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Supplemental Text S2. Simulation results based on six species abundance models

To investigate the performance of the proposed singleton count derived in Equation (5) and the
diversity estimator in Equation (7) of the main text, we carried out simulations by generating data
sets from various species abundance models. Here we report the results from six representative
models. In each model, we fixed the number of species at S = 2000 to mimic the taxa richness of
microbial communities.

The functional forms or distributions for species’ relative abundances (p,, p,,..., py) are

given below, whereby ¢ is a normalizing constant such that 3>, p, =1. When species abundances

were simulated from a distribution (Models 2, 3 and 4), we first generated a set of 2000 random
variables, which we regarded as fixed parameters in the simulation. In each model, we also give

the CV (which is the ratio of the standard deviation over the mean) of (p,, p,,..., ps) . The CV

value gquantifies the degree of heterogeneity among the species’ relative abundances

(p1r Py Ps) - When all abundances are equal, CV = 0. A larger value of CV indicates a higher

degree of heterogeneity among abundances. In the following description, S = 2000 for all models.

Model 1. A homogeneous model with p;=1/S and S = 2000. This is the model with no

heterogeneity among species relative abundances (CV = 0).
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Model 2. A random uniform model with p; = ca;, where (p,, p,...., pg) isarandom sample from a
uniform (0, 1) distribution. (CV = 0.57).
Model 3. A broken-stick model with p; = ca;, where (a1, ay, ..., as) is a random sample from an

exponential distribution. Equivalently, (p,, p,,..., ps) follows a Dirichlet distribution with

parameter 1 (CV = 0.99).
Model 4. A log-normal model with p; = ca;, where (a1, aa,..., as) is a random sample from a

log-normal distribution with mean x = 0, and variance ¢* = 1 (CV= 1.96).

Model 5. A Zipf-Mandelbrot model with p, =c/(i+5),i=1, 2,..., S (CV = 3.07).

Model 6. A power-decay model with p, = c/i®°,i=1,2, ..., § (CV=5.03).

For each given model, we considered a range of sample sizes (» = 2000 to 10000 in
increments of 1000). Then for each combination of abundance model and sample size, 1000
simulated data sets were generated from the abundance model. Two types of data were generated:
(i) Data without sequencing error (i.e., data with the true number of singletons): individuals were
randomly selected from a given model and their species identities were correctly recorded.

(i) Spurious data with a sequencing error rate of 10% (data with spurious singletons): individuals
were randomly selected from a given model, but there was a probability of 10% that each sampled
individual was misclassified as a new species and thus became a spurious singleton. This was used
to mimic the sequencing error with an error rate of 10% for each detected individual to be
misclassified as a spurious singleton.

For each model, we display four sub-plots in Supplementary Fig. S1: In Panel (a), we show
the plots of the average values of four singleton counts as a function of the sample size that was

used in data generation. The four singleton counts include the true singleton count generated from

-2
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the data without sequencing error, the spurious singleton count generated from the data with
sequencing error, the adjusted singleton count based on Equation (5), and the count obtained from
the ratio-based method of Bunge et al. (2014) and Willis & Bunge (2015) through the R package
“breakaway”, available from CRAN (Comprehensive R Archive Network). All values were
averaged over 1000 simulation trials under the six species abundance models. All plots in Panels
(a) were also shown in Fig. 1 of the main text; see the main text for the comparisons of the
performances of the four singleton counts.

Under each model, Panels (b), (c) and (d) compare the true diversity (Equation 1 in the main
text) and the estimated asymptote of diversity (Equation 7 in the main text). There are two
estimated diversities, respectively calculated from the spurious data and from the adjusted data. As
described in the main text, the “adjusted data” refer to those with the observed singleton count
being replaced by the estimated count computed from Equation (5) of the main text.

Panel (b) for each model shows the plots of the true species richness and the average values
(over 1000 simulation trails) of the Chaol estimator for the spurious data, the Chaol estimator for
the adjusted data, as well as the species richness estimator via the ratio-based method described
above. It is clear that the Chaol estimator for the spurious data severely overestimates the true
species richness. By contrast, the Chaol estimator for the adjusted data reduces most of the
positive bias and works well for all models, although negative bias exists with the magnitude of
the bias increasing with CV value. While the ratio-based method also works when CV value is
relatively low (Model 1 to Model 4), the ratio-based species richness estimates exhibit large
positive bias when the CV value is relatively high (Model 5 and Model 6).

In Panel (c), we show the plots of the true Shannon diversity and the average values (over
1000 simulation trails) of the estimated Shannon diversity for the spurious data and for the

adjusted data. The corresponding plots for Simpson diversity are displayed in Panel (d). Although
-3-
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the simulation results in Panel (b) of each model demonstrate that the species richness estimation
is seriously inflated or affected by spurious singleton counts, the effect on Shannon diversity is
moderate and the effect on Simpson diversity is weak, as shown in Panel (c) and Panel (d) in each
model). Under each model, both the estimated Shannon and Simpson diversities computed from
spurious data overestimate the true diversities, although the bias is not as severe as it is for species
richness. Our estimated Shannon and Simpson diversities for the adjusted data exhibit very low
bias (when sample size is small) or are nearly unbiased (when sample size is sufficiently large) for
all models.

In summary, our estimated asymptotes of diversities presented in Equation (7) of the main
text based on the adjusted data greatly remove the positive biases due to spurious singletons. When
there are sequencing errors, our procedure always leads to better results; when there are no
sequencing errors, our results differ from those based on the true data only to a limited extent.
Therefore, our proposed estimator of singleton count can be used to detect the quality of the
observed singleton count. This also reveals that whenever singletons are uncertain or in doubt, it is

worth applying our estimator of singleton count in diversity analysis and statistical inferences.
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Model 1: Homogeneous model (CV=0)
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Model 3: broken-stick model (CV=0.99)
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Model 5: Zipf-Mandelbrot model (CV=3.07)
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Fig S1. Plots of simulation results. Under each model, there are four panels.

Panel (a) compares the average values of four singleton counts: the true singleton count generated
from the data without sequencing error, the spurious singleton count generated from the data
with sequencing error, the adjusted singleton count based on Equation (5), and the count
obtained from the ratio-based method of Bunge et al. (2014) and Willis & Bunge (2015) through
the R package “breakaway”, available from CRAN (Comprehensive R Archive Network). All
values represent the average values over 1000 simulation trials under six species abundance
models.

Panel (b) compares the true species richness, and the average values (over 1000 simulation trails)
of the Chaol estimator for the spurious data, the Chaol estimator for the adjusted data, and the
species richness estimator obtained from the ratio-based approach.

Panel (c) compares the true Shannon diversity and the average values (over 1000 simulation trails)
of the estimated Shannon diversity for the spurious data and for the adjusted data.

Panel (d) compares the true Simpson diversity and the average values (over 1000 simulation trails)
of the estimated Simpson diversity for the spurious data and for the adjusted data.

Note the scale of the Y-axis in each model may be different in the four panels due to different

ranges of diversity.
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