
Appendix A Nomenclature

This Appendix proposes a set of terms and definitions for use in analyses of 1D biomechanical

continua (Table A.1) and relates these terms to analogous, established terms from the neuroimaging

literature (Table A.2). Note that the neuroimaging terminology cannot easily be used for 1D applications

because the meaning of ‘volume’ is unclear for 1D data.

Table A.1: Proposed nomenclature for statistical parametric mapping (SPM) analyses of 1D continua.

Category Term AbbreviationDescription

Geometry

Point of in-

terest

POI A single position in a 1D continuum. (e.g. time = 10%)

Region of in-

terest

ROI A continuous portion of a 1D continuum. (e.g. time =

20–50%).

Statistical

inference

0D inference ∗Inference procedures applied to 0D univariate or multi-

variate data which do not account for correlation amongst

adjacent continuum points.

1D inference Inference procedures applied to univariate or multivariate

1D data which use multiple comparisons corrections to ac-

count for correlation amongst adjacent continuum points.

RFT procedures are assumed unless otherwise stated.

Random

Field Theory

RFT Provides analytical parametric solutions for probabilities

associated with smooth 1D Gaussian continua, and in par-

ticular the probability that small samples of 1D Gaussian

continua will produce test statistic continua that reach cer-

tain heights in particular experiments. Reference: Adler

and Taylor (2007)

Small region

correction

SRC A multiple comparisons correction across within-ROI val-

ues using (parametric) RFT or a nonparametric alternative.

RFT is assumed unless otherwise stated.



General

Methodology

0D analysis Analysis of univariate or multivariate 0D data using 0D

inference procedures.

1D analysis Analysis of univariate or multivariate 1D data using 1D

inference procedures

0D method A method which conducts 0D analysis of 0D data.

1D method A method which conducts 1D analysis of 1D data.

Statistical

Parametric

Mapping

SPM A methodology for analyzing nD continua, often using clas-

sical hypothesis testing. SPM’s classical hypothesis testing

involves: (i) test statistic continuum computation from a

set of registered nD continua, (ii) continuum smoothness

estimation based on the nD gradient of the model residuals,

(iii) critical threshold computation using RFT and the esti-

mated smoothness, and (iv) probability value computation

using RFT and the estimated smoothness for threshold-

surviving clusters. Reference: Friston et al. (2007)

Region of in-

terest analy-

sis

ROIA A set of procedures involving (i) ROI definition and (ii)

statistical analyses of ROI data.

Specific

Methodology

0D metric-

based ROI

analysis

ROIA-0D ROIA which conducts 0D analysis on a 0D summary metric

(e.g. mean, median, maximum, etc.) that is meant to sum-

marize or otherwise represent all values in an ROI. ROIA-

0D with a local extremum summary metric (minimum or

maximum) is common in the Biomechanics literature.

1D ROI

analysis

ROIA-1D ROIA which conducts 1D analysis of an ROI’s data using a

small region correction (SRC). This is the focus of the main

manuscript. Equivalent to ‘SRC-based ROI analysis’.

∗Note: Bonferroni and other corrections applied across multiple continuum nodes but which do not

consider inter-node correlation are included in ‘0D inference’.



Table A.2: Relevant nomenclature from the neuroimaging literature. Terms without abbreviations do
not explicitly appear in the literature and are instead introduced here to clarify connections to the
proposed nomenclature in Table A.1.

Term Abbreviation Description

Region of interest ROI A continuous portion of an nD continuum. Also called a ‘vol-

ume of interest’ (VOI) in 3D.

Region of interest

analysis

∗0D analyses conducted on a 0D metric extracted from an

ROI. Reference: Brett et al. (2002). Equivalent to ‘volume of

interest (VOI) analysis’.

Small volume cor-

rection

SVC A multiple comparisons correction across within-ROI val-

ues using (parametric) RFT or a nonparametric alterna-

tive. RFT is assumed unless otherwise stated. Ref-

erence: SPM12 Manual (FIL Methods Group, Wellcome

Trust Centre for Neuroimaging, University College London)

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/



Appendix B Field smoothness: FWHM

The full width at half maximum (FWHM) parameter describes the smoothness of 1D random fields.

Most precisely, the FWHM specifies the breadth of a Gaussian kernel (Fig.B.1) which, when convolved

with uncorrelated (perfectly rough) Gaussian 1D data yields smooth Gaussian 1D fields (Fig.B.2).

Random field theory (RFT) (Adler and Taylor, 2007) uses the FWHM value to describe the prob-

abilistic behavior of smooth fields. The most important probability for classical hypothesis testing is

the probability that the random fields will reach a certain height (Friston et al., 2007); setting that

probability to α = 0.05 yields the critical RFT thresholds depicted in Fig.3 (main manuscript).
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Figure B.1: Breadth parameters for Gaussian kernels: σ and FWHM.
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Figure B.2: One-dimensional Gaussian random fields. The FWHM parameterizes field smoothness.
The smaller the FWHM the rougher the field, and the more likely random fields are to reach a specified
height. Infinitely smooth fields (FWHM=∞) are probabilistically equivalent to 0D scalars. It has been
shown that Biomechanics datasets generally tend to lie in the range FWHM = [5%, 50%], including
(processed) kinematics, force and processed EMG (Pataky et al., 2016).



Appendix C ROI analysis in Python and MATLAB

This Appendix describes the Python and MATLAB interfaces for region of interest (ROI) analysis

in spm1d (www.spm1d.org). Below Python and MATLAB code snippets are presented in green and

orange, respectively.

C.1 Example ROI analysis

In spm1d, ROI analysis can be conducted using the keyword “roi” in all statistical routines from

spm1d.stats including t tests, regression, ANOVA, etc. As an example, a two-sample t test with an

ROI spanning from time = 10% to 40% can be conducted as follows:

import numpy as np
import spm1d

#(0) Load dataset:
YA,YB = spm1d.data.uv1d.t2.SimulatedTwoLocalMax().get_data()

#(1) Define SR:
roi = np.array( [False]*101 )
roi[10:40] = True

#(2) Conduct t test:
t = spm1d.stats.ttest2(YB, YA, roi=roi)
ti = t.inference(0.05)
ti.plot()

%(0) Load dataset:
dataset = spm1d.data.uv1d.t2.SimulatedTwoLocalMax();
[YA,YB] = deal(dataset.YA, dataset.YB);

%(1) Define ROI:
roi = false( 1, 101 );
roi(11:40) = true;

%(2) Conduct t test:
t = spm1d.stats.ttest2(YB, YA, 'roi',roi);
ti = t.inference(0.05);
ti.plot()



C.2 Example analysis in detail

After importing the necessary packages, the next commands retrieve one of spm1d’s built-in datasets:

YA,YB = spm1d.data.uv1d.t2.SimulatedTwoLocalMax().get_data()

dataset = spm1d.data.uv1d.t2.SimulatedTwoLocalMax();
[YA,YB] = deal(dataset.YA, dataset.YB);

Here the variables YA and YB are both (J×Q) arrays, where J and Q are the number of observations

and the number of nodes in the 1D continuum, respectively. They can be visualized as follows:

from matplotlib import pyplot
pyplot.plot(YA.T, color="k")
pyplot.plot(YB.T, color="r")

plot(YA', 'color','r')
hold on
plot(YB', 'color','k')

This produces the following figure:
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Figure C.1: Example dataset “SimulatedTwoLocalMax”.

In this example the ROI is specified as a binary vector of length Q, where True indicates the ROI:

roi = np.array( [False]*101 )
roi[10:40] = True



roi = false( 1, 101 );
roi(11:40) = true;

Since the boolean values False and True numerically evaluate to 0 and 1, respectively, the ROI can

be visualized using a standard plotting command (Fig.C.2a):

pyplot.plot(roi, color="b")
pyplot.ylim(-0.1, 1.1)

plot(roi, 'color', 'b')
ylim( [-0.1 1.1] )

Alternatively the ROI can be visualized using spm1d’s “plot roi” function — currently only available

in Python (Fig.C.2b):

pyplot.plot(YA.T, color="k")
pyplot.plot(YB.T, color="r")
spm1d.plot.plot_roi(roi, facecolor="b", alpha=0.3)
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Figure C.2: Example ROI visualization (a) using pyplot.plot and (b) using spm1d.plot.plot roi

ROI-based statistical analysis proceeds as follows (Fig.C.3a)

t = spm1d.stats.ttest2(YB, YA, roi=roi)
ti = t.inference(0.05)
ti.plot()



t = spm1d.stats.ttest2(YB, YA, 'roi', roi)
ti = t.inference(0.05)
ti.plot()

To conduct the same analysis without an ROI simply drop the “roi” keyword as follows (Fig.C.3b)

t = spm1d.stats.ttest2(YB, YA)
ti = t.inference(0.05)
ti.plot()

t = spm1d.stats.ttest2(YB, YA)
ti = t.inference(0.05)
ti.plot()
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Figure C.3: Example analysis (a) with one ROI and (b) without any ROIs. “SPM{t}” denotes the t
statistic extended in time to form a ‘statistical parametric map’.

Note the following:

• When conducting ROI analysis spm1d masks portions of the t statistic curve which lie outside

the specified ROIs. This masking is replicated in the statistical continuum itself (the “z” attribute

of the spm object), as indicated below. Note: in MATLAB, masked elements “- -” are replaced

by “NaN”.

print( t.z )

[-- -- -- -- -- -- -- -- -- -- -0.22776187136870144 -0.35193394183457477
-0.4454435693960439 -0.4866562443204332 -0.45343849771681227
-0.32945352380074494 -0.10481565221034789 0.22601109469000205



0.6659607107024268 1.2186672527052544 1.8786714310449357 2.624090708123374
3.3977458417276942 4.09182563625598 4.557446151350232 4.676118446926481
4.4442233781988865 3.976243703618212 3.414764145392637 2.864043743188491
2.379655562970072 1.9818420780205368 1.6712848172222807 1.4407743903014176
1.2783724255448865 1.17159899332 1.1081081854538306 1.0770125187802424
1.0676148836585948 1.0710020774519424 -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --]

• Critical thresholds (hashed horizontal lines in Fig.C.3) are always lower in ROI vs. non-ROI

analysis because the search volume is smaller.

• When conducting ROI analysis there may be regions outside of the specified ROI which would

have reached significance had whole-field analysis been conducted (Fig.C.3b) and/or had the ROIs

been chosen differently. This issue is discussed in the main manuscript.

C.3 Multiple ROIs in a single analysis

To conduct statistical analysis using multiple ROIs simply add multiple portions to the boolean

vector:

roi = np.array( [False]*101 )
roi[10:40] = True
roi[60:75] = True

roi = false( 1, 101 );
roi(11:40) = true;
roi(61:75) = true;

When there are multiple ROIs spm1d automatically raises the critical threshold to account for the

expanded search volume (Fig.C.4). Note that the critical threshold for two ROIs of breadths b1 and b2

is not equivalent to the the critical threshold for a single ROI of breadth (b1 + b2). For example, using

the two-ROIs defined above yields a critical threshold of t∗=3.115. If, instead a single ROI of the same

total breadth had been defined as follows:

roi = np.array( [False]*101 )
roi[10:55] = True

roi = false( 1, 101 );
roi(11:55) = true;

the critical threshold would be slightly lower: t∗=3.050. The reason is that within-ROI variance is

smooth (across the 1D continuum), but between-ROI variance is generally not smooth. The spm1d

software accounts for this using the Euler characteristic of the specified ROI (see Pataky 2016).
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Figure C.4: Example analysis (a) with one ROI and (b) with two ROIs.

C.4 Directional ROIs

‘Directional ROIs’ can be used to simultaneously test a set of one-tailed hypotheses. As depicted

in Fig.5 (main manuscript), different ROIs can embody one-tailed hypotheses. Directional ROIs are

specified in spm1d as an integer vector containing the values: -1, 0 and +1 as follows:

roi = np.array( [0]*101 )
roi[10:40] = +1
roi[60:75] = -1

roi = zeros( 1, 101 );
roi(11:40) = +1;
roi(61:75) = -1;

Results for this particular set of directional ROIs as applied to the dataset above are depicted in

Fig.C.5b. Interpreting this result is somewhat complex and warrants discussion. First let us compare

this result with the case where both ROIs are positive (Fig.C.5a):

roi = np.array( [0]*101 )
roi[10:40] = +1
roi[60:75] = +1

roi = zeros( 1, 101 );
roi(11:40) = +1;
roi(61:75) = +1;

There are two results to consider:



1. Omnibus result : The omnibus result involves simultaneous testing of all ROIs. In this example

there is sufficient evidence to reject the omnibus null hypothesis for both Fig.C.5a and C.5b because

the SPM{t} crosses the critical threshold in the predicted direction in both cases.

2. Individual ROI results: These results may be regarded as a post hoc qualification of the omnibus

test, much in the same way post hoc t tests work in ANOVA. In Fig.C.5a the null hypotheses are

rejected for both ROIs, but in Fig.C.5b the null hypothesis is rejected only for the first ROI.

In other words, there is sufficient evidence to reject the omnibus null hypothesis for both Fig.C.5a

and Fig.C.5b. In Fig.C.5a there is sufficient evidence to reject the null hypotheses pertaining to both

individual ROIs in post hoc analysis. However, in Fig.C.5a there is only sufficient evidence to reject the

null hypothesis pertaining to the first ROI.
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Figure C.5: Example directional ROI analysis. (a) Both ROIs are positive-directed. (b) The first and
second ROIs are positive- and negative-directed, respectively.



Appendix D Accessing datasets

All datasets analyzed in this paper are available in the spm1d software package (www.spm1d.org)

and can be accessed via the spm1d.data interface as described below. Python and MATLAB code

snippets appear in green and orange font, respectively.

All datasets in spm1d.data are organized as follows:

spm1d.data.XXXX.ZZZZ.DatasetName

where XXXX refers to the data modaility (e.g. univariate, one-dimensional), ZZZZ refers to the original

or appropriate statistical test (e.g. one-sample t test), and DatasetName is a unique name assigned to

each dataset, containing the main author’s family name and publication year where appropriate.

Datasets A and B (Pataky et al., 2015)

Datasets A and B contain univariate, one-dimensional data (“uv1d”), the appropriate test for both

is a one-sample t-test (“’t1”), and the dataset names are “SimulatedPataky2015a” and “Simulated-

Pataky2015b”. They can be accessed as indicated below. The YA and YB variables are both (10 x 101)

arrays, where 10 is the number of responses and 101 is the number of time nodes used to approximate

the continuum.

import spm1d
datasetA = spm1d.data.uv1d.t1.SimulatedPataky2015a()
datasetB = spm1d.data.uv1d.t1.SimulatedPataky2015b()
YA = datasetA.Y
YB = datasetB.Y

datasetA = spm1d.data.uv1d.t1.SimulatedPataky2015a();
datasetB = spm1d.data.uv1d.t1.SimulatedPataky2015b();
YA = datasetA.Y;
YB = datasetB.Y;

Dataset C (Neptune et al., 1999)

Dataset C contains multivariate, one-dimensional data (“mv1d”), the appropriate test is a paired

Hotellings T 2 test (“hotellings paired”), and the dataset name is “Neptune1999kneekin”. They can be

accessed as indicated below. The YA and YB variables are both (8 x 101 x 3), where 8 is the number

of responses, 101 is the number of time nodes, and 3 is the number of vector components. Although



these data are multivariate, in this study univariate analyses were conducted on only the first vector

component (variables yA and yB).

import spm1d
dataset = spm1d.data.mv1d.hotellings_paired.Neptune1999kneekin()
YA,YB = dataset.YA, dataset.YB
yA,yB = YA[:,:,0], YB[:,:,0]

dataset = spm1d.data.mv1d.hotellings_paired.Neptune1999kneekin();
[YA,YB] = deal( dataset.YA, dataset.YB );
[YA,YB] = deal( YA(:,:,1), YB(:,:,1) );

Dataset D (Pataky et al., 2008)

Dataset D contains univariate, one-dimensional data (“uv1d”), the appropriate test is one-way

ANOVA (“anova1”), and the dataset name is “SpeedGRFcategorical”. Individual subjects’ data can

be loaded using the “subj” keyword as indicated below. The Y and A variables in each dataset are (60

x 101), and (60 x 1), respectively, where 60 is the number of responses and 101 is the number of time

nodes. Y contains the GRF data and A contains a vector of condition labels, where the labels “1”, “2”,

and “3” refer to slow, normal and fast walking, respectively. Note that 20 repetitions of each condition

were conducted and that the conditions were presented in a randomized order. In this paper only the

normal and fast conditions were considered.

The Y00 and Y01 variables are both (20 x 101) and were used in the Stage 1 analyses (Fig.6a). The

Y0 and Y1 variables are both (6 x 101) and contain within-subject mean trajectories for each of the six

subjects, and were used in the State 2 analyses (Fig.6b–c).

# load pilot subject's data:
subj0 = 0
dataset = spm1d.data.uv1d.anova1.SpeedGRFcategorical(subj=subj0)
Y,A = dataset.Y, dataset.A
Y00 = Y[A==2]
Y01 = Y[A==3]

# load experiment subjects' data:
SUBJ = [2, 3, 4, 5, 6, 7]
Y0 = []
Y1 = []
for subj in SUBJ:

dataset = spm1d.data.uv1d.anova1.SpeedGRFcategorical(subj=subj)
Y,A = dataset.Y, dataset.A
Y0.append( Y[A==2].mean(axis=0) )
Y1.append( Y[A==3].mean(axis=0) )

Y0,Y1 = np.array(Y0), np.array(Y1)



% load pilot subject's data:
subj0 = 0;
dataset = spm1d.data.uv1d.anova1.SpeedGRFcategorical(subj0);
[Y,A] = deal( dataset.Y, dataset.A );
Y00 = Y(A==2,:);
Y01 = Y(A==3,:);

% load experiment subjects' data:
SUBJ = [2 3 4 5 6 7];
Y0 = zeros(6, 101);
Y1 = zeros(6, 101);
for i = 1:6

dataset = spm1d.data.uv1d.anova1.SpeedGRFcategorical( SUBJ(i) );
[Y,A] = deal( dataset.Y, dataset.A );
Y0(i,:) = mean( Y(A==2,:), 1);
Y1(i,:) = mean( Y(A==3,:), 1);

end
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