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TECHNOLOGY UNDERLYING THE RARE DISEASE DISCOVERY PROTOTYPE 65 

The technology behind the web application is the GRAILS framework, a web application 66 

framework built for the Java Virtual Machine that uses the Groovy programming language. GRAILS 67 

uses a MVC (Model View Controller) pattern that allows for a full integration between the model 68 

(and the database) and the view (user interface). With built-in database access and modeling, it 69 

enables easy abstraction and decoupling between these two parts of the application, permitting 70 

easy database migrations. This also helps hiding database complexity and access to information in 71 

an object-oriented way. JQuery and Ajax were also used in order to provide dynamic web 72 

capabilities like autocomplete. A powerful front-end framework for faster and easier web 73 

development (Twitter Bootstrap) was included, streamlining the styling and design of the web 74 

interface. Built for the JVM, this framework also enables easy integration with Java packages, 75 

plugins and wrappers. 76 

The database design provides a welcome positive side-effect: it is trivial to keep the database up-77 

to-date. A periodic download of the ORPHANET data every three months, followed by upload of 78 

that data to our database can be done in minutes, facilitating that RDD is kept up to date and 79 

usable over the long run.  Currently, the database has a total of 6 915 diseases and 2 110 80 

symptoms. There is a total of 101 840 records representing relations between symptoms and 81 

diseases.  82 

We note that the symptoms-disease association file from the ORPHANET dataset are re-curated by 83 

us in order to ensure that the automated processing of the xml file made available by ORPHANET 84 

is done without mistakes. Although it does not always happen, in some versions of the xml files we 85 

downloaded had one or more tags that were not properly closed. In addition, in the earlier 86 

versions of the files, the symptoms had not yet been fully converted to their synonymous terms in 87 
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the HPO (Human Phenotype Ontology)1. We performed a script analysis to identify those terms 88 

that were not in HPO and transformed them into their HPO synonyms. In the last 3 versions of the 89 

ORPHANET xml file, we found that HPO nomenclature has been fully implemented. 90 

 91 

CHOOSING THE APPROPRIATE PREDICTION METHODS 92 

Other classification approaches to predicting rare diseases based on symptoms were tested. First, 93 

we tested an additional ranking function that takes into consideration how frequently each 94 

symptom is thought to be associated with the disease. This information is provided in the 95 

ORPHANET dataset, which associates qualitative frequency information to a symptom, when it is 96 

associated to a disease (Very Frequent, Frequent, and Occasional). This tested function as the 97 

form: 98 

𝐷𝐷𝐷𝐷𝑖𝑖′ = 1 −
∑ 𝛿𝛿𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑀𝑀𝑀𝑀𝑀𝑀[𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑆𝑆𝐷𝐷𝐷𝐷𝑢𝑢𝑢𝑢𝐷𝐷𝑢𝑢𝑢𝑢 𝐷𝐷]
        Eq. A1 99 

In Eq. A1 Suser represents the number of symptoms provided by the user, SDisease i represents the 100 

number of symptoms of disease i stored in the database, and Max[Suser, SDisease i] represents the 101 

largest number between Suser and SDisease i. n represents the number of symptoms that are different 102 

between the set submitted by the user and the set associated to any given rare disease in the 103 

database. 𝛿𝛿𝑗𝑗  measures the qualitative frequency at which symptom j has been found to associate 104 

to disease i in the past (see above). Given that there were only three categorical frequency 105 

associations (Very Frequent, Frequent, Occasional), 𝛿𝛿𝑗𝑗  was considered to have one of three values.   106 

𝛿𝛿𝑗𝑗 = 1 if the symptom is either very frequently associated to the disease i or is a symptom that is 107 

provided by the user; 𝛿𝛿𝑗𝑗 = 0.75 if the symptom is frequently associated to the disease i; finally, if 108 

the symptom is only occasionally associated to disease i, 𝛿𝛿𝑗𝑗 = 0.5. It can be shown that , 109 
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−1 ≤ 𝐷𝐷𝐷𝐷𝑖𝑖 ≤ 𝐷𝐷𝐷𝐷𝑖𝑖′ ≤ 1.   However, even though 𝐷𝐷𝐷𝐷𝑖𝑖′ ≠ 𝐷𝐷𝐷𝐷𝑖𝑖 , the list of diseases is ranked in the 110 

same order by both scores (data not shown). Because more calculations are required to estimate 111 

𝐷𝐷𝐷𝐷𝑖𝑖′, using this score for ranking leads to slower computation. Hence, we discarded 𝐷𝐷𝐷𝐷𝑖𝑖′.  112 

Second, we also trained and tested algorithms based on Support Vector Machines, Neural 113 

Networks, Bayesian Networks, Random Trees, and Random Forests. Invariably, these algorithms 114 

required extensive training and prediction time, and their best performance was always about one 115 

order of magnitude lower than that of the algorithm and score described in this paper. They were 116 

also orders of magnitude slower in predicting the disease and required more computational 117 

resources for doing so.  118 

RETROSPECTIVE STUDY OF PREVIOUSLY DIAGNOSED RARE DISEASE PATIENTS 119 

RAMEDIS is a server that provides management services for medical doctors diagnosing, treating 120 

and managing rare disease patients. Its database contains short report cards with at most 3 121 

sentences about 1099 patients with confirmed rare disease clinical diagnostics.  122 

The information for about 60% of these patients is public, although anonymized. From 123 

these approximately six hundred patients, nearly half have metabolic rare diseases that were 124 

diagnosed in screening programs at a preclinical stage. Of the remainder three hundred patients, 125 

one hundred and eighty seven had a confirmed clinical diagnosis associated with a report card that 126 

described at least one symptom. Examples of the procedure are given 127 

We took these 187 patients and reconstructed their symptoms from the individual report 128 

cards. In some cases this is easy, and report cards were very clear (for example: patient with 129 

seizures or hypotonia). In other cases the symptoms were vaguely described and hard to 130 

reconstruct. For example, “hearing problems” or “hearing loss” could be any of the following: 131 

“Conductive deafness/hearing loss”, “Central deafness/hearing loss”, “Sensorineural 132 
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deafness/hearing loss”, or “Hearing loss/hypoacusia/deafness”. Another example, “Infection” 133 

could be any of the following: “Immunodeficiency/increased susceptibility to infections/recurrent 134 

infections”, “Recurrent urinary infections”, “Chronic skin infection/ulcerations/ulcers/cancrum”, or 135 

“Repeat respiratory infections”. In these cases, we opted for including all possibilities rather than 136 

eliminating the symptom. This decision was made because eliminating the symptom would have 137 

meant discarding additional patients from an already small set, as all reported symptoms were 138 

often ambiguous. An example of two report cards and their processing is shown in Supporting 139 

Figure 1. The patients, their symptoms, and their clinically confirmed diagnosis can be manually 140 

accessed and compiled from the RAMEDIS website. Supporting Figure 2 plots the accumulated 141 

frequency of the score for the correct (and best) prediction. 142 

BENCHMARKING THE RARE DISEASE DISCOVERY PROTOTYPE  143 

The rare disease prediction algorithm was extensively benchmarked to evaluate the effect of 144 

absent and unrelated symptoms on diagnostic precision. In addition, we also tested how the 145 

changes in the ORPHANET dataset could affect the results. These benchmarks relied on several 146 

sets of tests, all run using Stochastic Monte-Carlo simulations.  147 

Aggregated effects of unreported and unrelated symptoms on prediction accuracy of the Rare 148 

Disease Discovery Algorithm  149 

The first benchmark test was done by generating several random sets of 10 000 patients, each 150 

with all the symptoms associated to a specific but randomly chosen rare disease. Then, for 151 

increasing percentages of the patients in a given random set either 1, 2, 3, 4, 5, 10, or 20 152 

symptoms were randomly added or deleted to create noise. Then, the noisy sets of symptoms 153 

were used by the RDD algorithm to predict the rare disease that generated them. The precision p, 154 
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sensitivity s, and F-Score of the RDD prediction algorithm were calculated for each set of patients. 155 

The results are summarized in Figure 2 of the main text and discussed in the main manuscript.  156 

Effects of unreported symptoms on prediction accuracy of the Rare Disease Discovery Algorithm 157 

The second benchmark test was done by again generating several random sets of 10 000 patients, 158 

each with all the symptoms associated to a specific but randomly chosen rare disease. Then, for 159 

increasing percentages of the patients in a given random set, either 25%, 50%, or 75% of the 160 

symptoms were deleted to create noise. Finally, the noisy sets of symptoms were used by the RDD 161 

algorithm to predict the rare disease that generated them. These simulations represent situations 162 

where not all symptoms are known to the user during diagnosis. The precision p, sensitivity s, and 163 

F-Score of the RDD prediction algorithm were calculated for each set of patients. The results are 164 

summarized in Figure 3 of the main text and discussed in the main manuscript.   165 

Estimating significance for DSi scores and testing the performance of RDD in misdiagnosing 166 

patients that do not suffer from rare diseases 167 

It is important to estimate how large DSi must be for a user to be sure that the set of symptoms 168 

being submitted to RDD (Rare Disease Discovery) are not the result of randomly associated 169 

symptoms. A third benchmark of the RDD algorithm was done to estimate this DSi value. This 170 

estimation was done in following way. Consider that there are 13 698 diseases and 2 528 171 

symptoms in our database. The average number of symptoms associated to a disease is 42, with a 172 

standard deviation of 59. To calculate the probability that a given DSi for a set of symptoms 173 

produced by a user is statistically significant we generated 10 000 random vectors of symptoms. 174 

The population of the 10 000 vectors had an average number of symptoms equal to 42, with a 175 

standard deviation of 59. Given that these vectors were random, by plotting  𝑓𝑓 = (1 −176 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝐴𝐴𝑓𝑓𝐴𝐴𝐴𝐴𝑓𝑓𝐴𝐴𝑓𝑓 𝑜𝑜𝑓𝑓 𝐷𝐷𝐷𝐷𝑖𝑖) as a function of DSi (Supporting Figure 3) we are able to 177 
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estimate the probability that a given score is achieved simply by choosing a random combination 178 

of symptoms. This experiment estimates that a score 𝐷𝐷𝐷𝐷𝑖𝑖 ≥ 0.5 has a probability lower than 179 

0.0001 of being obtained by choosing a random set of symptoms. If we lower the probability to 180 

0.01, then 𝐷𝐷𝐷𝐷𝑖𝑖 ≥ 0.25.  In fact, the median DSi score for a random choice of symptoms is less than 181 

0.01.  182 

Estimating significance levels for the differences between two dsi scores 183 

In the previous section we describe an experiment that allowed us to estimate that if DSi>0.5, one 184 

can be 99.99% sure that the score was not obtained by choosing a random set of symptoms. 185 

Another issue is that of determining how significant are the differences between two DSi 186 

scores for the same set of symptoms. Estimating this is much more complicated because the 187 

significance will depend on the number of symptoms one submits for the prediction. A final 188 

benchmark experiment was done in order to provide a best scenario estimation for how 189 

statistically significant the differences between two DSi scores are.  190 

In this fourth and final benchmark we performed the following Monte Carlo simulation 191 

experiments. For each disease we created all possible sets of k symptoms, where k=1, 2, 3, 4, 5, 192 

10, 20, and 50 symptoms that are associated to that disease (taking care to eliminate diseases in 193 

the simulation that had less than the simulated number of symptoms). Then, for each k, we 194 

calculated DSi for the correct disease. We call this list DSi correct In parallel, for each k and for each 195 

set of symptoms, we calculated DSi for all diseases that were not the one from which we had 196 

extracted the set of symptoms. We call this list DSi incorrect.  197 

Then, for each k we created a list iDSD , where each element of the list corresponds is 198 

obtained by subtracting quantile j of DSi incorrect from quantile j of DSi correct. The results are 199 

presented in Supporting Table 2 and interpreted in the following way. For the same number of 200 
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submitted symptoms, in the context of the disease-symptoms association matrix, the differences 201 

between corresponding quantiles of the DSi correct and DSi incorrect lists provide a proxy to evaluate 202 

how different two DSi scores (one correct and one incorrect) must be for that difference to be 203 

significant. Thus, if users submit for example one symptom and want a certainty of 99.9% that two 204 

DSi scores are different, Supporting Table 2 tells us that the two scores should differ by at least 205 

0.14. How can this be interpreted? For example, the difference between the score for the most 206 

highly ranked disease and that for the second best guess by RDD needs to differ by at least 0.14, if 207 

one want to state that the prediction is significantly (p<0.001) better than the second best guess. 208 

It is important to benchmark the performance of RDD with patients that have symptom(s) 209 

associated to rare diseases, without suffering from those diseases. This is a very real scenario, as 210 

many of the symptoms are common between rare and non-rare diseases. A possible test would be 211 

to create synthetic patients from other diseases, adding random rare disease symptoms and 212 

running RDD. However, we note that RDD only allows users to choose symptoms that have been 213 

previously associated to at least one rare disease. Hence, testing RDD’s performance with 214 

synthetic patients from non-rare diseases is formally equivalent to generating synthetic patients 215 

with random associations of rare-disease symptoms. This is the same test that was done to 216 

determine significance for DSi scores. In other words, only when DSi is larger than 0.5, does RDD 217 

ensure that the patient has a rare disease, with a probability higher than 0.9999.  218 

Accurate predictions in the absence of statistically significant DSi scores 219 

Taken together, the four benchmark experiments described in the main manuscript show that DSi 220 

decreases sharply with noise; however, even if DSi is below the statistically significant level, it can 221 

still be used to accurately predict the correct rare disease, although with a lower confidence (see 222 

above). For example, in Supporting Figure 4 we show Box plots of the maximum DSi scores for all 223 

patients in the second benchmark test. We see that when patients have 50% absent symptoms, 224 
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the maximum score is still almost always above 0.5, which is the 0.0001 significance level 225 

determined in benchmark 3. Only when 75% of the symptoms are absent do we get maximum DSi 226 

scores that are equal to or lower than 0.5 for more than 50% of the patients. 227 

 228 

Effect of evolving datasets:  ORPHANET dataset of December 2014 vs. ORPHANET dataset of 229 

December 2015 230 

Given that the dataset we used is annotated by humans and evolves, we wanted to have an 231 

estimate of how much the changes might affect the predictive capabilities of RDD. To achieve this 232 

we repeated the tests described in all the previous subsections of “BENCHMARKING THE RARE 233 

DISEASE DISCOVERY ALGORITHM” for the ORPHANET dataset of 2015. What we found was that 234 

the difference in F-Score of RDD between the two sets was smaller than 3% when noise was large 235 

(20 noisy symptoms) and less than 0.2% when symptoms were accurate (Supporting Figure 5). We 236 

also observe that the median score of the correct prediction when 25%, 50%, or 75% of symptoms 237 

are absent increased by approximately 20% when we changed the 2014 dataset for the 2015 238 

dataset (Supporting Figure 6). These results suggest that the human curation of the ORPHANET 239 

dataset is improving over time, which also improves the quality of the results of computer assisted 240 

DDX tools that use them, as is the case of RDD.  241 
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 242 

Supporting Figure 1 – Two examples of RAMEDIS report cards. A: Example of a report card that 243 
could not be used, as no symptoms were reported. B: Example of a report card that could be used, 244 
but had vague description of some symptoms.  245 
 246 
 247 

 248 
 249 

  250 
Supporting Figure 2 – Cumulative frequency of the highest score for the retrospective study of 251 
previously diagnosed rare disease patients.  252 

 253 
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 254 

Supporting Figure 3 – Estimating the probability that a score DSi≤k might be obtained from a 255 
random set of symptoms. The score DSi is represented in the x-axis, while the logarithm of 1 – the 256 
accumulated frequency of DSi is represented in the y-axis. DSi score values higher than 0.5 have a 257 
probability of 0.0001 of being obtained from a random set of symptoms.  258 
 259 
 260 

 261 
Supporting Figure 4 – Effect of unreported symptoms on the maximum DSi scores for patients. 262 
Here we present Box plots of the maximum DSi scores for all patients when 25%, 50%, or 75% of 263 
the symptoms are absent. The median maximum scores are joined by a blue line. The boxes 264 
indicate the 0.25 and 0.75 quartiles in each dataset.265 
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Supporting Figure 5 – Effect of the evolution in the ORPHANET dataset on the F1-Score of RDD. Comparison of the datasets from December 2014 
and 2015. The effect of the dataset from different years is less than 3%.
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Supporting Figure 6 – Effect of the evolution in the ORPHANET dataset on the effect of unreported symptoms on the maximum DSi scores for 
patients. Comparison of the datasets from December 2014 and 2015. The median maximum scores are joined by a blue line. The boxes indicate 
the 0.25 and 0.75 quartiles in each dataset. The median scores of the newest dataset are higher than those of the 2014 dataset, indicating an 
improvement in the quality of the RDD predictions when symptoms are under-reported.
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Supporting Table 1 – Symptoms used to perform the experiments summarized in Tables 1 and 2. 

Disease Initial Symptom  Rank at First 
symptom Additonal symptoms required for the appropriate disease to be ranked as 1st prediction 

Beta-Thalassemia Chronic skin infection/ulcerations/ulcers/cancrum 67th Humour troubles/anxiety/depression/apathy/euphoria/irritability 
Anaemia 

Canavan Disease Motor deficit/trouble 23rd  

Seizures/epilepsy/absences/spasms/status epilepticus 
Retinitis pigmentosa/retinal pigmentary changes 
Hypotonia 
Contractures/cramps/trismus/tetania/claudication/opisthotonos 

Down Syndrome Strabismus/squint 244th  
Sterility/hypofertility 
Microstomia/little mouth 
Insulin-independent/type 2 diabetes 

Fabry Disease Renal failure 111th  

Anorexia 
Humour troubles/anxiety/depression/apathy/euphoria/irritability 
Renal disease/nephropathy 
Nausea/vomiting/regurgitation/merycism/hyperemesis 
Myalgia/muscular pain 
Thick lips 
X-linked recessive inheritance 

Goldblatt Syndrome Hip dislocation/dysplasia/coxa valga/coxa 
vara/coxa plana 81st Delayed dentition/eruption of teeth/lack of eruption of teeth 

Respiratory distress/dyspnea/respiratory failure/lung volume reduction 
Turner Syndrome Pigmented naevi/naevus pigmentosus/lentigo 21st  Thin/hypoplastic toe nails 
Uncombable Hair Syndrome Albinism (hair) 1st  Albinism (hair) 

Williams Syndrome Renal failure 121st  

Angor pectoris/myocardial infarction 
Thin/hypoplastic toenails 
Late puberty/hypogonadism/hypogenitalism 
Osteosclerosis/osteopetrosis/bone condensation 

Yunis-Varon Syndrome Sternal/sternum anomalies 7th  

Cardiomyopathy/hypertrophic/dilated 
Poorly ossified skull/calvarium 
Absent/small toenails/anonychia of feet 
Blepharophimosis/short palpebral fissures 
Absent/small fingernails/anonychia of hands  
Anteverted nares/nostrils 
Hip dislocation/dysplasia/coxa valga/coxa vara/coxa plana 
Hypotonia 

Zellweger-like Syndrome without 
Peroxisomal Anomalies High forehead 31st  Broad nasal root 

Expressionless face/amimia 
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Supporting Table 2 – Estimating the probability that a difference between scores iDS xD <  is 
significant at three p-value levels, when a varying number of symptoms is submitted to RDD.  
Number of 
symptoms 

( )0.01iDS p valueD − <
 

( )0.005iDS p valueD − <  ( )0.001iDS p valueD − <  

1 0.01iDSD ≤  0.025iDSD ≤  0.14iDSD ≤  

2 0.001iDSD ≤  0.005iDSD ≤  0.015iDSD ≤  

3 0.001iDSD ≤  0.001iDSD ≤  0.010iDSD ≤  

4 0.001iDSD ≤  0.001iDSD ≤  0.007iDSD ≤  

5 0.001iDSD ≤  0.001iDSD ≤  0.005iDSD ≤  

10 0.001iDSD ≤  0.001iDSD ≤  0.001iDSD ≤  

20 0.001iDSD ≤  0.001iDSD ≤  0.001iDSD ≤  

50 0.001iDSD ≤  0.001iDSD ≤  0.001iDSD ≤  
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