even.bad.mcmc <- run_MCMC(datas = even_bad, nIter = 30000,
nBurnin = 5000, nChains = 3, nThin = 30, Data.Type = "Fatty.Acid.Profiles",
Analysis.Type = "Population.proportions", Rnot = 2,
plott = F, spawn = T)

Checking the MCMC:

MCMCplot (even.good.mcmc)
MCMCplot (uneven. good.mcmc)
MCMCplot (even.bad.mcmc)

summary (even.good.mcmc)
summary (uneven. good .mcmc)
summary (even.bad.mcmc)

The first simulation of idealised data shows that the model clearly recovers
the variability and magnitude of population diet proportions. Even for uneven
diet proportions, the model performs well, with posteriors reflecting simulated
diets. For the last case with low resolution, the posteriors are wide and sub-
stantial uncertainty thus reflects the inability to making clear statements about
diet proportions.

plot(even.good.mcmc, save = F, types = "post")

## Using as 1d variables

plot (uneven.good.mcmc, save = F, types = "post")

## Using as id variables
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Figure 24: FAP from sensitivity simulations
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Figure 25: FAP from sensitivity simulations
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Figure 26: FAP from sensitivity simulations

plot(even.bad.mcmc, save = F, types = "post")

## Using as id variables
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