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We provide full details of the model with the equations to outline how the pathogen
is transmitted between trees and psyllids. We adapt a non-spatial model of vector-borne
disease for malaria (Parham & Michael, 2010). In our model, Equations (S1.1)-(S1.9), citrus
trees are categorized as either Susceptible, S(t), Asymptomatic, A(t), or Infected, I(t), in
which Infected implies the disease is detectable by symptoms; we assume Asymptomatic
and Infected trees transmit the pathogen with the same probability. Adult psyllids are
Susceptible, SV (t); Exposed, EV (t); or Infected, IV (t); where Exposed indicates that the
psyllids are infected but are not yet able to pass the disease on to another tree. Once
infected, psyllids remain so for their entire lifespan. Successful transmission between psyllid
and tree can only occur when psyllids feed off the phloem of the tree; the feeding rate
is independent of grove size thus transmission is frequency-dependent. We assume well-
mixing between trees and psyllids. A very small rate of natural death of susceptible and
asymptomatic trees occurs and we include roguing of infected trees; together these trees
are categorized as Removed, R(t). However, removed trees are immediately replaced in the
grove by susceptible trees, keeping the grove size constant. Thus, the removed category
exists to keep track of how many trees have been removed and replaced over time; it does
not represent alive trees in the grove. We assume that the grove has 100% susceptible trees
initially, with psyllids feeding freely from the trees. At time 0, we introduce one infected
tree. We consider the change in numbers of susceptible, asymptomatic, infected and removed
trees for the following 20 years to understand the effects of the initial infection on the whole
grove.

dS

dt
= −ab

N
IV S − rS + r(N − I) + r1I (S1.1)

dA

dt
=
ab

N
IV (t− τ)S(t− τ)e−rτ − γA− rA (S1.2)

dI

dt
= γA− r1I (S1.3)

dR

dt
= r(N − I) + r1I (S1.4)

dSV
dt

= λF − ac

N
(A+ I)SV − µSV (S1.5)

dEV 1

dt
=
ac

N
(A+ I)SV − 3φEV 1 − µEV 1 (S1.6)

dEV 2

dt
= 3φEV 1 − 3φEV 2 − µEV 2 (S1.7)

dEV 3

dt
= 3φEV 2 − 3φEV 3 − µEV 3 (S1.8)

dIV
dt

= 3φEV 3 − µIV . (S1.9)

N is the total number of trees in the grove, which is kept constant at 1001. V =
SV +EV 1+EV 2+EV 3+IV is the total number of psyllids. We split the Exposed stage into three
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compartments to more accurately represent the length of the exposure period. Following
Lloyd (2001), using n compartments, in which the rate of leaving each compartment is nφ,
produces a Gamma distribution for overall psyllid progression to the infectious class with a
mean rate of φ. The more compartments used leads to a Gamma distribution with lower
variance around the mean. This is a useful alternative to fixed time delays, which can be
problematic when parameters are temperature-dependent. We measure time in years so all
rates are per year. a is the feeding rate of the psyllid on the trees, b is the probability
that a susceptible tree becomes infected from contact with an infected psyllid, and c is the
probability that a susceptible psyllid becomes infected from contact with an infected tree.
Hence bc is the vector competence. We impose a time delay τ to represent the length of
the exposed period when a tree is infected but not yet infectious. This time delay is long
(approximately 6 months (Gottwald, 2010)), hence we use a fixed time delay of length τ to
represent this more accurately than using a simple exponentially distributed exposure period.
r is the natural death rate of susceptible and asymptomatic trees. Trees that are exposed may
not survive the exposure period due to natural death, thus we include a discount term e−rτ

to correctly model how many trees move from susceptible to asymptomatic. Asymptomatic
trees develop symptoms and move to the infected class with rate γ. The rate of removal of
infectious trees by roguing is r1. We assume all removed and dead trees are replanted with
susceptible trees, hence the addition of these trees in equation (S1.1).

Adult psyllids have a fixed birth rate λ, which includes the development of eggs and
nymphs. We include a term F to represent flush seasons. Development of psyllids is very
closely connected to availability of flush, as eggs are laid on flush and nymphs remain on the
same flush for their development period. Thus, the birth rate λ is defined as the number of
adult psyllids produced on a single flush, and F determines how many flush are in the grove
over the year. Flush is produced seasonally in sub-tropical regions, such as Florida, usually
a major flush in spring and a minor flush in autumn. Following Chiyaka et al. (2012), we
use a sinusoidal term to represent flush as two peaks each year. Based on Hall & Albrigo
(2007), individual trees have 6 flush on average during the major flush season in spring but
3 flush during autumn. We set F to be

F = 3N(1 + sin(4πt+ π
2
)). (S1.10)

This allows the number of flush patches to vary between 0 and 6 times the number of trees
in the grove, twice each year with peaks in April and October (the year start is determined
by the temperature function, see below).

The birth rate per flush patch, λ, can be expressed as the product of the number of eggs
laid over a lifetime EFD

µ
(where EFD is the number of eggs laid per female per year) and

the probability the eggs survive to adulthood pea, over the average duration of the immature
stages (Mordecai et al., 2013). Hence,

λ =
EFDpeaMDR

µ
(S1.11)

where MDR is the vector development rate, i.e. 1/time for a vector to develop from egg to
adult. The death rate of psyllids is µ. φ is the development rate of the bacteria within the
psyllid, determining the length of their exposure period.
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We do not include invasions of psyllids from outside groves for simplicity. This is based
upon the assumption that neighboring growers will coordinate spraying in their grove, in
order to reduce the likelihood of invasion. Therefore, the size of the vector population can
be modeled as a function of the demographic parameters. The probability of having V
vectors at time t tends to a Poisson distribution with mean λF

µ
(Parham & Michael, 2010).

Mathematical models of disease systems often use R0, the basic reproductive number, as
a measure of disease prevalence. It is a measure of how many secondary hosts will become
infected if one initial host is infected in a näıve population. The equation for R0 for Equations
(S1.1)-(S1.9) is given by:

R0 =

(
V a2bc

Nµ
e−rτ

(
3φ

3φ+ µ

)3(
1

γ + r
+

γ

(γ + r)r1

))1/2

(S1.12)

=

(
EFDpEAMDRa2bcF

Nµ3
e−rτ

(
3φ

3φ+ µ

)3(
1

γ + r
+

γ

(γ + r)r1

))1/2

. (S1.13)

This equation for R0 can be understood by considering how disease propagates through the
system. It is dependent on the ratio of vectors to hosts (V/N), the number of successful
contacts from tree to vector, due to the vector feeding on the tree (ac), how many infectious

vectors survive the exposed period (
(

3φ
3φ+µ

)3
), and how many successful feeds those vectors

make on trees (ab) over the lifespan of an infected vector (1/µ), the proportion of those trees
which survive the exposed period (e−rτ ), and the average length of time infectious, which is
given by the length of time asymptomatic (1/(γ + r)), plus the proportion of asymptomatic
hosts that progress to be the infected class (γ/(γ + r)) multiplied by the length of time
infected (1/r1). One useful aspect of this definition is that if R0 > 1, the epidemic will
spread throughout the grove, whereas if R0 < 1, the disease will die out. This is because
on average, if R0 > 1, one infected tree infects as least one other tree causing the disease to
continue rather than die out.

Parameter Values

Our model aims to use realistic parameter values for each of the parameters, which necessi-
tates analyzing how each of the parameters varies throughout the year due to environmental
conditions. Psyllids are ectotherms and thus will be sensitive to fluctuations in temperature
both daily and throughout the year. We include this in our model by incorporating the data
presented in Liu & Tsai (2000), which determines life history parameters at different tem-
peratures. Following the work of Mordecai et al. (2013), we expect thermal response curves
to be unimodal, and left-skewed, since metabolic reaction rates tend to increase up to an
optimal temperature, then decline due to protein degradation and other processes. However,
as the data were limited, we allow for linear response curves. We fit thermal response curves
for EFD, pea, MDR and µ assuming Brière, quadratic or linear functions, and determine
the best fitting curve by the Akaike Information Criterion (AIC). For µ, we also used a data
point from Hall et al. (2011) to determine the effect of freezing on longevity of psyllids.
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The parameter fits are included in Table S1.1 with the data and best fit for the parameters
plotted in Figure S1.1.

Parameter Curve Curve Parameters

pea Linear a = 0.4719(0.103), b = 0.0109 (0.004)
MDR Brière c = 5.286× 10−5(1.822× 10−5), T0 = 10.02(2.858), Tm = 34.17(2.335)
EFD Brière c = 0.011(0.004), T0 = 13.049(3.231), Tm = 30.845(0.896)
1/µ Quadratic q = −0.14221(0.04717), r = 4.31998(1.59958), s = 31.25498(15.96673)

Table S1.1: Thermal response fits for psyllid life history parameters. Brière [cT (T − T0)(Tm − T )1/2],
quadratic, [qT 2 + rT + s] and linear [a+ bT ] curves were fitted for each parameter, with Akaike Information
Criterion (AIC) used to determine the best fit. Best fit values are listed with the standard deviations in
parenthesis. See Table S1.2 for psyllid parameter definitions. We fit longevity (1/µ) rather than the death
rate (µ) for ease. Note that in this table the parameters are daily rates but for (S1.1)-(S1.9) we change to
yearly rates (see Table S1.2).
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Figure S1.1: Thermal response curves for the psyllid life history parameters, using data from Liu & Tsai
(2000). For D, we also used a data point from Hall et al. (2011) to determine the effect of freezing on longevity
of psyllids. We fit linear, Brière, and quadratic curves for each parameter with the best fit (determined by
AIC) shown here. In A, probability of egg to adult survival (pea); in B, psyllid development rate (MDR); in
C, psyllid fecundity (EFD); in D, psyllid longevity (1/µ). For parameter values of the fits, see Table S1.1.
Note the different temperature range for D, due to the inclusion of a freezing reference point.

Note that we plot longevity (i.e., the inverse of the mortality rate; 1/µ) in Figure S1.1D.
From Figure S1.1A, we see that the best fit for parameter pea, the probability of egg to adult
survival, is a linear curve, which contradicts our current understanding of unimodal response
curves as discussed earlier. Thus, more data collection on this parameter, for a wider range
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of temperatures, would be useful to understand more clearly how it varies with temperature.
However, we do not believe it is of much concern for our current model as Figure 3A (main
text; sensitivity analysis) indicates that parameter pea is not influential on the model results.

A full list of all parameter values, with references, is provided in Table S1.2. All the
parameters in this table are yearly rates, as used in equations (S1.1)-(S1.9).

We include temperature variation in the model over a year with the following equation:

T (t) = 25(1 + 0.3 sin(2πt)) (S1.14)

which allows temperature to vary between 17.5◦C and 32.5◦C throughout the year, similar
to average temperatures in Florida (Duever et al., 1994). Our equation for Flush, (S1.10),
determines seasonal flush in terms of time, but since temperature and flush are defined
using sinusoidal functions, we can express flush in terms of temperature with the following
equation:

F = 6N

(
1−

(
10

3

(
T

25
− 1

))2
)
. (S1.15)

Including seasonal flush and temperature variation in the psyllid life-history traits results
in R0 changing throughout the year dependent on temperature (Figure S1.2). R0 declines
twice each year, both in summer and winter, but the higher temperatures are more deleterious
and results in R0 having a value of 0 for a significant portion of the year. At those high
temperatures the psyllids are unable to produce any eggs. No transmission of infection would
occur when R0 = 0 and hence the number of infected trees will decline due to roguing during
those times.

Sensitivity Analysis

We perform sensitivity analysis of R0 for the temperature dependent parameters by analyzing
the impact of these parameters on R0. We calculate how each parameter contributes to the
temperature sensitivity of R0,

dR0

dT
:

dR0

dT
=

∂R0

∂EFD

dEFD

dT
+

∂R0

∂pEA

dpEA
dT

+
∂R0

∂MDR

dMDR

dT
+
∂R0

∂µ

dµ

dT
+
∂R0

∂F

dF

dT

=

(
1

2EFD

dEFD

dT
+

1

2pEA

dpEA
dT

+
1

2MDR

dMDR

dT
−
(

3

2µ
+

1

2φ

)
dµ

dT
+

1

2F

dF

dT

)
R0

(S1.16)

Here ∂R0

∂x
is the partial derivative of R0 with respect to parameter x and dx

dT
is the derivative

of parameter x with respect to temperature, using the equations in Table S1.2.
We use equation (S1.16) to analyze the relative contribution of each parameter to overall

temperature sensitivity of R0, as shown in Figure 3 in the main text. In the figure, we
plot the full equation to indicate R0’s overall temperature sensitivity (black line) while each
colored line is the contribution to temperature sensitivity arising from each parameter -
e.g. the contribution of EFD is ∂R0

∂EFD
dEFD
dT

whereas the contribution from µ is ∂R0

∂µ
dµ
dT

.
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Figure S1.2: R0 is plotted against temperature (◦C) and time (years) to show the seasonal fluctuations.
The year begins in the middle of spring. R0 is given by (S1.13) with parameter values as in Table S1.2 and
temperature varying yearly according to (S1.14).

Insecticide Intervention

Insecticide spraying is currently the main method of control in widespread use in Florida
(Qureshi et al., 2014). The efficiencies of different insecticides vary, as well as the average
duration of reduction of psyllids. The average insecticide efficiency is between 90-100% but
some sprays can have an average efficiency as low as 53% (Qureshi et al., 2014). When
insecticide is applied to the groves it targets all adult psyllids through increasing their death
rate. It will also reduce the birth rate of psyllids, to represent the insecticide killing eggs
and nymphs. We analyse the effectiveness of the strategy using two aspects of the system:
the peak number of psyllids infected and the total profit made. We include costs of the
interventions to provide an aspect of cost-effectiveness as yields and profits are of primary
interest to the citrus growers.

In our model, spraying occurs twice in a year, in spring and autumn. Both spring
and autumn sprays will involve spraying for the same number of consecutive days. But
between simulations we vary the total number of days spraying each year. In order to
include insecticide spraying of m days in our model we use the following term:

ins(t) =

{
365ρ if t ∈ [tn − m

4∗365 , tn + m
4∗365 ] or t ∈ [tn + 1

2
− m

4∗365 , tn + 1
2

+ m
4∗365 ]

0 else
(S1.17)

where ins(t) denotes the level of insecticide occurring at time t, tn is an integer between 0
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and 20 representing years within our simulation, ρ is the effectiveness of the spray (between 0
and 1) per day and m is the number of days in the year the insecticide is sprayed. Therefore,
m
2

is the number of days in each spraying session. We multiply ρ by 365 to switch to a yearly
rather than daily rate (to be consistent with (S1.1)-(S1.9)).

Insecticide spraying affects psyllids by killing them thus we include this term as an
additional death rate. As we have a birth rate independent of the number of psyllids, we
need to take into account that insecticide will reduce the number of psyllids and hence this
rate should also decline. Thus, we multiply the birth rate of psyllids by a proportional term
to represent this. This leads to the following equations for insecticide intervention:

dS

dt
= −ab

N
IV S − rS + r(N − I) + r1I (S1.18)

dA

dt
=
ab

N
IV (t− τ)S(t− τ)e−rτ − γA− rA (S1.19)

dI

dt
= γA− r1I (S1.20)

dR

dt
= r(N − I) + r1I (S1.21)

dSV
dt

= λ

(
1− ins(t)

365

)
F − ac

N
(A+ I)SV − µSV − ins(t)SV (S1.22)

dEV 1

dt
=
ac

N
(A+ I)SV − 3φEV 1 − µEV 1 − ins(t)EV 1 (S1.23)

dEV 2

dt
= 3φEV 1 − 3φEV 2 − µEV 2 − ins(t)EV 2 (S1.24)

dEV 3

dt
= 3φEV 2 − 3φEV 3 − µEV 3 − ins(t)EV 3 (S1.25)

dIV
dt

= 3φEV 3 − µIV − ins(t)IV . (S1.26)

In the main text, we vary both ρ and m, the effectiveness of spraying and the total number
of days spraying per year to understand the efficiency of insecticide at reducing disease
prevalence.

Costs

The costs and profits of the insecticide intervention strategy is an important aspect in making
informed decisions about the strategy to adopt. We focus on the key costs and profits in
this early model to give a good indication of cost-effectiveness of the strategy (Table S1.3).
The costs we include are: cost of removing a tree and planting a new tree (if the tree has
died naturally or been removed due to infection) and cost of 1 day of insecticide spraying.
We also include some basic profits, namely, the profits from susceptible, asymptomatic and
infected trees over a year. The profits made from infected trees, in reality, will change as their
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symptoms progress; we use an average value as we do not keep track of how long individual
trees are infected for.

The cost of one day of insecticide spraying depends on the effectiveness of the insecticide,
such that more effective insecticides cost more money to use. We use the following equation
to determine cost:

Insecticide cost per day =
15.075ρ

1.203− ρ
. (S1.27)

This leads to a cost which varies from $15 for ρ = 0.6 to $70 for ρ = 0.99 where ρ is once
again insecticide effectiveness.

One notable cost which we do not include is that of checking trees for infection. This can
actually be rather costly depending on the number of days a year which are spent checking
for infection and the method used for detection. However, there is such variation in how
often people check trees, and the cost itself is difficult to calculate and will change between
groves, that for this model we exclude it.

We include a discount factor by multiplying future costs and profits by the term e−rDt.
This allows for more realistic results over a 20 year time period. Cost and profit values used
in the model are included in Table S1.3. We have used profits and costs from Stansly et al.
(2014) to assess likely values.

Parameter Value
Discount factor rD 0.001
Cost to replace tree $35

Cost of 1 day of insecticide spraying Eqn. (S1.27)
Profit from susceptible/asymptomatic tree per year $388

Proportion of profit for infected tree 40%

Table S1.3: Cost and profit values used in our model. The discount factor is based upon a current inflation
rate of 0.1%. The cost and profit values are estimated from Spreen et al. (2006); Stansly et al. (2014).

We incorporate the income calculations into our model by adding an additional differential
equation:

dP

dt
= 388(N − I) + (0.4)388I (S1.28)

where P (t) is the income at time t. We can then calculate costs and total profits using the
solutions to the delay differential equations (S1.1)-(S1.9) and (S1.28), with the parameters
in Table S1.3.

Methods

We numerically solve the delay differential equations (S1.1)-(S1.9) using Matlab, solver
dde23. The grove has 1001 susceptible trees and 500 susceptible psyllids. At time 0, one
of these 1001 susceptible trees becomes infected. That is, we are assuming that psyllids are
already present but infection is not, before we start the simulation. This is in comparison
to a case where psyllids invade an entirely susceptible grove, but some of the psyllids may
already be infectious. Our scenario represents Florida well, since psyllids existed there for 7
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years before HLB arrived, therefore it is likely that most groves had psyllids present before
they became infected.

We analyze the dynamics of the infection over the following 20 years. For the intervention
model, we apply the control strategy from time 0 and consider different control parameters
while keeping the disease parameters the same as their values in Table S1.2. In no cases did
applying the intervention strategy lead to complete removal of the disease from the grove.
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