
Crop	Study abbrev.	Peer review	A.I.(s)	Alt. insect.	Functional group(s)	Habitat	Arth. class	Early samp. (%)	N plots	Plot size (m ²)
Barley	SoteloCardona2010		THX		M, Pr, Pa	F	A, I	25	16	112
Canola	Echegaray2009		IMI	OP, OC, PYR	O, Pr	S	I	20	3 - 4	100 - 752
Cotton/ Sorghum	Krauter2001		IMI		Pr	F	A, I	0	3	110000
Maize	Ahmad20052006	Х	CLO	PYR	M, O, Pr	F, S	A, I	0 - 33	4	232
	Albajes2003	Х	IMI		M, Pr	F, S	A, I	20	4	7000
	AlDeeb2003	Х	IMI, CLO	OP, PYR	M, O, Pr	F, S	A, I	0 - 33	4	23 - 28
	Babendreier2015	Х	CLO	BIO, PYR	M, Pr	S	A, I	0	7 - 61	1
	Bhatti2005	Х	IMI	Bt, PYR	M, O, Pr, Pa	F, S	A, Ch, I	20 - 33	4	335
	dela Poza 2005 Farinos 2008	Х	IMI	Bt	M, Pr	F, S	A, Ch, I	0 - 20	3 - 4	1833 - 5500
	Harmon2006		CLO		M, O, Pr, Pa	F, S	A, Ch, I	66 - 100	4	729 - 1080
Soybean	Douglas2015	Х	THX		M, O, Pr, Pa	S	A, I	25	6	1080
	Hallett2014	Х	IMI, THX		Pr, Pa	F	A, I	20 - 25	3	111
	HeidelBaker2012 Carter2013		ТНХ	PYR	Pr, Pa	F	I	0 - 10	4	1003
	Ohnesorg2009	Х	IMI, THX	PYR, TRI	M, Pr, Pa	F	A, I	14	6	150
	Seagraves2012	Х	IMI, THX			F	A, I	13	4	41
	Spigler2013		THX		Pr	F	I	65	4	409
	Tinsley2012	Х	THX		Pr	F	I	0	4	70
Sugar beet	Baker2002		IMI, CLO, THX	PYR	М	S	A, I	33	4	108
Sunflower	Charlet et al. 2007	Х	THX	CARB	Ра	F	I	0	4	24
Wheat	Schmidt et al. 2002		IMI		М	S		0	4	10000

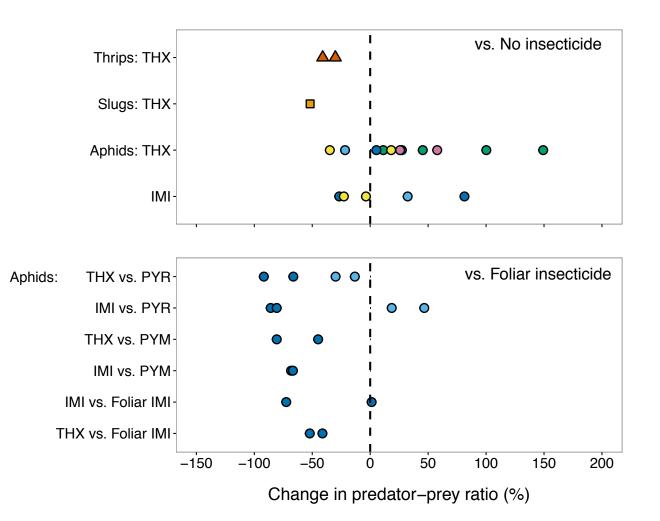

Key to abbreviations: A.I. = active ingredient, Alt. insect. = alternative insecticide compared to neonicotinoid seed treatment, Early samp. (%) = the percentage of samples taken during the first 40 days of crop growth, IMI = imidacloprid, CLO = clothianidin, THX = thiamethoxam, BIO = biopesticide, Bt = transgenic Bt crop, CARB = carbamate, OC = organochlorines, OP = organophosphate, PYR = pyrethroid, M = mixed, O = omnivore, Pr = predator, Pa = parasitoid, F = foliar/aboveground, S = soil/belowground, I = insect, A = arachnid, Ch = chilopod

Figure S1. Weighted histogram for the effect of seed-applied neonicotinoids on natural enemies (relative to no-insecticide controls), color-coded by study (n = 607 observations from 56 site-years and 20 studies).

Figure S2. Weighted histogram for the effect of seed-applied neonicotinoids on natural enemies (relative to pyrethroid controls), color-coded by study (n = 384 observations from 15 site-years and 8 studies).

Figure S3. Change in predator-prey ratio (PP) as a result of seed-applied neonicotinoids, relative to control plots treated with either no insecticide or a foliar insecticide (calculated as 100% X (PP_{Neonic} - PP_{Control}/PP_{Control})). Each point represents a treatment comparison within a given study; negative values indicate that predator-prey ratios were lower in the neonicotinoid-treated plots versus controls, while positive values indicate the opposite. Points with the same color were derived from the same study. PYR = pyrethroid, PYM = pymetrozine, IMI = imidacloprid, and THX = thiamethoxam.

Supplemental References S1

- Ahmad A, Wilde GE, Whitworth RJ, and Zolnerowich G. 2006. Effect of corn hybrids expressing the coleopteran-specific Cry3Bb1 protein for corn rootworm control on aboveground insect predators. *Journal of Economic Entomology* 99:1085-1095.
- Ahmad A, Wilde GE, and Zhu KY. 2005. Detectability of coleopteran-specific Cry3Bb1 protein in soil and its effect on nontarget surface and below-ground arthropods. *Environmental Entomology* 34:385-394.
- Al-Deeb MA, and Wilde GE. 2003. Effect of *Bt* corn expressing the Cry3Bb1 toxin for corn rootworm control on aboveground nontarget arthropods. *Environmental Entomology* 32:1164-1170.
- Al-Deeb MA, Wilde GE, Blair JM, and Todd TC. 2003. Effect of *Bt* corn for corn rootworm control on nontarget soil microarthropods and nematodes. *Environmental Entomology* 32:859-865.
- Albajes R, Lopez C, and Pons X. 2003. Predatory fauna in cornfields and response to imidacloprid seed treatment. *Journal of Economic Entomology* 96:1805-1813.
- Babendreier D, Jeanneret P, Pilz C, and Toepfer S. 2015. Non-target effects of insecticides, entomopathogenic fungi and nematodes applied against western corn rootworm larvae in maize. *Journal of Applied Entomology* 139:457-467.
- Baker P, Haylock LA, Gamer BH, Sands RJN, and Dewar AM. 2002. *The effects of insecticide seed treatments on beneficial invertebrates in sugar beet*. Farnham: British Crop Protection Council.
- Bhatti MA, Duan J, Head G, Jiang CJ, McKee MJ, Nickson TE, Pilcher CL, and Pilcher CD. 2005a. Field evaluation of the impact of corn rootworm (Coleoptera: Chrysomelidae)protected *Bt* corn on ground-dwelling invertebrates. *Environmental Entomology* 34:1325-1335.
- Bhatti MA, Duan J, Head GP, Jiang CJ, McKee MJ, Nickson TE, Pilcher CL, and Pilcher CD. 2005b. Field evaluation of the impact of corn rootworm (Coleoptera : Chrysomelidae)protected *Bt* corn on foliage-dwelling arthropods. *Environmental Entomology* 34:1336-1345.
- Carter ME. 2013. Functional response and the effects of insecticidal seed treatment on the soybean aphid parasitoid, *Binodoxys communis*.M.S. Thesis. University of Minnesota.
- Charlet LD, Aiken RM, Meyer RF, and Gebre-Amlak A. 2007. Impact of combining planting date and chemical control to reduce larval densities of stem-infesting pests of sunflower in the central plains. *Journal of Economic Entomology* 100:1248-1257.
- de la Poza M, Pons X, Farinós GP, López C, Ortego F, Eizaguirre M, Castanera P, and Albajes R. 2005. Impact of farm-scale *Bt* maize on abundance of predatory arthropods in Spain. *Crop Protection* 24:677-684.
- Douglas MR, Rohr JR, and Tooker JF. 2015. Neonicotinoid insecticide travels through a soil food chain, disrupting biological control of non-target pests and decreasing soya bean yield. *Journal of Applied Ecology* 52:250-260.
- Echegaray FJ. 2009. Environmental effects of insecticides on non target predator and parasitoid insects. M.S. Thesis. Royal Roads University.

- Farinós GP, de la Poza M, Hernández-Crespo P, Ortego F, and Castañera P. 2008. Diversity and seasonal phenology of aboveground arthropods in conventional and transgenic maize crops in Central Spain. *Biological Control* 44:362-371.
- Hallett RH, Bahlai CA, Xue Y, and Schaafsma AW. 2014. Incorporating natural enemy units into a dynamic action threshold for the soybean aphid, *Aphis glycines* (Homoptera: Aphididae). *Pest Management Science* 70:879-888.
- Harmon HE. 2006. Non-target effects of clothianidin seed-treated corn on the invertebrate community. M.S. Thesis. Towson University.
- Heidel-Baker TT. 2012. Compatibility of soybean aphid integrated pest management strategies. Ph.D. Dissertation. University of Minnesota.
- Krauter PC, Sansone CG, and Heinz KM. 2001. Assessment of Gaucho (R) seed treatment effects on beneficial insect abundance in sorghum. *Southwestern Entomologist* 26:143-146.
- Ohnesorg WJ, Johnson KD, and O'Neal ME. 2009. Impact of reduced-risk insecticides on soybean aphid and associated natural enemies. *Journal of Economic Entomology* 102:1816-1826.
- Schmidt T, Schmuck R, and Maus C. 2002. Data variability in carabid field studies (Coleoptera: Carabidae) and how to deal with small-scaled inhomogeneities of environmental conditions. *Bulletin OILB/SROP* 25:37-42.
- Seagraves MP, and Lundgren JG. 2012. Effects of neonicotinoid seed treatments on soybean aphid and its natural enemies. *Journal of Pest Science* 85:125-132.
- Sotelo-Cardona PA. 2010. Interactions among biological control, cultural control and barley resistance to the Russian wheat aphid, *Diuraphis noxia* (Kurdjumov), in Colorado, Kansas and Nebraska. Ph.D. Dissertation. Kansas State University.
- Spigler MI. 2013. Effects of thiamethoxam seed treatments on nutritive sources available to *Orius insidiosus* say in Indiana soybean agroecosystems. M.S. Thesis. Purdue University.
- Tinsley NA, Steffey KL, Estes RE, Heeren JR, Gray ME, and Diers BW. 2012. Field-level effects of preventative management tactics on soybean aphids (*Aphis glycines* Matsumura) and their predators. *Journal of Applied Entomology* 135:361-371.