
ID, CONF 20XX - 

 
Where is the policy enforced? --  
 
When is the policy imposed? --  
 
What is protected by the policy? (fine grained) --  
 
What is protected by the policy? (coarse grained) --  
 
Requirements of the person applying the sandbox --  
 
Requirements of the application -- 
 
Security Policy Type --  
 
Policy enforcements place in kill chain --  
 
Policy Management --  
 
Policy Construction -- 
 
Validation Claim --  
 
Validation --  
 
KCoFI, Oakland 2014 - 
 
Where is the policy enforced? -- System: 
“KCoFI protects commodity operating systems from classical control- flow hijack 
attacks, return-to-user attacks, and code segment modification attacks.” 
 
When is the policy imposed? -- Hybrid: 
“KCoFI has several unique requirements. First, it must instrument commodity OS 
kernel code; existing CFI enforcement mechanisms use either compiler or binary 
instrumentation [4], [10], [18]. Second, KCoFI must understand how and when OS 
kernel code interacts with the hardware. For example, it must understand when 
the OS is modifying hardware page tables in order to prevent errors like writeable 



and executable memory. Third, KCoFI must be able to control modification of 
interrupted program state in order to prevent ret2usr attacks.” 
 
What is protected by the policy? (fine grained) -- Code instructions: 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- System Level Component: 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Install a tool: 
“The SVA-OS instructions described later in this section are implemented as a 
run-time library that is linked into the kernel.” 
 
Requirements of the application -- Use special compiler: 
“All software, including the operating system and/or hypervisor, is compiled to the 
virtual instruction set that SVA provides.” 
 
Requirements of the application -- Use sandbox as framework/library: 
“Because the operating system must interface with the hardware via the SVA-OS 
instructions, it must be ported to the SVA virtual instruction set. This is similar to 
porting the operating system to a new architecture, but a relatively simple virtual 
architecture, and only requires modifying the lowest-level parts of the kernel. No 
reorganization of the kernel or modifications to drivers are needed.” 
 
Security Policy Type -- Fixed policy: 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
See Where is the policy imposed? 
 
Policy Management -- No management: 
See Where is the policy enforced? 
 
Policy Construction --Encoded in the logic of the sandbox: 
See Where is the policy enforced? 
 
Validation -- Case studies (Performance) 
“Since network applications make heavy use of operating system services, we 
measured the performance of the thttpd web server and the remote secure login 
sshd server.” 
 
Validation -- Benchmark suite (Performance) 



“To measure file system performance, we used the Postmark benchmark [27]. We 
used the LMBench microbenchmarks [28] to measure the performance of 
individual system calls.” 
 
Validation -- Benchmark suite (Security) 
“We evaluate the security of our system for the FreeBSD 9.0 kernel on the x86-64 
architecture. We find that all the Return Oriented Programming (ROP) gadgets 
found by the ROPGadget tool [14] become unusable as branch targets. We also find 
that our system reduces the average number of possible indirect branch targets by 
98.18%” 
 
Validation -- Proof (Security): 
“To verify that our design correctly enforces control-flow integrity, we have built a 
formal model of key features of our system (including the new protections for OS 
operations) using small-step semantics and provided a partial proof that our 
design enforces control-flow integrity. The proofs are encoded in the Coq proof 
system and are mechanically verified by Coq.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
NOTE: There are some recent FreeBSD mailing list posts from the author 
discussing releasing the source code to FreeBSD, but this does not happened at the 
time of this writing. 
 

Pivot, Oakland 2014 - 

 
Where is the policy enforced? -- Application: 
“Pivot is a new JavaScript isolation framework for web applications.” 
 
When is the policy imposed? -- Hybrid: 
“Pivot rewrites each domain’s JavaScript code, combining all of the code in a frame 
into a single generator function [9]. In contrast to a normal function, which uses 
the return statement to return a single value per function execution, and which 
loses its activation record upon returning, a generator uses the yield statement to 
remember its state across invocations. A generator can yield different values after 
each invocation. Figure 2 provides a simple example of a generator function that 
returns the factorial sequence. A rewritten Pivot frame is a generator function that 



starts execution when invoked by the local Pivot library, and yields to that library 
upon invoking an RPC.” 
 
What is protected by the policy? (fine grained) -- Data: 
“Browsers give each iframe a separate JavaScript runtime; each runtime has 
distinct global variables, heap objects, visual display areas, and so on. Iframes from 
different origins cannot directly manipulate each other’s state—instead, they 
must communicate using the asynchronous, pass-by-value postMessage() call.” 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
See Data above​. 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
See What is protected by the policy? 
 
Requirements of the person applying the sandbox -- Write a security policy 
(optional to weaken isolation): 
“Using that library, a satellite can register one or more public RPC interfaces with 
the Pivot master frame.” 
 
Requirements of the application -- Use special compiler: 
“By rewriting JavaScript call sites, Pivot can detect RPC invocations.” 
 
Requirements of the application -- Use sandbox as framework/library: 
See Requirements of the person applying the sandbox -- write a security policy 
 
Security Policy Type -- User defined policy 
See Requirements of the person applying the sandbox -- write a security policy 
 
Policy enforcements place in kill chain -- pre-exploit 
See What is protected by the policy? (fine grained) -- Data 
 
Policy Management -- No management 
No quote. 
 
Policy Construction -- Manually written policies 
See Requirements of the person applying the sandbox -- write a security policy 
 
Validation Claim -- Security 
“Furthermore, since Pivot uses iframes as isolation ​containers, it allows the safe 
composition of rewritten code ​with unrewritten code.” 



“Since each satellite frame contains an isolated JavaScript runtime, Pivot allows 
untrusted satellite code to use the full JavaScript language, including powerful 
functions like eval().” 
 
Validation Claim -- Applicability 
“Since each satellite frame contains an isolated JavaScript runtime, Pivot allows 
untrusted satellite code to use the full JavaScript language, including powerful 
functions like eval().” 
 
Validation -- Argumentation (Security): 
“If two frames belong to different origins, cross-frame interactions are restricted 
to the postMessage() API, which asynchronously transfers immutable strings.” 
“Pivot relies on the browser to enforce memory isolation between the trusted 
master frame and the untrusted satellite frames. However, nothing prevents a 
satellite from trying to subvert the Pivot infrastructure within its own frame. For 
example, a satellite can directly generate RPC requests by crafting its own 
postMessage() calls. A satellite can also try to attack Pivot’s virtualized event 
framework, e.g., by looking for baroque JavaScript aliases to the underlying 
non-virtualized functions [19]. ” 
 
Validation --  Case Studies (Applicability): 
“Using an empirical analysis of JavaScript call graphs in real web applications, we 
demonstrate that the vast majority of function calls do not cross library 
boundaries. Thus, Pivot’s trusted master/untrusted satellite decomposition is a 
natural one [...] 
To determine how often web pages make cross-library function calls, we visited 
the top 20 websites in the United States as determined by Alexa.” 
 
Validation -- Case Studies (Performance) 
“To test the end-to-end latencies of cross-domain RPCs, we built a mashup 
application that integrated three untrusted JavaScript libraries. We picked these 
particular libraries because they were used to evaluate Jigsaw in the original Jigsaw 
paper.” 
 
Validation -- Public Data (Applicability): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 



CCFIR, Oakland 2013 - 
 
Where is the policy enforced? -- Application 
“We build CCFIR as a purely binary transformation.” 
 
When is the policy imposed? -- Hybrid 
“We identify the valid targets in binary modules and rewrite them so that the valid 
targets can be distinguished from invalid ones efficiently. Then we insert checks 
before each indirect control transfer instruction to make this distinction.” 
 
What is protected by the policy? (fine grained) -- Code instructions 
“CCFIR enforces a policy on indirect control transfers that prevents jumps to any 
but a white-list of locations; it also distinguishes between calls and returns, and 
prevents unauthorized returns into sensitive functions.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a tool 
See When is the policy imposed? 
 
Requirements of the application -- Have compiler introduced metadata​: 
“[CCFIR] analyzes binary executables based on relocation tables” 
 
Security Policy Type -- Fixed policy 
See What is protected by the policy (fine grained) 
 
Policy enforcements place in kill chain -- Pre-exploit 
See What is protected by the policy? (fine grained)  
 
Policy Management -- No management 
See What is protected by the policy? (fine grained)  
 
Policy Construction --Encoded in the logic of the sandbox 
See What is protected by the policy? (fine grained)  
 
Validation claims -- Security: 
“CCFIR-hardened versions of IE6, Firefox 3.6 and other applications are protected 
effectively.” 
 
Validation -- Benchmark suite (Performance): 



“The execution time overhead of this checking is low, 3.6%/8.6% (average/max) 
over SPECint2000” 
 
Validation -- Case studies (Security): 
“We also chose 10 publicly available exploits from Metasploit [53] against FF3, IE6 
and 5 other applications. These experiments are performed in a virtual machine 
running Windows XP SP3 within a separate experiment network. Table III shows 
the 10 vulnerabilities attacked by exploits we used. 
Taking CVE-2011-0065 as an example, this vulnerability exists in Firefox 3.x before 
3.6.17. It is a use-after-free vulnerability which can cause arbitrary code execution, 
when exploited by techniques such as heap spray [54]. 
After hardening the vulnerable module xul.dll with CCFIR, we drive Firefox to 
access the attack URL again, and the error handler added by CCFIR is triggered. The 
remaining 9 exploits, which target IE6 and other 5 applications, are also prevented 
by CCFIR in a similar manner.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

SafeLoading, Oakland 2012 - 

 
Where is the policy enforced? -- System: 
“The approach replaces the standard loader with a security-aware trusted loader.” 
 
When is the policy imposed? -- Dynamic: 
“No static modifications or static analysis are needed to execute an application in 
the sandbox.” 
 
What is protected by the policy? (fine grained) -- Memory, Code/Instructions: 
See Table 5. 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
“The Trusted Runtime Environment (TRuE) places the loader in the trusted 
computing base and runs all application code in a sandbox.” 
 
Requirements of the person applying the sandbox -- Install a tool: 



See What is protected by the policy? (coarse grained) 
 
NOTE: This paper extends libdetox which is first written about in “Fine-grained 
user-space security through virtualization”. From that paper, “flexible 
per-process user-defined policy-based system call interposition in user-space 
without the need for context switches to validate specific calls and without 
additional privileged code in the kernel”. The user can optionally write a policy, 
but we do not code that for this paper because the syscall policy enforcement is not 
a novel contribution of this paper (i.e. SafeLoading get it for free by using 
libdetox).  

 
Requirements of the application -- Other: 
“Self-modifying code in the application is not supported, i.e., the application is 
not allowed to generate new code at runtime. Code can only be added to the 
runtime image of an application through the secure loader API.” 
 
Security Policy Type -- Fixed: 
“The combination of the secure loader and the user-space sandbox enables the 
safe execution of untrusted code in user- space. Code injection attacks are stopped 
before any unintended code is executed. Furthermore, additional information 
provided by the loader can be used to support additional security properties, e.g., 
inlining of Procedure Linkage Table calls reduces the number of indirect control 
flow transfers and therefore limits jump-oriented attacks.” 
 
Policy enforcements place in kill chain -- Pre: 
“The user-space sandbox builds on the secure loader and subsequently 
dynamically checks for malicious code and ensures that all control flow 
instructions of the application adhere to an execution model.” 
 
Policy Management -- None 
Fixed policy. 
 
Policy Construction -- Encoded in the logic of the sandbox: 
See Security Policy Type. 
 
Validation -- Argumentation (Security): 
“Discussion of TRuE’s security features” 
 
Validation -- Benchmark Suite (Performance): 
“We use the SPEC CPU2006 benchmarks version 1.0.1 to evaluate the performance 
and feasibility of our prototype implementation.” 
 



Validation -- Case study (Performance): 
“We measured OpenOffice startup as a stress test and worst-performance metric, 
145 DSOs are loaded, relocated, and executed with very low code reuse.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Source Code: 
 
“The source code of the prototype implementation of TRuE is available as 
open-source at http://nebelwelt.net/projects/TRuE.” 
 
 

ILR, Oakland 2012 - 

 
Where is the policy enforced? -- Application: 
“ILR randomizes the location of every instruction in a program, thwarting an 
attacker’s ability to re-use program functionality  (e.g., arc-injection attacks and 
return-oriented programming attacks).” 
 
When is the policy imposed? -- Static: 
“ILR adopts an execution model where each instruction has an explicitly specified 
successor. Thus, each instruction’s successor is independent of its location. This 
model of execution allows instructions to be randomly scattered throughout the 
memory space. Hiding the explicit successor information prevents an attacker 
from predicting the location of an instruction based on the location of another 
instruction.” 
*Note: The security policy is imposed entirely statically. However, ILR requires a 
runtime component (PVM) for the program to execute. 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Target Application: 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a tool:  
“The compiler and the linker collaborate to produce an executable file where 
instructions are laid out so they can be loaded into memory when the program is 
executed.” 
 



Requirements of the application -- No additional requirements: 
“ILR has an offline analysis phase to relocate instructions in the binary and 
generate a set of rewriting rules that describe how and where the newly located 
instructions are to be executed, and how control should flow between them, 
(shown as the fallthrough map in Figure 1). The randomized program is executed 
on the native hardware by a PVM that uses the fallthrough map to guide 
execution.” 
 
Security Policy Type -- Fixed policy: 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
See Where is the policy enforced? 
 
Policy Management -- No management 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
See Where is the policy enforced? 
 
Validation -- Benchmark suite (Performance): 
“We evaluated the effectiveness and performance of the ILR prototype using the 
SPEC CPU2006 benchmark suite.” 
 
Validation -- Case studies (Security): 
“To verify that our technique stops attacks that are successful against ASLR and 
W⊕X protected systems, we performed a number of tests on vulnerable programs.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. NOTE: They did a security experiment with Adobe 
Reader, but the results of this experiment are not reasonably comparable. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Pappas, Oakland 2012 - 

 
Where is the policy enforced? -- Application: 



“Our approach is based on narrow-scope modifications in the code segments of 
executables using an array of code transformation techniques, to which we 
collectively refer as in-place code randomization. These transformations are 
applied statically, in a conservative manner, and modify only the code that can be 
safely extracted from compiled binaries, without relying on symbolic debugging 
information.” 
 
When is the policy imposed? -- Static: 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/instructions: 
“We present a novel code randomization method that can harden third- party 
applications against return-oriented programming.” 
 
What is protected by the policy? (coarse grained) -- Target application: 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a tool: 
See Where is the policy enforced? 
 
Requirements of the application -- None: 
See Where is the policy enforced? 
 
Security Policy Type -- Fixed: 
See What is protected by the policy (fine grained)? 
 
Policy enforcements place in kill chain -- Pre-exploit 
See Where is the policy enforced? 
 
Policy Management --  
Fixed policy 
 
Policy Construction -- Encoded in the logic of the Sandbox: 
Where is the policy enforced? -- Application 
 
Validation -- Analytical Analysis (Security): 
“We provide a detailed analysis of how in-place code randomization affects 
available gadgets using a large set of 5,235 PE files. On average, the applied 
transformations effectively eliminate about 10%, and probabilistically break about 
80% of the gadgets in the tested files.” 
 
Validation -- Case Studies (Security): 



“We evaluated the effectiveness of in-place code randomization using publicly 
available ROP exploits against vulnerable Windows applications [53], [62], [63], as 
well as generic ROP payloads based on commonly used DLLs [64], [65] … From 
these gadgets, in-place code randomization can alter six of them: one gadget is 
completely eliminated, while the other five broken gadgets have 2, 2, 3, 4, and 6 
possible states, respectively, resulting to a total of 287 randomized states (​in 
addition ​to the always eliminated gadget, which also alone breaks the ROP code).” 
 
Validation -- Case Studies (Performance): 
“We took advantage of the extensive and diverse code execution coverage of this 
experiment to also evaluate the impact of in-place code randomization to the 
runtime performance of the modified code. Among the different code 
transformations, instruction reordering is the only one that could potentially 
introduce some non-negligible overhead, given that sometimes the chosen 
ordering may be sub-optimal. We measured the overall CPU user time for the 
completion of all tests by taking the average time across multiple runs, using both 
the original and the randomized versions of the DLLs. In all cases, there was no 
observable difference in the two times, within measurement error.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. Uses Wine tests for performance 
 
Availability -- Source Code: 
 
“Our prototype implementation is publicly available at 
http://nsl.cs.columbia.edu/projects/orp” 
 
 

TxBox, Oakland 2011 - 
 
Where is the policy enforced? -- System: 
 
“TxBox consists of a relatively simple, policy-agnostic security monitor running in 
the OS kernel and a user-level policy manager.” 
 
When is the policy imposted? -- Dynamic: 
 
“Our prototype system, TxBox, uses transactions for (1) speculative execution of 
untrusted applications, (2) uncircumventable enforcement of system-call policies, 
and (3) automatic recovery from the effects of malicious execution.” 
 



What is protected by the policy? (Fine Grained) -- Files, Communication, User 
Data: 
 
“All changes made by the violating program to the file system effectively 
disappear, child processes are stopped, and buffered local inter-process 
communication is canceled, leaving concurrent updates made by other programs 
undisturbed.” 
“TxBox supports two types of system objects in policies: inodes (of directories or 
files) and sockets.” 
 
What is protected by the policy? (Coarse Grained) -- Targeted Application or 
Classes of Applications (those in a specific path) depending on configuration: 
 
“The administrator can specify either the sandboxed process when installing a 
policy, or a path and a list of events. In the latter case, the policy manager will 
automatically associate the policy with any program residing on that path.” 
 
Requirements of the person applying the sandbox -- Write a Security Policy: 
 
See Security Policy Type. 
 
Requirements of the application -- No Additional Requirements: 
 
No requirements stated. 
 
Security Policy Type -- User-Defined Policy: 
 
“The system administrator uses the policy manager to define the policy as a set of 
regular expressions over system call names and arguments and system objects 
such as inodes and socket descriptors.” 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
“When TxBox detects a policy violation, the transaction is aborted and the system 
automatically reverts to a good local state (except for the effects of previously 
allowed external I/O in certain enforcement regimes—see Section V-D).” 
 
Policy Management -- No Management: 
 
No policy management mechanism as defined by this category is mentioned. It’s 
clear that TxBox does allow policies to be shared manually as policies are written 
down and can be moved from system to system. 
 



Policy Construction: Manually Written Policy 
 
See Security Policy Type. 
 
Validation Claim -- Security 
 
“TxBox cannot be circumvented by a sandboxed process. Its kernel-based 
enforcement mechanism prevents exploitation of incorrect mirroring of the kernel 
state, TOCTTOU races, and/or other semantic gaps between the security monitor 
and the OS [21, 58].” 
“If the monitor determines later that the program has violated a security policy, it 
aborts the transaction and the system is automatically rolled back to a benign 
state.” 
 
Validation Claim -- Performance 
 
“On realistic workloads, the performance overhead of TxBox is less than 20% 
including the cost of supporting transactions and less than 5% over untrusted 
execution in a transactional OS.” 
 
Validation Claim -- Applicability (Policies are expressive)/Validation -- Case 
Study: 
 
“TxBox can enforce a rich class of practical security policies.” 
“We downloaded the source code of the vim editor and configured it to install in 
/usr/local and compile using make. Next, we ran “make install” in a sandbox with 
the BLACKLIST WREGEX *I:164564* policy where 164564 is the inode number of 
the directory /usr/local/bin.” 
 
NOTE: There are four other case studies with similar quotes. 
 
Validation -- Case Study (Performance): 
 
Scalability:​ “To evaluate the scalability of TxBox, we built a simple application 
which opens 100 existing files and measured how its runtime varies with the 
increase in the size of the policy (the number of inodes included in the policy).” 
“To measure the performance implications of multiple invocations of the policy 
decision engine on network-I/O-intensive workloads, we sandbox wget in TxBox 
and use it to download different large files from the Internet.” 
“Micro-benchmarks. Table II shows the overhead of TxBox or individual system 
calls—including read, write, and fork/exec—compared to the base Linux kernel 
with and without Dazuko.” 



“For gzip, which does not involve many file-system operations, the overhead of 
TxBox is negligible (1.007×). For make, which involves more file-system 
operations than gzip, the overhead is 1.18×. On the other hand, PostMark 
benchmark involves a large number of file-system operations and represents the 
worst-case scenario for TxBox because it requires a large number of shadow objects 
to be created.” 
“When system transactions are used for sandboxing, the overhead for trusted, 
non-sandboxed applications is modest. The average non-transactional overhead is 
44% at the scale of a single system call on TxBox, using the same microbenchmark 
described in [48].” 
 
Validation  -- Case Study (Security): 
 
“To simulate the effect of a malicious multimedia converter trying to write to 
unrelated files in a user’s home directory, we configured ffmpeg, a popular 
open-source codec, to create output files in the /home/user1/ directory.” 
 
Validation -- Argumentation (Security): 
 
“By design, TxBox is immune to TOCTTOU attacks. Sandboxed processes run inside 
separate transactions, so changes made by one of them to their shared state will 
not be visible to the other until the transaction commits.”  
“Policy enforcement in TxBox is performed by inspecting objects in the workset 
and thus cannot be evaded by splitting updates between the parent and the child.” 
“Rather than construct an error-prone mapping of system-call arguments or 
hardware-level events to OS state changes, TxBox directly inspects pending 
changes to kernel state made by the transaction wrapping the sandboxed process 
and its children.” 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

PRISM, Oakland 2011 - 

 
Where is the policy enforced? -- System: 
See Figure 1. 
 



When is the policy imposed? -- Dynamic: 
“The untrusted COTS programs in the SLS partitions send at-level file edits as ​diff 
transactions to the TCB. The TCB ​verifies ​that BLP semantics will be observed and 
then ​patches ​these transactions into its canonical representation of the file.” 
 
What is protected by the policy? (fine grained) -- Files: 
See When is the policy imposed? 
 
What is protected by the policy? (coarse grained) -- Targeted Application:  
“We describe how to combine a minimal Trusted Computing Base (TCB) with 
polyinstantiated and slightly augmented Commercial Off The Shelf (COTS) 
software programs in separate Single Level Secure (SLS) partitions to create Multi 
Level Secure (MLS) applications.” 
 
Requirements of the person applying the sandbox -- Install a tool: 
“The untrusted COTS applications in the separate system-high partitions are 
augmented with untrusted PRISM add-in modules.” 
 
Requirements of the application -- Other: 
“The application-specific add-in fulfills two functions. It translates incoming 
at-level canonical MLSDoc files into an application readable format; and translates 
at-level edits into outgoing MLSDiff patches.” 
 
Security Policy Type -- Fixed: 
“These MLS applications can coordinate fine grained (intra-document) Bell 
LaPadula (BLP) [6] separation between information at multiple security levels.” 
 
Policy enforcements place in kill chain -- Pre: 
See When is the Policy Imposed? 
 
Policy Management -- None: 
Fixed policy. 
 
Policy Construction -- Encoded in Logic of the Sandbox 
See When is the Policy Imposed? 
 
Validation -- Case Studies (Applicability): 
“We demonstrate the utility of this approach using Microsoft Word and 
DokuWiki.” 
 
Validation -- Security (Argumentation): 
“We finalise our discussion on security properties by arguing the high tractability 
of certifying products based on our architecture.” 



 
Validation -- Security (Analytical Analysis): 
“The potential capacity of such a channel can be approximated by modelling it as a 
discrete noiseless channel driven by a Markov process.” 
 
Validation -- Public Data (Applicability): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

IBEX, Oakland 2011 - 

 
Where is the policy enforced? --  
 
When is the policy imposed? -- Static: 
“We develop a methodology based on refinement typing (proven sound) to verify 
that extensions written in Fine [30], a dependently typed ML dialect, satisfies our 
safety condition.” 
 
What is protected by the policy? (fine grained) --  
 
What is protected by the policy? (coarse grained) --  
 
Requirements of the person applying the sandbox --  
 
Requirements of the application -- Use sandbox as framework/library 
“We provide developers with an API that exposes core browser functionality to 
extensions. We expect programmers to write extensions in high- level, type-safe 
languages that are amenable to formal analysis.” 
 
Security Policy Type -- User-defined policy: 
“Our language, based on Datalog, allows the specification of fine-grained 
authorization and data flow policies on web content and browser state accessible 
by extensions.” 
 
Policy enforcements place in kill chain --  
 
Policy Management --  



 
Policy Construction -- 
 
Validation Claim --  
 
Validation --  
 
Note: IBEX excluded because this is a framework for creating 
secure-by-construction browser extensions, not for sandboxing extensions.  
 

ConScript, Oakland 2010 - 

 
Where is the policy enforced? -- Application host: 
“CONSCRIPT, a browser-based aspect system for security proposed in this paper, 
focuses on empowering the hosting page to carefully constrain the code it 
executes.”  
Note: The application host is a the web application hosting third-party code. 
 
When is the policy imposed? -- Dynamic: 
“We modified the execution of a user-defined function to first check whether 
advice was registered and enabled. If so, execution proceeds by running the advice 
function.” 
 
What is protected by the policy? (fine grained) -- Communication, 
Code/Instructions, User Data: 
“We present 17 wide-ranging security and reliability policies. We show how to 
concisely express these policies in CONSCRIPT, often with only several lines of 
JavaScript code. These policies fall into the broad categories of con- trolling script 
introduction, imposing communication restrictions, limiting dangerous DOM 
interactions, and restricting API use.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications 
See Where is the policy enforced? 
*Note: all code loaded inside the host application is sandboxed 
 
Requirements of the person applying the sandbox -- Select a pre-made security 
policy: 
See Where is the policy enforced? 
*Note: also possible to write a security policy, but this is not the expected mode of 
use 
 
Requirements of the application -- None: 



“Next in this “bootup sequence”, advice registration is performed. An appropriate 
analogy here is that advice is “kernel-level”, trusted code. Advice can be registered 
by the hosting page, which may subsequently proceed to load third- party, 
potentially untrusted JavaScript. However, the subse- quent script’s execution will 
be restricted through advice registered by the hosting page.” 
 
Security Policy Type -- User defined policy 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
See When is the policy imposed? 
 
Policy Management -- No management: 
“In CONSCRIPT, this kind of behavior augmentation is done via the script include 
tag to provide a policy as follows: 
<SCRIPT SRC="script.js" POLICY="function () {...}">” 
*Note: paper includes the full definition of 17 widely applicable policies. In some 
sense the paper is a “central policy repository.” 
 
Policy Construction --Manually written policies: 
See Where is the policy enforced? 
 
Validation -- Case studies (performance): 
“Our primary focus is on the runtime overhead introduced with CONSCRIPT 
instru- mentation compared to alternative techniques. Section VII-A talks about 
our experimental setup. Section VII-B evaluates micro-benchmarks and Section 
VII-C focuses on applying CONSCRIPT advice to large AJAX sites and applications 
such as MSN, GMail, and Live Desktop.” 
 
Validation -- Argumentation (security): 
“In this section, we consider attacks against CONSCRIPT advice policies. Auditing 
policies published by other researchers, we found that they are quite tricky to get 
right. This is true even for policies consisting of only a few lines of JavaScript [2, 3]. 
While the idea of aspects is by no means new [15], in an adversarial environment, 
aspects are subject to a host of difficult issues. 
In our attack model, we distinguish between kernel code (code loaded before an 
untrusted library) and user code (un- trusted libraries that may execute after the 
loading sequence). It is our intention to protect against advice tampering, i.e. user 
code that attempts to interfere with the way advice is applied and followed at 
runtime by tampering with code or data.” 
 
Validation -- Public Data (Performance): 
 



See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

TrustVisor, Oakland 2010 - 

 
Where is the policy enforced? -- System: 
“We develop a special-purpose hypervisor, called TrustVisor, designed to provide a 
measured, isolated execution environment for security-sensitive code modules 
without trusting the OS or the application that invokes the code module.” 
 
When is the policy imposed? -- Dynamic: 
“A DRTM-like mechanism provides the valuable security properties of a 
known-good initial state, memory protection from DMA accesses, and integrity 
measurement of the launched code before it executes.” 
 
What is protected by the policy? (fine grained) -- code, data: 
“Our goal is to provide data secrecy and integrity, as well as execution integrity for 
security-sensitive portions of an application, executing the code in isolation from 
the OS, untrusted application code, and system devices.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
See What is protected by the policy? (fine grained) 
 
Requirements of the person applying the sandbox -- Install a tool: 
See Where is the policy enforced? 
 
Requirements of the application -- Annotated source code: 
“A PAL is identified to Trust- Visor via a registration process that employs an 
application- level hypercall interface, with the PAL execution environment 
initialized by TrustVisor to a well-known, secure configuration.” 
 
Security Policy Type -- Fixed policy: 
“In secure guest mode, a PAL executes in isolation from the legacy OS and its 
applications.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
See When is the policy imposed? 
 



Policy Management -- No management: 
Fixed policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
See When is the policy imposed? 
 
Validation -- Benchmark (Performance): 
“We execute both compute-bound and I/O-bound applications with TrustVisor. For 
compute- bound applications, we use the SPECint 2006 suite. For I/O- bound 
applications, we select a range of benchmarks, including building the Linux kernel, 
Bonnie,6 Postmark [17], net-perf,7 and unmodified Apache web server 
performance.” 
 
Validation -- Case studies (Performance): 
“We evaluate the overhead when TrustVisor receives control in 5 cases (Tables 2 
and 3): (a) when an application registers a PAL, (b) when any function inside the 
PAL is called, (c) when a function inside the PAL finishes execution and returns to 
the application, (d) when an application unregisters a PAL, and (e) when a PAL calls 
any µTPM function. We use microbenchmarks to measure the overhead of the 
TrustVisor framework in cases (a) – (d), and the overhead of µTPM operations 
provided by TrustVisor in case (e). We also evaluate the performance of real 
applications to illustrate the overall performance in a practical environment.” 
 
Validation -- Argumentation (Security): 
“The total size of TrustVisor implementation is 7889 lines of C and assembly code 
(the sum of the debug, initialization, and runtime code). The runtime TCB is about 
6481 lines, which includes 3919 lines of RSA and other libraries. This is the full 
extent of the software TCB for TrustVisor, which places it within the reach of 
formal verification and manual audit techniques.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

HyperSafe, Oakland 2010 - 

Excluded. Hypersafe provides control flow intergrity to Hypervisors by taking 
advantage of two techniques: non-bypassable memory lockdown and restricted 



pointer indexing. The first of these techniques is more fundamental and their 
approach relies on manual editing the hypervisor code to make use of the 
technique: 
“Non-bypassable memory lockdown [...] serves as the cornerstone for the entire 
scheme and enables the unique hypervisor self-protection.” 
“The first key technique is implemented by directly modifying the hypervisor 
source code while the second key technique is implemented as a compiler 
extension to the re-targetable.” 
 

NaCl, Oakland 2009 - 

 
Where is the policy enforced? -- Application host: 
“Native Client provides sandboxed execution of native code and portability across 
operating systems, delivering native code performance for the browser.” 
 
When is the policy imposed? -- Dynamic: 
“Native Client is organized in two parts: a constrained execution environment for 
native code to prevent unintended side effects, and a runtime for hosting these 
native code extensions through which allowable side effects may occur safely.” 
 
What is protected by the policy? (fine grained) -- Memory, Code, User Data: 
“To eliminate side effects the validator must address four subproblems: Data 
integrity: no loads or stores outside of data sandbox, reliable disassembly, no 
unsafe instructions,  control flow integrity. 
 
What is protected by the policy? (fine grained) -- Files: 
“The service runtime also provides the common POSIX file I/O interface, used for 
operations on communications channels as well as web-based read-only content. 
As the name space of the local file system is not accessible to these interfaces, local 
side effects are not possible.” 
 
What is protected by the policy? (fine grained) -- Communication: 
“To prevent unintended network access, network system calls such as connect() 
and accept() are simply omitted. NaCl modules can access the network via 
JavaScript in the browser. This access is subject to the same constraints that apply 
to other JavaScript access, with no net effect on network security.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
See “Where is the policy enforced?” 
 
Requirements of the person applying the sandbox -- Install a tool: 



“Prior to running the [NaCl-based] photo application, the user has installed Native 
Client as a browser plugin.” 
 
Requirements of the application -- Use special compiler: 
“We have modified the standard GNU tool chain, using version 4.2.2 of the gcc 
collec- tion of compilers [22], [29] and version 2.18 of binutils [23] to generate 
NaCl-compliant binaries.” 
 
Requirements of the application -- Use sandbox as library: 
“The sandboxes prevent unwanted side effects, but some side effects are often 
necessary to make a native module useful. For interprocess communications, 
Native Client provides a reliable datagram abstraction, the “Inter-Module 
Communications” service or IMC.” 
 
Security Policy Type -- Fixed policy: 
See What is protected by the policy? (fine grained) 
 
Policy enforcements place in kill chain -- Pre-exploit 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No policy management: 
Fixed policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
See What is protected by the policy? (fine grained) 
 
Validation -- Benchmark (Performance): 
“We first consider the overhead of making native code side effect free. To isolate 
the impact of the NaCl binary constraints (Table 1), we built the SPEC2000 CPU 
benchmarks using the NaCl compiler, and linked to run as a standard Linux binary. 
The worst case for NaCl overhead is CPU bound applications, as they have the 
highest density of alignment and sandboxing overhead. Figure 4 and Table 4 show 
the overhead of NaCl compilation for a set of benchmarks from SPEC2000. The 
worst case performance overhead is crafty at about 12%, with other benchmarks 
averaging about 5% overall.” 
 
Validation -- Proof (Security): 
“Theorem: S contains all addresses that can be reached from an instruction with 
address in S.” 
 
Validation -- Argumentation (Security): 



“These mechanisms will allow us to incorporate layers of protection based on our 
confidence in the robustness of the various components and our understanding of 
how to achieve the best balance between performance, flexibility and security. 
In the next section we hope to demonstrate that secure implementations of these 
facilities are possible and that the specific choices made in our own 
implementation work are sound.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Source Code: 
 
“By describing Native Client here and making it available as open source, we hope 
to encourage community scrutiny and contributions.” 
 
 

CLAMP, Oakland 2009 - 

 
Where is the policy enforced? -- System: 
 
“We developed a prototype using platform virtualization (based on the Xen 
hypervisor [1]) to isolate system components on the web server.” 
 
When is the policy imposed? -- Dynamically: 
 
“A trusted User Authentication module verifies user identities and instantiates a 
new virtual web server instance for each user. The database queries issued by a 
particular virtual web server are constrained by a trusted Query Restrictor to access 
only the data for the user assigned to that web server.” 
 
What is protected by the policy? (fine grained) -- User Data: 
 
“CLAMP prevents web server compromises from leaking sensitive user data by (1) 
ensuring that a user’s sensitive data can only be accessed by code running on 
behalf of that user, and (2) isolating code running on behalf of different users.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“Our experience adapting three real-world LAMP applications to use CLAMP 
demonstrates the benefits of an architecture designed for compatibility with web 
application stacks.” 



 
Requirements of the person applying the sandbox -- Install a Tool, Write a 
Policy: 
 
“First, CLAMP provides a straightforward way to express and audit access control 
policies using a single policy file instead of using checks scattered throughout the 
code.” 
See Where is the policy enforced? and When is the policy imposed? 
 
Requirements of the application -- None: 
 
See What is protected by the policy? NOTE: Minor changes to application are 
counted as installation.  
 
Security Policy Type -- Used-defined policy: 
 
See Requirements of the person applying the sandbox. 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- Centralized Repository: 
 
See Requirements of the person applying the sandbox. NOTE: Because the policy is 
in a central file, it’s easy to see how to share the policy with others. 
 
Policy Construction -- Manually written policy: 
 
See Requirements of the person applying the sandbox. 
 
Validation Claim -- Security: 
 
“ CLAMP protects sensitive data by enforcing strong access control on user data 
and by isolating code running on behalf of different users.” 
 
Validation Claim -- Applicability: 
 
“By focusing on minimizing developer effort, we arrive at an architecture that 
allows developers to use familiar operating systems, servers, and scripting 
languages, while making relatively few changes to application code – less than 50 
lines in our applications.” 
 



Validation Claim -- Performance: 
 
“Finally, our unoptimized prototype suggests that the user-perceived slowdown 
due to CLAMP’s use of virtualization is not prohibitive (typical request latency for 
osCommerce is 5-10 ms slower than native).” 
 
Validation -- Argumentation (Security): 
 
“CLAMP relies on trusted system components to enforce its security properties. 
These CLAMP components have three primary sources of attack robustness: a 
reduced trusted computing base (TCB), a minimized interface for each component 
of the TCB, and defense-in-depth.” 
 
Validation -- Case Study (Applicability): 
 
“We have developed a proof-of-concept implementation of the CLAMP 
architecture and applied it to osCommerce [19], MyPhpMoney [3], and HotCRP 
[10].” 
 
Validation -- Case Study (Performance): 
 
“For these benchmarks, clients retrieve osCommerce pages from either a “native” 
server running directly on hardware or a CLAMP server as described in Section 6.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 
 

BLUEPRINT, Oakland 2009 - 

 
Where is the policy enforced? -- Application host: 
“Therefore, in BLUEPRINT, we enable a web application to effectively take control 
of parsing decisions. By systematically reasoning about the flow of untrusted 
HTML in a browser, we develop an approach that provides facilities for a web 
application to automatically create a structural representation — a “blueprint” — 
of untrusted web content that is free of XSS attacks.” 
 
When is the policy imposed? -- Dyamic: 
See Where is the policy enforced? 
 



What is protected by the policy? (fine grained) -- Code/Instructions, User Data: 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Write a security policy: 
“To use BLUEPRINT, statements in a web application that output untrusted data 
need to be identified and instrumented with calls to our server-side module.” 
 
Requirements of the application --Use sandbox as framework/library: 
See Requirements of the person applying the sandbox. 
 
Security Policy Type -- User-defined policy: 
See Requirements of the person applying the sandbox. 
 
Policy enforcements place in kill chain -- pre-exploit: 
See Where is the policy enforced? 
 
Policy Management -- No management: 
Not mentioned. 
 
Policy Construction -- Encoded in the logic of the application: 
See Where is the policy enforced? 
 
Validation -- Applicability (Case Studies): 
Section heading: “Compatibility and expressiveness” -> 
“We integrated BLUEPRINT with two popular web applications that produce HTML 
output based on untrusted user input: MediaWiki, the code base used for the web 
site Wikipedia, and WordPress, a popular blog application. Both applications 
directly allow HTML as input from untrusted users.” 
 
Validation -- Security (Benchmark suite): 
“The primary goal of our defense is to be effective against a wide variety of XSS 
attacks. For our testing we chose XSS Cheat Sheet [4], which includes complex 
examples of XSS attack strings. Many of these examples are noteworthy for 
undermining sophisticated, real-world regular expression based defenses. 
Further- more, the cheat sheet contains attacks that combine exploits of several 
browser parse quirks to achieve execution of arbitrary script commands.” 
 
Validation -- Performance (Case Studies):  



“We stove to stress our implementation and evaluate the performance of 
BLUEPRINT-enabled WordPress and MediaWiki under the worst possible 
conditions for varying amounts of embedded untrusted content.” 
 
Validation -- Public Data (Security): 
 
See other validation quotes. 
 
Availability -- Source Code: 
 
“A prototype implementation of B LUEPRINT is available for experimentation at 
the project website: http://sisl.rites.uic.edu/blueprint” 
 
 

Lares, Oakland 2009 - 

 
Where is the policy enforced? -- System: 
“We show design techniques that allow installation of protected hooks into an 
untrusted VM. These hooks will trap execution in the untrusted VM and transfer 
control to software in the protected VM.” 
 
When is the policy imposed? -- Dynamic: 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code instructions: 
“We do not consider new malware detection or prevention techniques as these 
areas are orthogonal to the research presented here. Any system that uses active 
monitoring, including any future advances in the field, can benefit from the added 
protections that our work provides. The primary research contribution of this work 
is an architecture to perform secure, active monitoring in a virtualized 
environment.” 
 
What is protected by the policy? (coarse grained) -- Class of applications: 
“This architecture is generally applicable to any system that requires secure and 
active monitoring, and it builds on prior work that described techniques for 
passively monitoring memory and file system data [22].” 
 
Requirements of the person applying the sandbox -- Install a tool: 
See Requirements of the application -- Use sandbox as framework/library 
 
Requirements of the application -- Use sandbox as framework/library: 



“The security VM contains the back-end components of our architecture. These 
include the security application, the security driver, and an introspection API. The 
security application is where the decision-making functionality of the monitoring 
solution is implemented. It can be any software component that makes use of 
Lares, like an anti-virus tool or a host-based IDS. The security driver is the 
communications agent responsible for relaying events between the trampoline and 
the security application. These include hook notifications transmitted by the 
trampoline in the guest VM and relayed by the hypervisor, and decisions sent by 
the security application to the hypervisor. The introspection API provides the 
necessary introspection functionality to the security application, allowing it to 
collect additional information about the event that was trapped.” 
 
Security Policy Type -- Fixed policy: 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-exploit 
See Where is the policy enforced? 
 
Policy Management -- No management: 
Fixed policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
See Where is the policy enforced? 
 
Validation -- Security (Case studies) : 
“Our test system consisted of the guest VM running with the trampoline and hooks 
initialized. To ensure the syn- thetic attack works properly, we then ran it without 
any memory protections enabled. During this test, the syn- thetic attack worked as 
expected, hijacking the hook and effectively preventing any execution of the 
trampoline code. Next, we repeated the test with the memory protections enabled. 
This time the synthetic attack failed to complete its installation because it was 
unable to change the write- protected entry in the SSDT and the trampoline code 
con- tinued to execute normally.” 
  
Validation -- Performance (Case studies): 

“Hook processing is the key operation where the Lares architecture will 
differ in performance from a traditional architecture. Therefore, our benchmark 
measurements look at the time required to process a single hook in the Lares 
architecture and compare that with a traditional architecture. To measure the hook 
processing time with the Lares architecture, we instrumented the trampoline code. 
We retrieved the value of the processor’s performance counter before and after the 
VMCALL instruction. The processor’s performance counter was obtained using a 
function provided by Windows, KeQueryPerformanceCounter. The difference 



between these two measurements represents the time needed for inter-VM 
communication and hook processing within the security VM. However, this 
measurement is noisy. It can be influenced by cache effects, VM scheduling, 
physical interrupts, CPU frequency scaling, and other loads on the system. We took 
several steps to minimize the influence of this noise in our measurements. First, 
we pinned each VM to its own CPU core. Next, we disabled unnecessary services in 
the security VM. Then we disabled CPU frequency scaling in the BIOS. 

Our test system consisted of the guest VM running with the trampoline and 
hooks initialized. To ensure the syn- thetic attack works properly, we then ran it 
without any memory protections enabled. During this test, the syn- thetic attack 
worked as expected, hijacking the hook and effectively preventing any execution of 
the trampoline code. Next, we repeated the test with the memory protections 
enabled. This time the synthetic attack failed to complete its installation because it 
was unable to change the write- protected entry in the SSDT and the trampoline 
code con- tinued to execute normally.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Sun, Oakland 2008 - 

 
Where is the policy enforced? -- System: 
 
“Our enforcement framework, described in Section 5, consists of a small, 
security-critical enforcement component that resides in the OS kernel, and a 
user-level component that incorporates more complex features that enhance 
functionality without impacting security.” 
 
When is the policy imposed? -- Static: 
 
See Requirements of the person applying the sandbox (NOTE: Analysis automates 
labeling and policy generation) 
 
What is protected by the policy? (fine grained) -- Files, User-data: 
 
“In contrast, we develop an approach in this paper that aims to provide positive 
assurance about overall system integrity. Our method, called PPI (Practical 
Proactive Integrity protection), identifies a subset of objects (which are typically 
files) as integrity-critical and a set of untrusted objects. We assume that system 
integrity is preserved as long as untrusted objects are prevented from influencing 



the contents of integrity-critical objects either directly (e.g., by copying of an 
untrusted object over an integrity-critical object) or indirectly through 
intermediate files.” 
 
What is protected by the policy? (coarse grained) -- System: 
 
“Provide positive assurances about system integrity on a contemporary 
Workstation, e.g., a Linux CentOS/Ubuntu desktop consisting of hundreds of 
benign applications and tens of untrusted applications. Integrity should be 
preserved even if untrusted programs run with root privileges.” 
 
Requirements of the person applying the sandbox -- Write a Policy, Run a Tool: 
 
“The large number of objects and subjects in a modern OS distribution motivates 
automated policy development. We envision policy development to be undertaken 
by a security expert — for instance, a member of a Linux distribution development 
team. The goal of our analysis is to minimize the effort needed on the part of this 
expert.” 
NOTE: The analysis is sound and writes a (mostly complete) start policy. 
 
Requirements of the application -- None: 
 
“In contrast, we have been able to develop a practical information-flow based 
integrity protection for desktop Linux systems by focusing on (a) automating the 
development of integrity labels and policies, (b) providing a degree of assurance 
that these labels and policies actually protect system integrity, and (c) developing a 
flexible framework that can support contemporary applications while minimizing 
usability problems as well as the need to designate applications as “trusted.”” 
 
Security Policy Type -- User-defined policy: 
 
See Requirements of the person applying the sandbox 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
“Most malware, including rootkits and spyware, should be detected when they 
attempt to install themselves, and removed automatically and cleanly.” 
 
Policy Management -- No management: 
 
None specified 
 
Policy Construction -- Manually written policy: 



 
See Requirements of the person applying the sandbox 
 
Validation Claim -- Security: 
 
“Evaluation of our prototype implementation on a Linux desktop distribution 
shows that it does not break or inconvenience the use of most applications, while 
stopping a variety of sophisticated malware attacks.” 
 
Validation Claim -- Applicability: 
 
See Requirements of the application 
 
Validation Claim -- Performance: 
 
“We observed that PPI did not introduce noticeable overhead for most system calls 
except for open (and other similar system calls such as stat).” 
 
Validation -- Case Studies (Applicability): 
 
“The set of initial integrity-critical file objects include files within /boot, 
/etc/init.d/, /dev/sda and /dev/kmem. We identified 26 untrusted application 
packages, which include:” 
 
Validation -- Case Studies (Security): 
 
“In this experiment, we downloaded around 10 up-to-date rootkits from [1].” 
“To test the effectiveness of PPI under this threat, we crafted a “malicious” rpm 
package.” 
“In this attack, we created another piece of malware that first created an 
executable with an enticing name and waited for users on the system to run it.” 
“Malformed data input. Similar to the above example, a malformed jpeg file was 
downloaded from some unknown source, so PPI marked it as low-integrity.” 
 
Validation -- Benchmark Suite (Performance): 
 
“For microbenchmark evaluation, we used LMbench version 3 [23] to check the 
performance degradation of popular system calls.” 
 
Validation -- Case Studies (Performance): 
 
“For macrobenchmark, we measured 3 typical applications running within PPI 
during runtime.” 



 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

WIT, Oakland 2008 - 

 
Where is the policy enforced? -- Application: 
“WIT uses the points-to analysis to assign a color to each object and to each write 
instruction such that all objects that can be written by an instruction have the 
same color. It instruments the code to record object colors at runtime and to check 
that instructions write to the right color. The color of memory locations is recorded 
in a color table that is updated when objects are allocated and deallocated. Write 
checks look up the color of the memory location being written in the table and 
check if it is equal to the color of the write instruction. This ensures write 
integrity.” 
 
When is the policy imposed? -- Hybrid: 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory: 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a tool: 
See Where is the policy enforced? 
 
Requirements of the application -- Use a special compiler: 
“We implemented the points-to and the write safety analysis using the Phoenix 
compiler framework [30]. These anal- ysis operate on Phoenix’s medium level 
intermediate representation (MIR), which enables them to be applied to different 
languages and target architectures.” 
 
Security Policy Type -- Fixed policy: 
See Where is the policy enforced? 



 
Policy enforcements place in kill chain -- Pre-exploit: 
See Where is the policy enforced? 
 
Policy Management -- None: 
Fixed policy. 
 
Policy Construction -- Embedded in the logic of the sandbox: 
See Where is the policy enforced? 
 
Validation -- Performance (Benchmark suite) : 
“In our first experiment, we measured the overhead added by WIT to 9 programs 
from the SPEC CPU 2000 benchmark suite [40] (gzip, vpr, mcf, crafty, parser, gap, 
vortex, bzip2 and twolf) 3, and to 9 programs from the Olden [12] benchmark suite 
(bh, bisort, em3d, health, mst, perimeter, power, treeadd, and tsp). We chose these 
programs to facilitate comparison with other techniques that have been eval- 
uated using the same benchmark suites.” 
 
Validation -- Security (Benchmark suite) : 
“We ran experiments to evaluate the precision of the points-to analysis and its 
impact on security. We used WIT to compile nine programs from the SPEC CPU 
2000 bench-mark suite [40] (gzip, vpr, mcf, crafty, parser, gap, vortex, bzip2 and 
twolf).” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 
 

Li, Oakland 2007 - 

 
Where is the policy enforced? -- System: 
 
“We also discuss our implementation of the UMIP model for Linux using the Linux 
Security Modules framework, and show that it is simple to configure, has low 
overhead, and effectively defends against a number of network-based attacks.” 
 



When is the policy imposed? -- Hybrid: 
 
See Security Policy Type and What is protected by the policy? (fine grained) 
 
What is protected by the policy? (fine grained) -- Files, Communication, User 
Data: 
 
“When a process performs an operation that makes it potentially contaminated, it 
drops its integrity. Such operations include communicating with the network, 
receiving data from a low-integrity process through an interprocess 
communication channel, and reading or executing a file that is potentially 
contaminated. A low-integrity process by default cannot perform sensitive 
operations.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications (all 
that run on this system): 
 
“Basic UMIP Model: Each process has one bit that denotes its integrity level. When 
a process is created, it inherits the integrity level of the parent process. When a 
process performs an operation that makes it potentially contaminated, it drops its 
integrity. A low-integrity process by default cannot perform sensitive operations.” 
 
Requirements of the person applying the sandbox -- Install a Tool, Write a 
Policy: 
 
See Where is the policy enforced? and Security Policy Type 
 
Requirements of the application -- None: 
 
“Second, existing applications and common usage practices can still be used under 
UMIP.” 
 
Security Policy Type -- Fixed Policy, User-defined policy (for exceptions): 
 
“One novel feature of UMIP is that, unlike previous MAC systems, UMIP uses 
existing DAC information to identify which files are to be protected. In UMIP, a file 
is write-protected if its DAC permission is not world-writable, and a file is 
read-protected if it is owned by a system account (e.g., root, bin, etc.) and is not 
world-readable. A low-integrity process (even if running as root) by default is 
forbidden from writing any write-protected file, reading any read-protected file, or 
changing the DAC permission of any (read- or write-) protected file.” 



“For another example, exception policies can be specified for some programs so 
that even when they are running in low-integrity processes, they can access some 
protected resources.” 
 
Policy enforcements place in kill chain --  Post-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- Central Repository: 
 
“Any exception to the above default policy must be specified in a policy file, which 
is loaded when the module starts.” 
 
Policy Construction -- Encoded in the logic of the sandbox, Manually written 
policy (for exception): 
 
See Security Policy Type 
 
Validation Claim -- Security, Performance: 
 
See Where is the policy enforced? NOTE: They aren’t claiming their MIP system is 
applicable to more applications but that it is easier to use. 
 
Validation -- Case Studies (Security): 
 
“In our experiments, we use the NetCat tool to offer an interactive root shell to the 
attacker in the experiment. We execute NetCat in “listen” mode on the test 
machine as root. When the attacker connects to the listening port, NetCat spawns 
a shell process, which takes input from the attacker and also directs output to him. 
From the root shell, we perform the following three attacks and compare what 
happens without our protection system with what happens when our protection 
system is enabled.” 
 
Validation -- Benchmark Suite (Performance): 
 
“Our performance evaluation uses the Lmbench 3 benchmark and the Unixbench 
4.1 benchmark suites.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. Security experiment is no reasonably comparable 
 
Availability -- Not Available: 



 
No mention in paper 
 
 

Tahoma, Oakland 2006 - 

 
Where is the policy enforced? -- System: 
 
“This paper describes the architecture and implementation of the Tahoma Web 
browsing system. Key to Tahoma is the browser operating system (BOS), a new 
trusted software layer on which Web browsers execute.” 
“We have implemented a prototype of Tahoma using Linux and the Xen virtual 
machine monitor.” 
 
When is the policy imposed? -- Hybrid: 
 
“First, the BOS runs the client-side component of each Web application (e.g., 
on-line banking, Web mail) in its own virtual machine. This provides strong 
isolation between Web services and the user’s local resources. Second, Tahoma lets 
Web publishers limit the scope of their Web applications by specifying which URLs 
and other resources their browsers are allowed to access. This limits the harm that 
can be caused by a compromised browser. Third, Tahoma treats Web applications 
as first-class objects that users explicitly install and manage, giving them explicit 
knowledge about and control over downloaded content and code.” 
See Requirements of the application 
 
What is protected by the policy? (fine grained) -- Memory, Communication, 
Code/Instructions, User Data: 
 
See When is the policy imposed? 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
See When is the policy imposed? NOTE: Web applications 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- Annotated source code: 
 



“Tahoma Web applications are first-class objects and are explicitly defined and 
managed. The Web service specifies the characteristics of its application in a 
manifest, which the BOS retrieves when it first accesses the service.” 
 
Security Policy Type -- Fixed Policy, Application-defined policy: 
 
See When is the policy imposed? and Requirements of the application 
 
Policy enforcements place in kill chain -- Pre/post-exploit: 
 
See When is the policy imposed? 
 
Policy Management -- Central policy repository: 
 
See Requirements of the application NOTE: policies are stored with webapps and 
distributed to anyone that needs them 
 
Policy Construction -- Encoded in the logic the sandbox, Encoded in the logic of 
the application: 
 
See​ ​When is the policy imposed? and Requirements of the application 
 
Validation Claim -- Security: 
 
“Our security evaluation shows that Tahoma can prevent or contain 87% of the 
vulnerabilities that have been identified in the widely used Mozilla browser.” 
 
Validation Claim -- Performance: 
 
“In addition, our measurements of latency, throughput, and responsiveness 
demonstrate that users need not sacrifice performance for the benefits of stronger 
isolation and safety.” 
 
Validation -- Case Studies (Security): 
 
“We examined each of the 109 Mozilla vulnerabilities to determine whether 
Tahoma successfully contains or eliminates the threat within the affected browser 
instance, or whether the attacker can use the vulnerability to harm external 
resources or Web applications.” 
 
Validation -- Case Studies (Performance): 
 



“Figure 7 shows the cost of forking a new Tahoma browser instance in a virtual 
machine compared to the cost of starting a new browser in native Linux. The top 
half of the table shows two different Tahoma cases.” 
“To measure the Web-object fetch latency, we started several concurrent browser 
instances, each scripted to fetch a Web object repeatedly. We measured the average 
latency to fully retrieve the object from a dedicated server on the local” 
“To measure the performance of the Tahoma window manager, we ran a variable 
number of virtual machines, each containing an MPlayer browser instance, which 
we consider a “worst case” test.” 
“To measure Tahoma’s input performance, we recorded the delay between the 
time a user presses a key and the time the corresponding character is rendered by a 
Konqueror browser instance.” 
 
Validation -- Public Data (Security): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Bugiel, Usenix 2013 -  

Excluded: Not a sandbox. Framework for developing other sandboxes. 
“We show how our security framework can instantiate selected use-cases. The first 
one is an attack-specific related work, the well-known application centric security 
solution Saint [39]. The second one is a privacy protecting solution that uses fine- 
grained and user-defined access control to personal data. We also mention other 
useful security models that can be instantiated with FlaskDroid.” 
 

Zhang, Usenix 2013 - 
 
Where is the policy enforced? -- Application 
 
“Each shared library and executable is instrumented independently to enforce 
CFI.” 
 
When is the policy imposed? -- Statically 
 
“Our implementation utilizes objdump to perform linear disassembly.” 



“After rewriting, the instrumented assembly file is processed using the system 
assembler (in our case, the GNU assembler gas) to produce an object file. We 
extract the code from this object file and then use the objcopy tool to inject it into 
the original ELF file.” 
 
What is protected by the policy? (fine grained) -- Code/Instructions 
 
See Security Policy Type and Policy enforcements place in kill chain.  
 
What is protected by the policy? (coarse grained) -- Targeted Application 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool 
 
See When is the policy imposed? 
 
Requirements of the application -- No Additional Requirements 
 
“Compiler independence and support for hand-coded assembly: Our approach 
does not make strong assumptions regarding the compiler used to generate a 
binary, such as the the conventions for generating jump tables.” 
 
Security Policy Type -- Fixed Policy 
 
“An ideal CFI implementation will restrict program execution to exactly the set of 
program paths that can be taken. In practice, due to the fact that targets of indirect 
control-flow (ICF) transfers are difficult to predict, CFI implementations enforce a 
conservative approximation of ideal CFI.” 
 
Policy enforcements place in kill chain -- Pre-exploit 
 
“Its enforcement can defeat most injected and existing code attacks, in- 
cluding those based on Return-Oriented Programming (ROP).” 
 
Policy Management -- No management 
 
A fixed policy is used thus no policy management is required. 
 
See Security Policy Type. 
 
Policy Construction -- Encoded in the logic of the sandbox 
 



“We present the first practical approach for CFI enforcement that scales to large 
binaries as well as shared libraries without requiring symbol, debug, or relocation 
information. We have developed techniques that cope with the challenges 
presented by static analysis and transformation of large programs, including those 
of Firefox, Adobe Acrobat 9, GIMP-2.6 and glibc.” 
 
Validation claims -- Security 
 
“Our technique ensures that when an executable is loaded and run, CFI property is 
enforced globally across the executable and all the shared libraries used by it.” 
“This provides evidence that our approach achieves compatibility with COTS 
binaries without incurring a major reduction in its quality of protection.” 
“Moreover, on the SPEC CPU 2006 benchmark, our technique also eliminated 
about 93% of ROP gadgets that were found by the popular ROP gadget discovery 
tool ROPGadget [35].” 
“Our results show that bin-CFI defeats the vast majority of control-flow hijack 
attacks from the RIPE benchmark [45].” 
 
Validation claims -- Applicability 
 
“Changes to saved return address would cause these uses to break, thus leading to 
application failure. For this reason, our instrumentation has been designed to 
provide full transparency.” 
 
See Policy Construction. 
 
Validation claims -- Performance/Validation -- Benchmark Suite 
 
“We describe several optimization techniques in Section 6 that have reduced the 
overhead to about 8.54% across the SPEC CPU benchmark suite.” 
 
Validation -- Benchmark Suite (Applicability) 
 
“We tested the SPEC CPU2006 programs (Figure 8). This benchmark comes with 
scripts to verify outputs, thus simplifying functionality testing.” 
 
Validation -- Benchmark Suite (Security) 
 
“Figure 8 compares the AIR metric for bin-CFI with strict-CFI, reloc-CFI, 
bundle-CFI and instr-CFI. To calculate AIR of reloc-CFI, we recompiled SPEC2006 
programs using “-g” and a linker option “-Wl,-emit-relocs”to retain all the 
relocations in executables.” 
“To evaluate control flow hijack defense, we used the RIPE [45] test suite.” 



 
Validation -- Public Data (Security, Performance, Applicability): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Aurasium, Usenix 2012 -  

 
Where is the policy enforced? -- Application: 
 
“We develop a novel solution called Aurasium that bypasses the need to modify the 
Android OS while providing much of the security and privacy that users desire. We 
automatically repackage arbitrary applications to attach user-level sandboxing and 
policy enforcement code, which closely watches the application’s behavior for 
security and privacy violations such as attempts to rerieve a user’s sensitive 
information, send SMS covertly to premium numbers, or access malicious IP 
addresses.” 
 
When is the policy imposed? -- Statically:  
 
“To insert Aurasium’s Java code into an existing application, we have to take the 
original classes.dex, disassemble it back to a collection of individual classes, add 
Aurasium’s classes, and then re-assemble everything back to create the new 
classes.dex.” 
 
What is protected by the policy? (Fine Grained) -- Files, Communication, User 
Data: 
 
“We are interested primarily in enforcing some security policy that protects the 
device from untrusted applications. This includes not only attempts by the 
application to access sensitive information, leaking to the outside world or 
modifying it, but also attempts by the application to escalate privilege and to gain 
root access on the device by running suspicious system calls and loading native 
libraries.” 
 
What is protected by the policy? (Coarse Grained) -- Targeted Application: 
 



“We have a web interface that allows users to upload arbitrary applications and 
download the Aurasium repackaged and hardened version.” 
 
Requirements of the person applying the sandbox -- Select a pre-made security 
policy, Run a tool 
 
“Aurasium displays a warning message and prompts the user to either accept the 
requested access or deny it. The user can also make Aurasium store that user’s 
answer to the request so that the same request never prompts the user for 
approval again and the cached answer is used instead.” 
 
See What is protected by the policy? 
 
Requirements of the application -- No Additional Requirements: 
 
No requirements stated. 
 
Security Policy Type -- User-defined Policy 
 
“Depending on the enforced polices at repackaging time, an application queries 
the 
ASM for a policy decision via IPC mechanisms with intents describing the sensitive 
operation it is about to perform, and the ASM either prompts the user for consent, 
uses a remembered user decision recorded earlier, or automatically makes a 
decision without user interaction by enforcing a predefined policy embedded at 
repackaging time.” 
 
Policy enforcements place in kill chain -- Pre-exploit:  
 
“Aurasium displays the destination number as well as the SMS’s content, so users 
can make informed decision on whether to allow the operation or not.” 
 
See Security Policy Type. 
 
Policy Management -- Classes of Policies or No Management depending on 
configuration: 
 
“Aurasium-wrapped applications are self-contained in the sense that the policy 
logic and the relevant user interface are included in the repackaged application 
bundle, and so are remembered user decisions stored locally in the application’s 
data directory. Alternatively, Aurasium Security Manager (ASM) can also be 
installed, enabling central handling of policy decisions of all repackaged 
application on the device.” 



 
Policy Construction -- Manually written policies: 
 
See Requirements of the person applying the sandbox. NOTE: The checks to throw 
prompts are encoded in the sandbox, but the policy that is acted on is defined by 
the user by answering prompts. 
 
Validation claims -- Security: 
 
“We provide a way of protecting users from malicious applications” 
 
Validation claims -- Applicability: 
 
“...without making any changes to the underlying Android architecture. This 
makes Aurasium a technology that can be widely deployed.” 
 
Validation claim -- Performance: 
 
“It has low memory and runtime overhead…” 
 
Validation -- Case Study (Security): 
 
“Figure 5 illustrates how Aurasium intercepts SMS messages sent to a premium 
number, which is initiated by the malicious application AndroidOS.FakePlayer [2] 
found in the wild. ... We also observed malware NickySpy [3] leaking device IMEI 
via SMS in another test run.” 
 
Validation -- Argumentation (Security): 
 
“Because fundamentally Aurasium code runs in the same process context as the 
application’s code, there is no strong barrier between the application and 
Aurasium. Hence, it is non-trivial to argue that Aurasium can reliably sandbox 
arbitrary Android applications. We describe possible ways that a malicious 
application can break out of Aurasium’s policy enforcement mechanism and 
discuss possible mitigation against them.” 
 
Validation -- Benchmark Suite (Applicability): 
 
“We applied Aurasium to 3491 applications crawled from a third-party application 
store7 and 1260 known malicious applications [39]. Table 1 shows the success rate 
of repackaging for each category of applications.” 
“Out of 3476 successfully repackaged application, we performed tests on 3189 
standalone runnable applications8 on the device. We were able to start all of the 



applications in the sense that Aurasium successfully reported the interception of 
the first API invocation for all of them.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We take two Android benchmark applications from the official market and apply 
Aurasium to them in order to check if Aurasium introduces significant 
performance overhead to a real-world application.” 
 
Validation -- Public Data (Performance, Applicability): 
 
See other validation quotes. 
 
Availability -- Binaries: 
 
“We have a web interface 6 that allows users to upload arbitrary applications and 
download the Aurasium repackaged and hardened version.” 
 
   

Giuffrida, Usenix 2012 - 
 
Where is the policy enforced? -- System: 
 
“Finally, we present the first comprehensive live rerandomization strategy, which 
we found to be particularly important inside the OS.” 
 
See What is protected by the policy? 
 
When is the policy imposed? -- Hybrid: 
 
“In our design, all the OS processes (and the microkernel) are randomized using a 
link-time transformation implemented with the LLVM compiler framework [42].” 
 
See Where is the policy enforced (live rerandomization). 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“ASR is a well-established defense mechanism to protect user programs against 
memory error exploits [12, 39, 14, 72, 73]; all the major operating systems include 
some support for it at the application level [1, 68].” 
 
What is protected by the policy? (coarse grained) -- System Level Component: 



 
“In this paper, we explore the benefits of address space randomization (ASR) 
inside the operating system and present the first comprehensive design to defend 
against classic and emerging OS-level attacks.” 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See When is the policy imposed? 
 
Requirements of the application -- Use Special Compiler: 
 
“Our approach is to transform the bit-code with another LLVM link-time pass, 
which embeds metadata information into the binary and makes run-time state 
introspection and automated migration possible.” 
 
See When is the policy imposed? 
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposed? and Requirements of the application? 
 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
“The goal of address space randomization is to ensure that code and data locations 
are unpredictable in memory, thus preventing attackers from making precise 
assumptions on the memory layout.” 
 
Policy Management -- No Management: 
 
A fixed policy is used thus no policy management is required. 
 
See Security Policy Type. 
 
Policy Construction -- Encoded in the logic the sandbox: 
 
See When is the policy imposed? and Requirements of the application? 
 
Validation claims -- Security, Performance: 
 
“Our approach addresses all the challenges considered and improves existing ASR 
solutions in terms of both performance and security, especially in light of 
emerging ROP-based attacks.” 
 



Validation claims -- Applicability/Validation -- Case Study: 
 
“In addition, we consider the application of our design to component-based OS 
architectures, presenting a fully fledged prototype system and discussing 
real-world applications of our ASR technique.” 
 
Validation -- Benchmark Suite (Performance): 
 
“To evaluate the performance of our ASR technique, we ported the C programs in 
the SPEC CPU 2006 benchmark suite to our prototype system.” 
 
Validation -- Case Study (Performance): 
 
“We also put together a devtools macrobenchmark, which emulates a typical 
syscall-intensive workload with the following operations performed on the OS 
source tree: compilation, find, grep, copying, and deleting.” 
 
Validation -- Analytical Analysis (Security): 
 
“Their entropy analysis applies also to other second-generation ASR techniques, 
and, similarly, to our technique, which, however, provides additional entropy 
thanks to internal layout randomization and live rerandomization.” 
“Assuming the same pi(t) in every round for simplicity, it can be shown that the 
expected time before the attacker can complete the probing phase in a single 
rerandomization window (and thus the attack) is: …” 
 
Validation -- Argumentation (Security): 
 
“Second-generation techniques, in turn, allow the attacker to corrupt the right 
memory location by learning the relative distance/alignment between two memory 
objects. In this respect, our internal layout randomization provides better 
protection, forcing the attacker to learn the relative distance/alignment between 
two memory elements in the general case.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 



kGuard, Usenix 2012 -  

 
Where is the policy enforced? -- System: 
 
“We present kGuard, a compiler plugin that augments the kernel with compact 
inline guards, which prevent ret2usr with low performance and space overhead.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
See Where is the policy enforced? and Security Policy Type 
 
What is protected by the policy? (coarse grained) -- System Level Component: 
 
See Where is the policy enforced? 
 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- Have source code, Use special compiler: 
 
“We present the design and implementation of kGuard, a compiler plugin that 
protects the kernel from ret2usr attacks by injecting fine-grained inline guards 
during compilation. Our approach does not require modifications to the kernel or 
additional software, such as a VMM.” 
 
Security Policy Type -- Fixed Policy: 
 
“Similar to CFI, we rely on inline checks injected before every unsafe control-flow 
transfer.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See When is the policy imposed? and Security Policy Type 
 
Policy Management -- No management: 
 



See When is the policy imposed? and Security Policy Type 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? and Security Policy Type 
 
Validation claims -- Security: 
 
“Our evaluation demonstrates that Linux kernels compiled with kGuard become 
impervious to a variety of control-flow hijacking exploits.” 
 
Validation claims -- Performance: 
 
”kGuard exhibits lower overhead than previous work, imposing on average an 
overhead of 11.4% on system call and I/O latency on x86 OSs, and 10.3% on x86-64. 
The size of a kGuard-protected kernel grows between 3.5% and 5.6%, due to the 
inserted checks, while the impact on real-life applications is minimal (≤1%).” 
 
Validation -- Case Study (Security): 
 
“Table 1 summarizes our test suite, which consisted of a collection of 8 exploits 
that cover a broad spectrum of different flaws, including direct NULL pointer 
dereferences, control hijacking via tampered data structures (data pointer 
corruption), function and data pointer overwrite, arbitrary kernel-memory 
nullification, and ret2usr via kernel stack-smashing.” 
 
Validation -- Case Study (Performance): 
 
“We begin with the evaluation of kGuard using a set of real-life applications that 
represent different workloads. In particular, we used a kernel build and two 
popular server applications. The Apache web server, which performs mainly I/O, 
and the MySQL RDBMS that is both I/O driven and CPU intensive.” 
 
Validation -- Benchmarks (Performance): 
 
“Since the injected CFAs are distributed throughout many kernel subsystems, such 
as the essential net/ and fs/, we used the LMbench [50] microbenchmark suite to 
measure the impact of kGuard on the performance of core kernel system calls and 
facilities.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 



 
Availability -- Source code: 
 
“The prototype implementation of kGuard is freely available at: 
http://www.cs.columbia.edu/~vpk/research/kguard/” 
 
 

Sehr, Usenix 2010 -  

 
Where is the policy enforced? -- Application, Application Host: 
 
“The original NaCl x86-32 system relies on a set of rules for code generation that 
we briefly summarize here:” 
“All rules are checked by a verifier before a program is executed.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory, Code/Instructions: 
 
“We present software fault isolation schemes for ARM and x86-64 that provide 
control-flow and memory integrity...” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“This work extends Google Native Client [30].” 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See What is protected by the policy? 
 
Requirements of the application -- Have source code, Use special compiler 
(NaCl build tools), Use sandbox as a framework/library (Pepper API): 
 
“We have modified LLVM 2.6 [13] to implement our ARM SFI design.” 
“Our x86-64 SFI implementation is based on GCC 4.4.3, requiring a patch of about 
2000 lines to the compiler, linker and assembler source.” 
 
See What is protected by the policy? 
 
Security Policy Type -- Fixed-Policy: 



 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
“Ensuring that untrusted code cannot execute any forbidden instructions (e.g. 
undefined encodings, raw system calls). 
Ensuring that untrusted code cannot store to memory locations above 1GB. 
Ensuring that untrusted code cannot jump to memory locations above 1GB (e.g. 
into the service runtime implementation).” 
 
See Where is the policy enforced? 
 
Policy Management -- No Management: 
 
See Security Policy Type 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Where is the policy enforced? 
 
Validation claims -- Performance: 
 
“...with average performance overhead of under 5% on ARM and 7% on x86-64.” 
“Our experience suggests that these SFI implementations benefit from 
instruction-level parallelism, and have particularly small impact for workloads 
that are data memory-bound, both properties that tend to reduce the impact of our 
SFI systems for future CPU implementations.” 
 
Validation claims -- Security: 
 
“We achieve these goals by adapting to ARM the approach described by Wahbe et 
al. [28].” ​In reference to the goals listed in the quote in Policy enforcements place 
in kill chain 
 
Validation -- Benchmarks (Performance): 
 
“In this section we evaluate the performance of our ARM and x86-64 SFI schemes 
by comparing against the relevant non-SFI baselines, using C and benchmarks 
from 
SPEC2000 INT CPU [12].” 
 
Validation -- Public Data (Performance): 



 
See other validation quotes. 
 
Availability -- Source Code: 
 
“Source code for Google Native Client can be found at: 
http://code.google.com/p/nativeclient/.” 
 

AdJail, Usenix 2010 -  

 
Where is the policy enforced? -- Application Host: 
 
“To enforce the publisher’s policy, we leverage browser enforcement of the 
same-origin policy (SOP) [50], an access control mechanism available in all major 
JavaScript-enabled browsers.” 
 
When is the policy imposed? -- Hybrid: 
 
“All messages sent between the real and shadow pages are mediated by our policy 
enforcement mechanism.” 
“The architecture of our implementation requires changes to the original web page 
(real page) and creation of a corresponding shadow page as described in §3.1.” 
“The first modification is to remove the ad script (Figure 4a). Second, we add the 
tunnel script (Figure 4b) to the end of the page. The third modification to the 
original page is annotation of HTML elements with policies, which we discussed at 
length in §4.1.” 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/Instructions, User Data: 
 
“These policies are specified by a website to restrict the capabilities of third-party 
scripts, specifically with reference to access and modification of first-party (site 
owned) content, as well as control over the screen.” 
“For instance, in our web-mail example, an integrity policy can be enforced such 
that email message content cannot be tampered with, but can still be read (for 
contextual targeting of ads). Publishers may also choose to restrict where ads can 
appear on the page.” 
 
What is protected by the policy? (coarse grained) -- Target Application: 
 
See When is the policy imposed? 



 
Requirements of the person applying the sandbox -- Write a security policy, 
Run a Tool: 
 
“By default, ad script is given no access to any part of the real page unless granted 
by policies (i.e., default-deny).” 
“The publisher can annotate any HTML element of the real page with a policy 
attribute.” 
 
See When is the policy imposed? 
 
Requirements of the application -- Annotated source code, Use sandbox as a 
library or framework: 
 
See When is the policy imposed? and Requirements of the person applying the 
sandbox 
 
Security Policy Type -- Fixed Policy (SOP), User Defined Policy: 
 
See When is the policy imposed? and Requirements of the person applying the 
sandbox 
 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
See Requirements of the application 
 
Policy Management -- No Management: 
 
No Mangement specified and seems unlikely given the nature of program 
annotations. 
 
Policy Construction -- Encoded in the logic the sandbox (SOP), Manually 
written policies: 
 
See Where is the policy enforced? and Requirements of the person applying the 
sandbox 
 
Validation claims -- Applicability: 
 
“We find that AdJail provides excellent compatibility for most ads.” 
 
 
Validation claims -- Security: 



 
“We also demonstrate the strong protection offered by AdJail from many 
significant threats posed by online ads.” 
 
Validation claims -- Performance: 
 
“In our experiments, the currently unoptimized AdJail prototype encountered at 
most a 1.69× slowdown in rendering ads.” 
 
Validation -- Case Studies (Applicability): 
 
“To evaluate how well ADJAIL works with existing adscripts, we tested it on six 
popular ad networks: Yahoo! Network, Google AdSense, Microsoft Media Network, 
Federated Media Publishing, AdBrite and Clicksor.” 
 
Validation -- Case Studies (Security): 
 
“To evaluate the security provided by AdJail we installed the RoundCube webmail 
v0.3.1 software on our web server. We integrated two ad network scripts on the 
main webmail interface: one ad script was included directly on the page, and the 
other was embedded using AdJail. A single trial consisted of replacing each of the 
two ad scripts with a malicious script designed to perform one specific attack or 
policy violation. We then observed if the malicious script functioned correctly in 
the non-sandboxed location, and whether the attack was prevented in the 
sandboxed location. Several trials were conducted to assess different attack 
vectors, and to determine the least restrictive policy required to defend each 
vector. 
 
Validation -- Benchmark Suite (Performance):  
 
“To measure ad rendering latencies incurred by our policy enforcement 
mechanism, we placed each ad script on a typical blog page instrumented with 
benchmarking code. There were a total of 12 instances of the blog page: for each of 
the six ad networks evaluated in §5.1, one version of the blog page used the original 
ad, and a second version used ADJAIL to enforce the policies in Table 3.” 
 
Availability -- Not Available: 
 
No mention in paper 
 

Cling, Usenix 2010 -  

 



Where is the policy enforced? -- Application: 
 
“The Cling memory allocator is a drop-in replacement for malloc designed to 
satisfy three requirements: …” 
 
 
When is the policy imposed? -- Hybrid (Compile to use it or LD_PRELOAD): 
 
“Cling comes as a shared library providing implementations for the malloc and the 
C++ operator new allocation interfaces. It can be preloaded with platform specific 
mechanisms (e.g. the LD PRELOAD environment variable on most Unix-based 
systems) to override the system’s memory allocation routines at program load 
time.” 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“Cling utilizes more address space, a plentiful resource on modern machines, to 
prevent type-unsafe address space reuse among objects of different types.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See When is the policy imposed? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See When is the policy imposed? 
 
Requirements of the application -- No additional requirements: 
 
See LD_PRELOAD remark in When is the policy imposed? 
 
Security Policy Type -- Fixed Policy: 
 
See What is protected by the policy? (fine grained​) 
 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No Management (Fixed Policy): 
 
See What is protected by the policy? (fine grained) 
 



Policy Construction -- Encoded in the logic of the sandbox: 
 
See What is protected by the policy? (fine grained) 
 
Validation claims -- Security, Performance: 
 
“Cling disrupts a large class of attacks against use-after-free vulnerabilities, 
notably including those hijacking the C++ virtual function dispatch mecha- 
nism, with low CPU and physical memory overhead even 
for allocation intensive applications.” 
 
Validation claims -- Applicability: 
 
“Similar in spirit, Cling is a pragmatic memory allocator modification for 
defending against use-after-free vulnerabilities that is readily applicable to real 
programs and has low overhead.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We used benchmarks from the SPEC CPU 2000 and (when not already included in 
CPU 2000) 2006 benchmark suites [22].” 
 
Validation -- Case Studies (Performance): 
 
“In the final set of experiments, we ran Cling with Firefox. Since, due to the size of 
the program, this is the most interesting experiment, we provide a detailed plot of 
memory usage as a function of time (measured in allocated Megabytes of memory), 
and we also compare against the naive solution of Section 2.2.” 
 
Validation -- Argumentation (Security): 
 
“These cases cover generic exploitation techniques and attacks observed in the 
wild. The remaining attacks are less practical but may be exploitable in some cases, 
depending on the application and its use of data. Some constraints may still be 
useful; for example, attacks that hijack data pointers are constrained to only access 
memory in the corresponding field of another object of the same type. In some 
cases, this may prevent dangerous corruption or data leakage.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 



 
No mention in paper 
 
 

BaggyBounds, Usenix 2009 -  

 
Where is the policy enforced? -- Application: 
 
“Our system shares the overall architecture of backwards compatible bounds 
checking systems for C/C++ (Figure 2). It converts source code to an intermediate 
representation (IR), finds potentially unsafe pointer arithmetic operations, and 
inserts checks to ensure their results are within bounds. Then, it links the 
generated code with our runtime library and binary libraries—compiled with or 
without checks—to create a hardened executable.” 
 
When is the policy imposed? -- Statically​: 
 
“Similar to previous work, we provide bounds checking wrappers for Standard C 
Library functions such as strcpy and memcpy that operate on pointers. We replace 
during instrumentation calls to these functions with calls to their wrappers.” 
 
See  Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- Use a special compiler: 
 
See Where is the policy enforced? 
 
Security Policy Type -- Fixed Policy: 
 
See Where is the policy enforced? 



 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
See Where is the policy enforced? 
 
Policy Management -- No Management: 
 
No management stated. 
 
Policy Construction -- Encoded in the logic of the sandbox 
 
See Where is the policy enforced? 
 
Validation claims -- Applicability, Performance: 
 
“In this paper we present a backwards compatible bounds checking technique that 
substantially reduces performance overhead.” 
“Our technique has low overhead in practice—only 8% throughput decrease for 
Apache—and is more than two times faster than the fastest previous technique 
and about five times faster—using less memory—than recording object bounds 
using a splay tree.” 
 
Validation claims -- Security: 
 
“Bounds checking C and C++ code protects against a wide range of common 
vulnerabilities.” 
 
Validation -- Argumentation (Applicability): 
 
“Baggy bounds checking works even when instrumented code is linked against 
libraries that are not instrumented. The library code works without change because 
it performs no checks but it is necessary to ensure that instrumented code works 
when accessing memory allocated in an uninstrumented library. This form of 
interoperability is important because some libraries are distributed in binary 
form.” 
 
Validation -- Benchmark Suite (Performance): 
 
“In Section 4 we evaluate the performance of our system using the Olden 
benchmark (to enable a direct comparison with Dhurjati and Adve [15]) and 
SPECINT 2000.” 
 
Validation -- Benchmark Suite (Security): 



 
“We also verify the efficacy of our system in preventing attacks using the test suite 
described in [34], … 
 
Validation -- Case Studies (Applicability): 
 
“... and run a number of security critical COTS components to confirm its 
applicability.” 
 
Validation -- Public Data (Security, Performance, Applicability): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

McCamant, Usenix 2008 -  

 
Where is the policy enforced? -- Application: 
 
“This effect is achieved by rewriting the machine instructions of code after 
compilation to directly enforce limits on memory writes and control flow.” 
 
When is the policy imposed? -- Statically: 
 
“The rewriting phase of PittSFIeld is implemented as a text processing tool, of 
about 720 lines of code, operating on input to the GNU assembler gas.” 
 
What is protected by the policy? (fine grained) -- Memory,  Code/Instructions: 
 
“The basic task for any SFI implementation is to prevent certain potentially unsafe 
instructions (such as memory writes) from being executed with improper 
arguments (such as an effective address outside an allowed data area). The key 
challenges are to perform these checks efficiently, and in such a way that they 
cannot be bypassed by maliciously designed jumps in the input code.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See where is the policy enforced? 
 



Requirements of the person applying the sandbox -- Run a Tool: 
 
See When is the policy imposed? 
 
Requirements of the application -- Have source code: 
 
“Because it operates on assembly code, our prototype rewriting tool is intended to 
be used by a code producer. A system that instead operates on off-the-shelf 
binaries without the code producer’s cooperation is often described as a goal of SFI 
research, but has rarely been achieved in practice.” 
 
Security Policy Type -- Fixed Policy: 
 
See where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
See Where the policy enforced? 
 
Policy Management -- No Management  
 
See Security Policy Type (fixed policy) 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Where the policy enforced? 
 
Validation claims -- Security, Performance: 
 
“We describe an implementation which provides a robust security guarantee and 
has low runtime overheads (an average of 21% on the SPECint2000 benchmarks).” 
 
Validation -- Benchmark Suite (Performance): 
 
“For better comparison with other work, we here concentrate on a standard set of 
compute-intensive programs, the integer benchmarks from the SPEC CPU2000 
suite.” 
 
Validation -- Proof (Security): 
 
“Specifically, we have constructed a completely formal and machine-checked 
proof of the fact that our technique ensures the security policy it claims to.” 
 



Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Source Code: 
 
“Our implementation is publicly available (the version described here is 0.4), as 
are the formal model and lemmas used in the machine-checked proof. They can be 
downloaded from the project web site at http://pag.csail.mit.edu/ 
s̃mcc/projects/pittsfield/ .” 
 
 

Bhatkar, Usenix 2005 -  

 
Where is the policy enforced? -- Application: 
 
“Our implementation uses a source-to-source transformation on C programs. 
Note that a particular randomization isn’t hard-coded into the transformed code. 
Instead, the transformation produces a self-randomizing program: a program that 
randomizes itself each time it is run, or continuously during runtime. This means 
that the use of our approach doesn’t, in any way, change the software distribution 
model that is prevalent today.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“Our approach makes the memory locations of program objects (including code as 
well as data objects) unpredictable. This is achieved by randomizing the absolute 
locations of all objects, as well as the relative distance between any two objects.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
“The main component of our implementation is a source code transformer which 
uses CIL [22] as the front-end, and Objective Caml as the implementation 
language.” 



 
See Where is the policy enforced? 
 
Requirements of the application -- Have source code: 
 
See Where is the policy enforced? 
 
Security Policy Type -- Fixed Policy: 
 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-Exploit 
 
See ​What is protected by the policy? 
 
Policy Management -- No Management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic the sandbox: 
 
See Where is the policy enforced? 
 
Validation claims -- Performance: 
 
“We have collected data on the performance impact of the randomizing 
transformations.” 
 
Validation claims -- Applicability: 
 
“Our approach is implemented as an automatic, source-to-source transformation, 
and is fully compatible with legacy C code. It can interoperate with preexisting 
(untransformed) libraries.” 
 
Validation claims -- Security: 
 
“Hence the approach presented in this paper can address the full range of attacks 
that exploit memory errors.” 
 
Validation -- Case Studies (Performance, Applicability): 
 
“Figure 1 shows the test programs and their workloads.” 
 



Validation -- Case Studies (Security): 
 
“We have not carried out a detailed experimental evaluation of effectiveness 
because today’s attacks are quite limited, and do not exercise our transformation at 
all. In particular, they are all based on a detailed knowledge of program memory 
layout.” 
 
Validation -- Analytical Analysis (Security): 
 
“​For this reason, we rely primarily on an analytical approach in this section. We 
first analyze memory error exploits in general, and then discuss attacks that are 
specifically targeted at randomization.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Linn, Usenix 2005 -  

 
Where is the policy enforced? -- System: 
 
“Our binary rewriting tools analyze binaries and add system call location 
information to them, without requiring the source code. This information is 
contained in a new section of an ELF binary file. Our modified OS kernel checks 
system call addresses only if an executable contains this additional section.” 
 
When is the policy imposed? -- Static: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
“This paper proposes a comprehensive set of techniques which limit the scope of 
remote code injection attacks. These techniques prevent any injected code from 
making system calls and thus restrict the capabilities of an attacker.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“if an executable does not contain this section, the intrusion detection mechanism 
is not invoked.” 
 



See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
“We use post-link-time binary rewriting to identify the address of each system 
call instruction in the executable (our implementation currently uses the PLTO 
binary rewriting system for Intel x86 ELF executables [31]). This information is 
then added to the ELF executable as a new section, the Interrupt Address Table 
(IAT); the associated headers in the ELF file modified appropriately; and the file 
written back out.” 
 
Requirements of the application -- No additional requirements: 
 
See Requirements of the person applying the sandbox 
 
Security Policy Type -- Fixed Policy: 
 
See Requirements of the person applying the sandbox 
 
Policy enforcements place in kill chain -- Post-Exploit: 
 
What is protected by the policy? (fine grained) 
 
Policy Management -- No Management 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Requirements of the person applying the sandbox 
 
Validation claims -- Security: 
 
“In defending against the traditional ways of harming a system these techniques 
significantly raise the bar for compromising the host system forcing the attack 
code to take extraordinary steps that may be impractical in the context of a remote 
code injection attack.” 
 
Validation claims -- Performance: 
 
“Our experiments indicate that the technique is effective and incurs only small 
runtime overheads.” 
 



Validation -- Case Studies (Security): 
 
“We decided, instead, to use a set of carefully constructed synthetic attacks, whose 
design we describe here.” 
 
Validation -- Benchmark Suite (Performance): 
 
“To evaluate the effect of IAT checks on realistic benchmarks, we used ten 
benchmarks from the SPECint-2000 benchmark suite.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Provos, Usenix 2003 -  

 
Where is the policy enforced? -- System: 
 
“The user space policy daemon uses the kernel interface to start monitoring 
processes and to get information about pending policy decisions or state changes.” 
 
When is the policy imposed? -- Dynamic: 
 
“We create policies automatically by running an application and recording the 
system calls that it executes.” 
 
What is protected by the policy? (fine grained) -- Files, Communication, User 
Data: 
 
“We observe that the only way to make persistent changes to the system is 
through system calls. They are the gateway to privileged kernel operations. By 
monitoring and restricting system calls, an application may be prevented from 
causing harm.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See When is the policy imposed? 



 
Requirements of the person applying the sandbox -- Write a policy, Run a Tool: 
 
“She then either improves the current policy by appending a policy statement that 
covers the current system call, terminates the application, or decides to allow or 
deny the current system call invocation.” 
 
See Where is the policy enforced? and When is the policy imposted? 
 
Requirements of the application -- No additional requirements: 
 
NOTE: Works as syscall level in the kernel, no specific properties of application 
required. 
 
Security Policy Type -- User Defined Policy: 
 
See  Requirements of the person applying the sandbox 
 
Policy enforcements place in kill chain -- Post-Exploit: 
 
“The policies describe the desired behavior of services or user applications on a 
system call level and are enforced to prevent operations that are not explicitly 
permitted.” 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- Central policy repository: 
 
“This event can install a new policy from the policy database.” 
 
Policy Construction -- Manually Written Policies (mostly tool generated, but 
user is asked to write some policies at runtime): 
 
See  Requirements of the person applying the sandbox 
 
Validation claims -- Security: 
 
“We introduce a system that eliminates the need to run programs in privileged 
process contexts.” 
 
Validation claims -- Performance: 
 



“We show that Systrace is efficient and does not impose significant performance 
penalties.” 
 
Validation -- Argumentation (Security): 
 
“To enforce security policies effectively by system call interposition, we need to 
resolve the following challenges: incorrectly replicating OS semantics, resource 
aliasing, lack of atomicity, and side effects of denying system calls [18, 34, 37]. We 
briefly explain their nature and discuss how we address them.” 
 
Validation -- Case Studies (Performance): 
 
“We conduct the microbenchmarks of a single system call by repeating the system 
call several hundred thousand times and measuring the real, system, and user 
time. The execution time of the system call is the time average for a single 
iteration. 
As a baseline, we measure the time for a single geteuid system call without 
monitoring the application. We compare the result with execution times obtained 
by running the application under Systrace with two different policies.” 
 
Validation -- Benchmark Suite (Performance): 
 
“To assess the performance penalty for applications that frequently access the 
filesystem, we created a benchmark similar to the Andrew benchmark [22].” 
 
Availability -- Source Code: 
 
“Systrace is currently available for Linux, Mac OS X, NetBSD, and OpenBSD; we 
concentrate on the OpenBSD implementation.” 
 
 

Niu, CCS 2013 - 

 
Where is the policy enforced? -- Application: 
 
“Low-level inlined reference monitors weave monitor code into a program for 
security. To ensure that monitor code cannot be by-passed by branching 
instructions, some form of control-flow integrity must be guaranteed. Past 
approaches to protecting monitor code either have high space overhead or do not 
support separate compilation. We present Monitor Integrity Protection (MIP), a 
form of coarse-grained control-flow integrity.” 
 



When is the policy imposed? -- Statically: 
 
NOTE: This sandbox adds NaCl dependencies as a runtime dependency. We 
considered this to be equivalent to requiring a specific compiler runtime (e.g. the 
MS VC++ runtime) when classifying this paper and did not consider it dynamic 
policy imposition. 
 
“We have built a MIP toolchain for rewriting and running x86 Linux applications. It 
operates at assembly level and takes advantage of symbolic information in 
assembly code for rewriting and for building the chunk table. As a result, it is 
compatible with any compiler such as GCC. 
Fig. 2 visualizes the work flow of MIP’s toolchain. Application source code is 
compiled into assembly code by a compiler such as GCC. The compiler produces 
meta information including labels and assembly directives that are embedded in 
assembly files. Afterwards, MIPRewriter performs assembly-level rewriting by 
extending the assembly code streamer of LLVM-MC, LLVM’s assembling and 
disassembling component. MIPRewriter first transforms the assembly file’s 
content into a stream of instructions, assembly labels and strings.” 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
See Where is the policy enforced 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See When is the policy imposed? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See When is the policy imposed? 
 
Requirements of the application -- Use a special compiler: 
 
See When is the policy imposed? 
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See Where is the policy enforced 
 



Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? 
 
Validation Claim -- Security, Performance, Applicability: 
 
“We show that this simple idea is effective in protecting monitor code integrity, 
enjoys low space and execution-time overhead, supports separate compilation, 
and is largely compatible with an existing compiler toolchain.” 
 
Validation -- Case Study (Applicability, Security): 
 
“We next present a case study in which we implement Software-based Fault 
Isolation (SFI) on top of MIP. The SFI policy is to restrict control flow within a code 
region and restrict memory access within a data region.” 
 
Validation -- Benchmark Suite (Security, Performance, Applicability): 
 
“We evaluated the space and time efficiency, and the support for separate 
compilation of MIP and MIP-based SFI. The experiments were conducted on both 
x86-32 and x86-64 platforms. In SPEC-CPU2006, only C benchmarks were 
included, with nine integer performance testing programs and three floating-point 
performance testing programs.” 
 
Validation -- Public Data (Security, Performance, Applicability): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

librando, CCS 2013 - 

 
Where is the policy enforced? -- System: 
 



“We implement this approach as a system-wide service that can simultaneously 
harden multiple running JITs. It hooks into the memory protections of the target 
OS and randomizes newly generated code on the fly when marked as executable.” 
 
When is the policy imposed? -- Dynamically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Requirements of the person applying the sandbox 
 
Requirements of the person applying the sandbox -- Install a Tool or None: 
 
None in white box mode. Install a tool in black box mode: 
 
“The library diversifies dynamically-generated code under one of the following 
models (illustrated in Figure 5):  
 
Black box diversification with no assistance from the compiler (the compiler is a 
black box and the library has no knowledge of compiler internals). The library 
attaches to the compiler and intercepts all branches into and out of 
dynamically-generated code, without requiring any changes to compiler internals. 
 
White box diversification with some assistance from the compiler (the library has 
some knowledge of compiler internals). The code emitter notifies librando through 
an API when it starts running undiversified code. The library provides the 
diversified code addresses to the compiler, and the compiler executes diversified 
code directly. We change all compiler branches into emitted code to use the 
addresses returned by librando. This approach is intended as a middle ground 
between the previous model and a manual implementation of randomization for 
each compiler, and it requires that compiler source code is available.” 
 
Requirements of the application -- None or have source code: 
 
See Requirements of the person applying the sandbox 
 
Security Policy Type -- Fixed Policy: 
 



“Our solution implements two popular defensive techniques: NOP insertion and 
constant blinding.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See Security Policy Type 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Security Policy Type 
 
Validation Claim -- Applicability: 
 
“In order to provide “black box” JIT hardening, librando needs to be extremely 
conservative. For example, it completely preserves the contents of the calling 
stack, presenting each JIT with the illusion that it is executing its own generated 
code.” 
 
Validation Claim -- Performance: 
 
“Yet in spite of the heavy lifting that librando performs behind the scenes, the 
performance impact is surprisingly low. For Java (HotSpot), we measured 
slowdowns by a factor of 1.15×, and for compute-intensive JavaScript (V8) 
benchmarks, a slowdown of 3.5×. For many applications, this overhead is low 
enough to be practical for general use today.” 
 
Validation Claim -- Security: 
 
“Randomization techniques such as constant blinding raise the cost to the 
attacker, but they significantly add to the burden of implementing a JIT. There are 
a great many JITs in use today, but not even all of the most commonly used ones 
randomize their outputs. We present librando, the first comprehensive technique 
to harden JIT compilers in a completely generic manner by randomizing their 
output transparently ex post facto. We implement this approach” 
 
Validation -- Case Study (Applicability): 
 



“We demonstrate applicability of black box diversification on two pervasive 
industrial-strength JIT compilers: Oracle’s HotSpot (used in the Java Virtual 
Machine) and Google’s V8 (used in the Chrome web browser).” 
 
Validation -- Benchmark Suite (Performance): 
 
“First, we benchmarked V8 using the benchmark suite included with the 
compiler.” 
“Second, we benchmarked the HotSpot client compiler for Java, using the 
Computer Language Shootout Game benchmarks [8].” 
 
Validation -- Argumentation (Security): 
 
“To randomize code layout, we randomly insert NOP instructions (instructions 
without effects) into the diversified blocks, between the existing instructions. This 
technique has been used successfully in other work to change instruction or block 
alignment to improve performance [12], security [18, 31, 14, 11], or provide 
contention mitigation [28]. NOP insertion pushes each proper instruction forward 
by a random offset (the total length of all preceding inserted NOPs), making the 
location of each instruction more difficult to predict.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Moshchuk, CCS 2013 - 

 
Where is the policy enforced? -- System: 
 
“In this work, we let the OS take over the burden of content isolation from 
applications. By consolidating content isolation logic in the OS, we reduce the 
trusted computing base from trusting many applications’ isolation logic to trusting 
just that of the OS.” 
“We present a design that achieves these goals and describe our prototype system 
called ServiceOS, implemented as a reference monitor between the kernel and 
applications in Windows.” 
 



When is the policy imposed? -- Hybrid: 
 
“The UI passes a newly typed URL to the monitor, which fetches the content, picks 
a content processor, and admits this content processing stack into the right 
isolation container, following the semantics of Sections 4 and 5.” 
 
See Requirements of the application 
 
What is protected by the policy? (fine grained) -- User Data: 
 
“In this paper, we advocate a content-based principal model in which the OS treats 
content owners as its principals and isolates content of different owners from one 
another.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
NOTE: These applications have to be wrapped or in some circumstances have their 
code modified. The wrapping can be done automatically in many cases. 
 
“With Drawbridge, we are theoretically able to support all user-space-only 
Windows applications on our system, though in practice, Drawbridge is not yet 
mature enough to support certain application features (such as DLLs necessary to 
run macros in Office documents).” 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
“Isolation mechanisms. We adopted Drawbridge [36] as our main sandboxing 
mechanism. Drawbridge can run unmodified Windows applications in a highly 
isolated mode by refactoring Windows into a library OS and virtualizing all 
high-level OS components, such as windowing libraries, files, or registry.” 
 
Requirements of the application -- Use the sandbox as library: 
 
“We extended Wordpad with the same ServiceOS support as for Word and Excel. 
For example, we modified the document parser to recognize special objects 
representing remote content and to call Embed(), and we modified UI code to make 
room for embedded content frames when rendering the document.” 
 
Security Policy Type -- Fixed Policy, User-defined policy (optional trust lists): 
 
“A principal is the unit of isolation. Program execution instances with different 
principal labels are isolated in separate isolation containers.” 



“URL resource R at the server. The trust list contains a set of URLs with which R 
trusts to coexist in the same isolation container. This is one-way trust, meaning 
that R trusting to coexist with S does not mean that S trusts to coexist with R.” 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
“Word treats documents opened from the web as untrusted and does not run 
macros by default, but offers users a choice to trust the document via a single click 
on a yellow security button above it. The attack document tricks the victim to click 
on this button by pretending to be a greeting card that needs permission to be 
customized.” 
 
Policy Management -- No management: 
 
None specified 
 
Policy Construction -- Encoded in the logic of the sandbox, manually written: 
 
See Security Policy Type 
 
Validation Claim -- Applicability: 
 
“We demonstrate that ServiceOS is practical by successfully adapting several large 
applications, such as Microsoft Word, Outlook, and Internet Explorer, onto 
ServiceOS with a relatively small amount of effort.” 
 
Validation Claim -- Security/Performance: 
 
“Our evaluation shows that ServiceOS eliminates a large percentage of existing 
security vulnerabilities by design and has acceptable overhead.” 
 
Validation -- Case Studies (Applicability): 
 
See Validation Claims -- Applicability 
 
Validation -- Case Studies (Security): 
 
“We analyzed vulnerabilities of three applications published during 2008-2011 [32, 
2], and evaluated whether ServiceOS’s design mitigated them by checking whether 
each vulnerability was related to parsing or other content processing errors.” 
“To verify that our system can indeed stop exploits of content processing flaws we 
analyzed above, we examined two real-world Word 2010 exploits.” 
 



Validation -- Case Studies (Performance): 
 
“We present results for three applications: Excel 2010, Internet Explorer (IE), and 
Wordpad. Excel and Wordpad experiments used 10KB, 10MB and 100MB 
documents; IE was used to open a simple test page on an Intranet web server.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Wartell, CCS 2012 -  

 
Where is the policy enforced? -- Application: 
 
“This paper introduces binary stirring, a new technique that imbues x86 native 
code with the ability to self-randomize its instruction addresses each time it is 
launched.” 
 
When is the policy imposed? -- Statically: 
 
“The architecture of STIR is shown in Fig. 3. It includes three main components: (1) 
a conservative disassembler, (2) a lookup table generator, and (3) a load-time 
reassembler. At a high level, our disassembler takes a target binary and transforms 
it to a randomizable representation. An address map of the randomizable 
representation is encoded into the new binary by the lookup table generator. This 
is used by the load-time reassembler to efficiently randomize the new binary’s 
code section each time it is launched. 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“The output is a new binary whose basic block addresses are dynamically 
determined at load-time. Therefore, even if an attacker can find code gadgets in 
one instance of the binary, the instruction addresses in other instances are 
unpredictable.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 



 
“This makes it easily deployable; software vendors or end users need only 
apply STIR to their binaries to generate one self-randomizing copy, 
and can thereafter distribute the binary code normally.” 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See What is protected by the policy? (coarse grained) 
 
Requirements of the application -- None: 
 
“STIR is a fully automatic, binary-centric solution that does not require any source 
code or symbolic information for the target binary program.” 
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? 
 
Validation claims -- Performance: 
 
“Evaluation of STIR for both Windows and Linux platforms shows that stirring 
introduces about 1.6% overhead on average to application runtimes.” 
 
Validation claims -- Applicability: 
 
“It is therefore fully transparent, and there is no modification to the OS or 
compiler.” 
 
See What is protected by the policy? (coarse grained) 
 
Validation claims -- Security: 



 
See What is protected by the policy? (fine grained) 
 
Validation -- Benchmark Suite/Case Studies (Performance, Applicability): 
 
“On Windows, we tested STIR against the SPEC CPU 2000 benchmark suite as well 
as popular applications like Notepad++ and DosBox. For the Linux version, we 
evaluated our system against the 99 binaries in the coreutils toolchain (v7.0) for 
the Linux version.” 
 
Validation -- Benchmark Suite (Security): 
 
“There are several tools available for such evaluation, including Mona [20] on 
Windows and RoPGadget [48] on Linux. We used Mona to evaluate the stirred 
Windows SPEC2000 benchmark programs.” 
 
Validation -- Analytical Analysis (Security): 
 
“On a 64-bit architecture with 14-bit aligned pages and 1 bit reserved for the 
kernel (i.e., n = 50), the expected number of probes for a g=3-gadget attack is 
therefore over 7.92 × 1028 (≈ 249 248/2) times greater with STIR than with 
re-randomizing ASLR.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

FlowFox, CCS 2012 -  

 
Where is the policy enforced? -- Application Host: 
 
“We present FlowFox, the first fully functional web browser that implements a 
precise and general information flow control mechanism for web scripts based on 
the technique of secure multi-execution.” 
 
When is the policy imposed? -- Dynamically: 
 



“FlowFox can enforce general information flow based confidentiality policies on 
the interactions between web scripts and the browser API. Information entering or 
leaving scripts through the API is labeled with a confidentiality label chosen from a 
partially ordered set of labels, and FlowFox enforces that information can only flow 
upward in a script.” 
 
What is protected by the policy? (fine grained) -- Communication, 
Code/Instructions, User Data: 
 
“Here are some concrete examples of threats that can be mitigated by FlowFox. We 
will return to these examples further in the paper. 
 
Session Hijacking through Session Cookie Stealing. 
… 
Malicious Advertisements. 
… 
History Sniffing and Behavior Tracking.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Write a Policy, Install a 
Tool: 
 
“Policies are specified as a sequence of policy rules, and associate a level and 
default value with any given DOM API invocation as follows.” 
 
See Where is the policy enforced? 
 
Requirements of the application -- None: 
 
See Policy Management -- Central Repository 
 
Security Policy Type -- User-defined Policy​: 
 
See Requirements of the person applying the sandbox 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
See What is protected by the policy? (fine grained) 
 



Policy Management -- Central Repository (the defined policy applies to all 
webapps run in FlowFox): 
 
“For an invocation of DOM API method D, if there is a policy rule for D, that rule is 
used to determine level and default value. If there is no rule in the policy for D, that 
call is considered to have level L, with default value undefined. The default value 
for invocations classified at L is irrelevant, as the SME rules will never require a 
default value for such invocations.” 
 
Policy Construction -- Manually written policy: 
 
See Requirements of the person applying the sandbox 
 
Validation claims -- Security: 
 
“We demonstrate how FlowFox subsumes many ad-hoc script containment 
countermeasures developed over the last years.” 
 
Validation claims -- Applicability: 
 
“We also show that FlowFox is compatible with the current web, by investigating 
its behavior on the Alexa top-500 web sites, many of which make intricate use of 
JavaScript.” 
 
Validation claims -- Performance: 
 
“The performance and memory cost of FlowFox is substantial (a performance cost 
of around 20% on macro benchmarks for a simple two level policy), but not 
prohibitive.” 
 
Validation -- Benchmark Suite (Performance/Applicability): 
 
“We used the Google Chrome v8 Benchmark suite version 6 5 – a collection of pure 
JavaScript benchmarks used to tune the Google Chrome project – to benchmark the 
JavaScript interpreter of our prototype.” 
“In a first experiment, we measure what impact FlowFox has for users on the 
visual appearance of websites. We construct an automated crawler that instructs 
two Firefox browser and one FlowFox browser to visit the Alexa top 500 websites.” 
 
Validation -- Case Studies (Performance/Applicability): 
 



“For each category, we randomly picked a prototypical web site from this top-15 
list for which we worked out and recorded a specific, complex use case scenario of 
an authenticated user interacting with that web site.” 
“We used the web application testing framework Selenium to record and 
automatically replay six scenarios from our second compatibility experiment for 
both the unmodifiedMozilla Firefox 8.0.1 browser and FlowFox.” 
 
Validation -- Argumentation (Security): 
 
“For (2), – given the size and complexity of the code base of our prototype – we 
can’t formally guarantee the absence of any implementation vulnerabilities. 
However, we can provide some assurance: the ECMAScript specification assures us 
that I/O can only be done in JavaScript by means of the browser API. Core 
JavaScript – as defined by the ECMAScript specification – doesn’t provide any input 
or output channel to the programmer [20, §I]. Since all I/O operations have to pass 
the translation layer to be used by the DOM implementation (see Section 4.2), we 
have high assurance that all operations are correctly intercepted and handled 
according to the SME I/O rules. 
Finally, we have extensively manually verified whether FlowFox behaves as 
expected on malicious scripts attempting to leak information (we discuss some 
example policies in Section 5.2.2). We believe all these observations together give a 
reasonable amount of assurance of the security of FlowFox.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Binaries: 
 
“FlowFox is available for download, and can successfully browse to complex web 
sites including Amazon, Google, Facebook, Yahoo! and so forth.” 
 
 

ScriptGard, CCS 2011 -  

 
Where is the policy enforced? -- Application: 
 
“Instead, we use binary rewriting of server code to embed a browser model that 
determines the appropriate browser parsing context when HTML is output by the 
web application.” 
 
When is the policy imposed? -- Dynamically: 



 
“Then at runtime, ScriptGard detects which path is actually executed by the 
program. If the path has been seen in the training phase, then ScriptGard can look 
up and apply the correct sanitizer sequence from the cache, obviating the need for 
the full taint flow instrumentation.” 
 
What is protected by the policy? (fine grained) -- Communication, 
Code/Instructions, User Data: 
 
“Web applications are explosively popular, but they suffer from cross-site 
scripting (XSS) [4, 32] and cross-channel scripting (XCS) [5]. At the core of these 
attacks is injection of JavaScript code into a context not originally intended. These 
attacks lead to stolen credentials and actions performed on the user’s behalf by an 
adversary.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
“To address these errors, we propose ScriptGard, a system for ASP.NET 
applications which can detect and repair the incorrect placement of sanitizers.” 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
“Using the encapsulation features offered by the language, we have implemented 
the taint status for each string object rather than keeping a bit for each character. 
The taint status of each string object maintains metadata that identifies if the 
string is untrusted and if so, the portion of the string that is untrusted.” 
“ScriptGard employs a web browser to determine the contexts in which untrusted 
data is placed, in order to check if the sanitization sequence is consistent with the 
required sequence. 
In our implementation, we use an HTML 5 compliant parser used in the C3 browser, 
that has been developed from scratch using code contracts to be as close to the 
current specification as possible.” 
 
Requirements of the application -- None: 
 
“Our system requires no changes to web browsers or to server side source code.” 
 
Security Policy Type -- Fixed Policy: 
 
“We develop ScriptGard, a system for detecting these sanitization errors, and 
repairing them by automatically choosing the appropriate sanitizer.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 



 
See When is the policy imposted? 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposted? 
 
Validation claims -- Performance: 
 
“With our optimizations, when used for mitigation, ScriptGard incurs virtually no 
statistically sig- nificant overhead.” 
 
Validation claims -- Security: 
 
“While mitigations for cross site scripting attacks have seen intense prior 
research, we consider both server and browser context, none of them achieve the 
same degree of precision, and many other mitigation techniques require major 
changes to server side code or to browsers.” 
 
Validation -- Case Studies (Security): 
 
“We performed our security testing on a set of 53 large web pages derived from 7 
sub-applications built on top of our test application. Each page contains 350–900 
DOM nodes. Out of 25, 209 total paths exercised, we found context-mismatched 
sanitization on 1,207 paths ScriptGard analyzed, 4.7% of the total paths analyzed.” 
 
Validation -- Case Studies (Performance): 
 
“We took nine URLs, each of which triggered complicated processing on the server 
to create the resulting web page. For each URL we first warmed the server cache by 
requesting the URL 13 times.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Zeng, CCS 2011 -  



 
Where is the policy enforced? -- Application: 
 
“Static analysis can be used to verify the result of binary rewriting and 
optimizations. The verification checks whether the rewritten and optimized 
code obeys the desired security policy, removing the binary rewriter and the 
optimizer from the TCB.” 
 
 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
“In many software attacks, inducing an illegal control-flow transfer in the target 
system is one common step. Control-Flow Integrity (CFI [1]) protects a software 
system by enforcing a pre-determined control-flow graph.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
“Our implementation is built in LLVM 2.8 [20], a widely used compiler 
infrastructure. We inserted a pass for CFI rewriting, a pass for data sandboxing 
rewriting and opti-mization, and a pass for CFI and data-sandboxing verification.” 
 
Requirements of the application -- Use special compiler: 
 
“Our ideas have been implemented in LLVM and fully evaluated using benchmark 
programs.” 
 
Security Policy Type -- Fixed Policy: 
 
“The expected control-flow graph serves as a specification of control transfers 
allowed in the program. A software-based CFI implementation inserts runtime 
checks to enforce the specification. The runtime checks will catch and prevent 
illegal control transfers attempted by attacks.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 



 
See Security Policy Type 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Security Policy Type 
 
Validation claims -- Security, Performance: 
 
“Our results show that the combination of CFI and static analysis has the potential 
of bringing down the cost of general inlined reference monitors, while maintaining 
strong security.” 
 
Validation -- Benchmark Suite (Performance): 
 
“On top of CFI, our system adds only 2.7% runtime overhead on SPECint2000 for 
sandboxing memory writes and adds modest 19% for sandboxing both reads and 
writes.” 
 
Validation -- Argumentation (Security): 
 
“Our verifier is robust in the sense it can verify many more optimizations, 
including those we have not implemented.” 
“During the development, the verifier helped us catch several implementation 
errors in early versions of the optimizer; these errors would be hard to find by 
hand.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Reis, CCS 2011 -  

 



Where is the policy enforced? -- Application Host: 
 
“However, most users access the web with only one browser. We explain the 
security benefits that using multiple browsers provides in terms of two concepts: 
entry-point restriction and state isolation. We combine these concepts into a 
general app isolation mechanism that can provide the same security benefits in a 
single browser.” 
 
When is the policy imposed? -- Dynamically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Communication, 
Code/Instructions, User Data: 
 
“Table 1: Cross-origin attacks mitigated by entry-point restriction, Same-origin 
attacks, such as stored XSS, are not mitigated.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“To remain compatible with web sites that desire this sharing, we employ an 
opt-in policy that lets web developers decide whether to isolate their site or web 
application from the rest of the browser.” 
 
Requirements of the person applying the sandbox -- Write a Policy, Install a 
Tool: 
 
“We implement app isolation in the Chromium browser and verify its security 
properties using finite-state model checking.” 
 
What is protected by the policy? (coarse grained) 
 
Requirements of the application -- None: 
 
NOTE: Mechanism is only appropriate for applications that don’t do deep linking, 
but when it can be turned on manually by writing a policy there are no special 
requirements for the application. 
 
Security Policy Type -- Fixed Policy, User-Defined (enable for site): 
 
“We have shown that a single browser can achieve the security benefits of using 
multiple browsers, by implementing entry-point restriction and state isolation to 
isolate sensitive apps.” 



 
See What is protected by the policy? 
 
Policy enforcements place in kill chain -- Pre-exploit/Post-exploit (exploit 
dependent): 
 
See What is protected by the policy? (fine grained)  
 
Policy Management -- No Management: 
 
None specified 
 
Policy Construction -- Encoded in the logic of the sandbox, Manually Written 
(enable for site): 
 
See Security Policy Type and What is protected by the policy? 
 
Validation claims -- Security: 
 
“While not appropriate for all types of web sites, many sites with high-value user 
data can opt in to app isolation to gain defenses against a wide variety of 
browser-based attacks.” 
 
Validation claims -- Performance: 
 
“While extra disk space is required for isolated caches, the overhead is generally 
far less than using multiple browsers.” 
 
Validation -- Proof (Security): 
 
“To evaluate the security benefits of app isolation, we model our proposals in the 
Alloy language, leveraging previous work on modeling web security concepts in 
Alloy [9].” 
 
Validation -- Benchmark Suite (Performance): 
 
“We measured the load times of the Alexa Top 100 Web sites with and without 
entry-point restriction enabled.” 
 
Validation -- Case Studies (Performance): 
 



“To see the impact of state isolation, we measured the disk and memory space 
required for visiting 12 popular sites in their own tabs, similar to the sites used in 
Figure 4.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Wurster, CCS 2010 -  

 
Where is the policy enforced? -- System: 
 
“Our prototype design consists of two main elements: a kernel extension and a 
user-space daemon. The user-space daemon is responsible for the bulk of the 
work, namely, ensuring that one application cannot modify files related to a 
different application. The kernel is responsible for denying (or forwarding) 
requests to modify protected file-system objects, by which we mean files 
(including binaries), directories, symbolic links, and other objects that are part of 
the file-system.” 
 
When is the policy imposed? -- Dynamically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Files: 
 
“We address the problem of restricting root’s ability to change arbitrary files on 
disk, in order to prevent abuse on most current desktop operating systems.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
“While we focus primarily on installers in this paper (since they perform the vast 
majority of system configuration changes), the protection mechanism remains in 
force past install time, restricting system modifications while applications 
(including Trojans) are running.” 
 
Requirements of the person applying the sandbox -- Install a tool: 



 
See Where is the policy enforced? 
 
Requirements of the application -- None: 
 
“Backwards compatibility is therefore critical for incremental deployability. Our 
prototype did not change the Debian package structure at all, maintaining 
backwards compatibility with versions of dpkg not designed to work with configd.” 
 
Security Policy Type -- Fixed Policy: 
 
“Our testing confirmed that the above rule set allows package installs and 
upgrades to be automatically allowed, while providing encapsulation.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See Where is the policy enforced? 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Security Policy Type 
 
Validation claims -- Security: 
 
“Our architecture exposes a control point available for use to enforce policies that 
prevent one application from modifying another’s file-system objects.” 
 
Validation claims -- Applicability: 
 
“While our discussion and prototype focus on Linux, we believe the approach can 
be adapted to Windows, Mac OS X, BSD, and other operating systems. Indeed, 
configd implemented on Windows could also protect the Windows registry (since it 
is stored on disk).” 
 
Validation claims -- Performance: 
 
“For day to day operations which do not involve heavy file-system activity, we 
expect the overhead of configd to be well under 4.8%.” 
 



Validation -- Case Studies (Performance): 
 
“To test the performance of our kernel modifications on file-system intensive 
day-to-day operations, we performed a complete compile of the Linux 2.6.31.5 
kernel.” 
 
Validation -- Case Studies (Security): 
 
“To test how well the mechanism presented in this paper protect a system when 
exposed to malware, we became root on a system with configd running and kernel 
protections enabled.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Robusta, CCS 2010 -  

 
Where is the policy enforced? -- Application Host: 
 
Starting from software-based fault isolation (SFI), Robusta isolates native code 
into a sandbox where dynamic linking/loading of libraries is supported and unsafe 
system modification and confidentiality violations are prevented. It also mediates 
native system calls according to a security policy by connecting to Java’s security 
manager. Our prototype implementation of Robusta is based on Native Client and 
OpenJDK. 
 
When is the policy imposed? -- Hybrid: 
 
“The runtime overhead of Robusta can roughly be put into two classes. First, there 
is the SFI cost. For NaCl, this is the cost of masking indirect jump instructions and 
the cost of making the program properly aligned at 32-byte blocks. The second 
class of runtime overhead happens during context switches. In Robusta, the 
execution context may switch between the JVM and the sandbox in a number of 
situations: when the JVM invokes a native method, the context is switched into the 
sandbox; when native code finishes execution, the context is switched outside of 
the sandbox; when native code invokes a JNI call or a system call, the context is 



switched outside of the sandbox to invoke trusted wrappers and is then switched 
back into the sandbox.” 
“The program was then fed to the NaCl toolchain to produce NaCl-compliant 
binaries and was run in Robusta.” 
 
What is protected by the policy? (fine grained) -- Files, Memory, 
Communication, Code/Instructions: 
 
See Where is the policy enforced? (SFI gets Memory/Code instructions and the use 
of the Java sandbox gets the rest). 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
See Where is the policy enforced? (Java applications that use native code) 
 
Requirements of the person applying the sandbox -- Run a Tool, Write a Policy: 
 
See When is the policy imposed? (Need to use NaCl tool chain for builds, write a 
policy for the Java sandbox) 
 
Requirements of the application -- Use special compiler: 
 
See When is the policy imposed? 
 
Security Policy Type -- Fixed Policy (SFI), User-defined Policy (Java sandbox): 
 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-exploit (SFI)/Post (Java sandbox): 
 
See Where is the policy enforced? 
 
Policy Management -- Classes of Applications (Java policies can be applied to 
codebases that match an abstract description -- e.g. digsig): 
 
See Where is the policy enforced? 
 
Policy Construction -- Encoded in the logic of the sandbox (SFI), Manually 
written policies (Java sandbox): 
 
See Where is the policy enforced? 
 
Validation claims -- Performance: 



 
“Our prototype implementation of Robusta is based on Native Client and OpenJDK. 
Experiments in this prototype demonstrate Robusta is effective and efficient, with 
modest runtime overhead on a set of JNI benchmark programs.” 
 
Validation claims -- Security: 
 
“Robusta can be used to sandbox native libraries used in Java’s system classes to 
prevent attackers from exploiting bugs in the libraries. It can also enable 
trustworthy execution of mobile Java programs with native libraries.” 
 
Validation claims -- Applicability: 
 
“The design of Robusta should also be applicable when other type-safe languages 
(e.g., C#, Python) want to ensure safe interoperation with native libraries.” 
 
Validation -- Argumentation (Security): 
 
“We next discuss what kinds of security policies Robusta enforces despite attacks 
described in the threat model. 
Our discussion will be based on a lightweight formal notation.” 
 
Validation -- Case Studies (Security): 
 
“We created a set of microbenchmarks for testing the functionality and testing the 
security of Robusta.” 
 
Validation -- Case Studies (Performance): 
 
“Therefore, an interesting question is to explore the relationship between the 
runtime overhead and how frequent context switches happen. An answer helps to 
understand what kinds of applications should be put under the control of Robusta. 
We compiled a set of medium-sized JNI programs, explained as follows. 
• Java classes in java.util.zip invoke the popular Zlib C library for performing 
general-purpose data compression/decompression. We extracted from OpenJDK 
the Java classes in java.util.zip, the Zlib 1.2.3 library, and the JNI glue code that 
links Zlib with Java. 
• libec is a C library for elliptic curve cryptography. OpenJDK provides JNI bindings 
for interfacing with the library.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 



 
Availability -- Not Available: 
 
No mention in paper 
 
 

HookSafe, CCS 2009 -  

 
Where is the policy enforced? -- System (Hypervisor): 
 
“To address the above challenges, in this paper, we present HookSafe, a 
hypervisor-based lightweight system that can protect thousands of kernel hooks 
in a guest OS from being hijacked.” 
 
When is the policy imposed? -- Dynamically: 
 
“As such, we can relocate those kernel hooks to a dedicated page-aligned memory 
space and then regulate accesses to them with hardware-based page-level 
protection.” 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“In this paper, we consider kernel data as control data if it is loaded to processor 
program counter at some point in kernel execution. There are two main types of 
kernel control data: return addresses and function pointers.” 
 
What is protected by the policy? (coarse grained) -- System Level Component: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Install a tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- No additional requirements: 
 
None stated 
 
Security Policy Type -- Fixed Policy: 
 
“First, an offline hook profiler component profiles the guest kernel execution and 
outputs a hook access profile for each protected hook. A hook access profile 



includes those kernel instructions that read from or write to a hook and the set of 
values assigned to it. In the next step, a hook’s access profile will be used to enable 
transparent hook indirection. For simplicity, we refer to those instructions that 
access a hook as Hook Access Points (HAPs). 
Second, taking hook access profiles as input, an online hook protector creates a 
shadow copy of all protected hooks and instruments HAP instructions such that 
their accesses will be transparently redirected to the shadow copy. The shadow 
hooks are aggregated together in a central location and protected from any 
unauthorized modifications.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See Security Policy Type 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Security Policy Type 
 
Validation claims -- Security: 
 
“Our experiments with nine real-world rootkits show that HookSafe can 
effectively defeat their attempts to hijack kernel hooks.” 
 
Validation claims -- Performance: 
 
“We also show that HookSafe achieves such a large-scale protection with a small 
overhead (e.g., around 6% slowdown in performance benchmarks).” 
 
Validation -- Case Studies (Security): 
 
See Validation claims -- Security 
 
Validation -- Benchmark Suite/Case Studies (Performance): 
 
“We evaluated HookSafe on benchmark programs (e.g., UnixBench [29] and 
ApacheBench[6]) and real-world applications. Our experimental results show that 
the performance overhead introduced by HookSafe is around 6%.” 
 
Validation -- Public Data (Security, Performance): 



 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Chang, CCS 2008 -  

 
Where is the policy enforced? -- Application: 
 
“Our system uses a compiler to transform untrusted programs into 
policy-enforcing programs, and our system can be easily reconfigured to support 
new analyses and policies without modifying the compiler or runtime system.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Files, Memory: 
 
“Our system comes with predefined policies for taint and file disclosure, and our 
system can be easily extended to handle other problems and security policies 
without modifying our system implementation.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Select a pre-made security 
policy: 
 
“The input is an untrusted program. The output is an enhanced program that 
enforces some specified security policy, which is selected by the end-user at 
compile time.” 
 
Requirements of the application -- Use special compiler: 
 
“The policy itself is defined in an annotation file that describes the policy and the 
effects of standard library calls on the policy. Thus, the policy is entirely separate 
from the data flow tracking mechanism, so in addition to the existing security 



policies that we have already defined, new security policies can be specified 
without modifying either the compiler or the runtime system.” 
 
See Where is the policy enforced? 
 
Security Policy Type -- User-Define Policy: 
 
See Requirements of the application 
 
Policy enforcements place in kill chain -- Pre/Post (policy dependent): 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- Central Policy Repository (policies easily shared): 
 
See Requirements of the application 
 
Policy Construction -- Manually written policy: 
 
See Requirements of the application 
 
Validation claims -- Performance, Applicability: 
 
“Current taint tracking systems suffer from high overhead and a lack of generality. 
In this paper, we solve both of these issues with an extensible system that is an 
order of magnitude more efficient than previous software taint tracking systems 
and is fully general to dynamic data flow tracking problems.” 
 
Validation claims -- Security: 
 
“We now examine the security-related assumptions and advantages of our 
system.” 
 
Validation -- Argumentation (Security): 
 
“Although there are security implications [45] to trusting the compiler, the 
additional trust required by our approach is mitigated by two factors. First, in 
typical modern environments, the compiler (usually gcc or some other widely used 
compiler) is already trusted to compile the server programs that are actually run. 
Second, our source-to-source translator relies on the user’s already trusted 
compiler for generating binary code.” 
“The design of our system makes it difficult in practice for an attacker to subvert 
the enforcement mechanism itself. First, like other compiler-based systems [48, 



31], the original program is written before the enforcement code is added, so the 
original program cannot directly access enforcement data. Moreover, unlike 
taint...” 
 
Validation -- Proof (security): 
 
“The soundness of our analysis prevents any attacks that violate the policy.” 
 
Validation -- Benchmark Suite (Performance), Case Studies (Security, 
Performance): 
 
“We verify attack prevention, measure static code expansion, and measure 
runtime overhead for five open-source server programs and four compute-bound 
SPECint 2000 benchmarks.” 
“We first evaluate our system’s ability to detect attacks. Four of our benchmark 
programs contain known vulnerabilities that are exploitable.” 
 
Validation -- Argumentation (Applicability): 
 
“Although our current implementation is a source-to-source translator for the C 
language, our techniques are applicable to other modern languages and even 
binary code. For example, our static data flow analysis could be implemented in a 
static binary rewriting system, producing a system that protects binary code from 
attacks while using static analysis to reduce the runtime cost.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

SOMA, CCS 2008 -  

 
Where is the policy enforced? -- Application Host: 
 
“To evaluate our proposal, we have developed a Firefox SOMA add-on.” 
 
When is the policy imposed? -- Statically: 
 



“To participate in SOMA, browsers have to make minimal code changes and web 
sites must create small, simple policy files.” 
 
What is protected by the policy? (fine grained) -- Code/Instructions, User Data: 
 
“By requiring site operators to specify approved external domains for sending or 
receiving information, and by requiring those external domains to also approve 
interactions, we prevent page content from being retrieved from malicious servers 
and sensitive information from being communicated to an attacker.” 
 
What is protected by the policy? (coarse grained) -- Target Application: 
 
See What is protected by the policy? (fine grained) 
 
Requirements of the person applying the sandbox -- Write a Policy, Install a 
Tool: 
 
See Where is the policy enforced? and When is the policy imposed? 
 
Requirements of the application -- None: 
 
NOTE: Site creator has to make a policy and user needs an addon, but no changes 
need to be made to the app. 
 
Security Policy Type -- User-Defined Policy: 
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Policies are specific to particular webapps. 
 
Policy Construction -- Manually written policy: 
 
See When is the policy imposed? 
 
Validation claims -- Security: 
 
See What is protected by the policy? (fine grained)  



 
Validation claims -- Applicability: 
 
“SOMA is compatible with current web applications and is incrementally 
deployable, providing immediate benefits for clients and servers that implement 
it.” 
 
Validation claims -- Performance: 
 
“SOMA has an overhead of one additional HTTP request per domain accessed and 
can be implemented with minimal effort by application and web browser 
developers.” 
 
Validation -- Benchmark Suite (Performance): 
 
“First, we determined the average HTTP request round-trip time for each of 40 
representative web sites6 on a per-domain basis using PageStats [9]. We used this 
per-domain average as a proxy for the time to retrieve a soma-approval from a 
given domain.” 
 
Validation -- Benchmark Suite (Applicability): 
 
“To test compatibility with existing web pages, the global top 45 sites as ranked by 
Alexa [2] were visited in the browser with and without the SOMA add-on.” 
 
Validation -- Case Studies (Security): 
 
“In order to verify that SOMA actively blocks information leakage, cross-site 
request forgery, cross-site scripting, and content stealing, we created examples of 
these attacks.” 
 
Validation -- Public Data (Performance, Applicability): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Chen, CCS 2007 -  

 



Where is the policy enforced? -- Application Host: 
 
“The basic idea is to introduce domain-specific “accents” to scripts and HTML 
object names so that two frames cannot communicate/interfere if they have 
different accents. The mechanism has been prototyped on Internet Explorer.” 
 
When is the policy imposed? -- Dynamically: 
 
“We keep a lookup table in the HTML engine (mshtml.dll) to map each domain 
name to an accent key. The keys are generated in a Just-In-Time fashion: 
immediately after the document object is created for each frame, we look up the 
table to find the key associated with the domain of the frame (if not found, create a 
new key for the domain), and assign the key to the window object (i.e., the frame 
containing the document).” 
“We observed that internally a common function called by execScript, setTimeout 
and setInterval is InvokeMemberFunc, and a common function called for all 
Javascript URL navigations is InvokeNavigation. Therefore, we insert the accenting 
operation before InvokeMemberFunc and InvokeNavigation.” 
 
What is protected by the policy? (fine grained) -- Code/Instructions, User Data: 
 
“IE implements a security mechanism to guarantee that scripts from one frame 
can access documents in another frame if and only if the two frames are from the 
same domain.” 
 
NOTE: The sandbox is hardening this mechanism. 
 
What is protected by the policy? (coarse grained) -- Class of Applications 
(WebApps): 
 
See Validation Claims -- Applicability. 
 
Requirements of the person applying the sandbox -- Install a Tool (custom 
browser): 
 
See Where is the policy enforced? 
 
Requirements of the application --​ ​ None: 
 
See When is the policy imposed? 
 
Security Policy Type -- Fixed Policy: 
 



See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
“Without needing an explicit check for the domain IDs, the accenting mechanism 
naturally implies that two frames cannot interfere if they have different accent 
keys.” 
 
Policy Management -- No Management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? 
 
Validation claims -- Security: 
 
“The evaluation showed that all known crossframe attacks were defeated.”  
 
Validation claims -- Applicability: 
 
“Moreover, because the accenting mechanism only slightly changes the interface 
between the script engine and the HTML engine, it is fully transparent to web 
applications.” 
 
Validation claims -- Performance: 
 
“Our stress test showed a 3.16% worst-case performance overhead, but the 
measurement of the end-to-end browsing time did not show any noticeable 
slowdown.” 
 
Validation -- Argumentation (Security): 
 
“We now revisit the attack scenarios discussed in Section 4 and demonstrate how 
the script accenting mechanism can defeat all these attacks. Also, these examples 
support our argument that the correct implementation of the 
accenting/de-accenting operations is significantly more robust than that of the 
current frame-based isolation mechanism.” 
“Although the above probing attack seems plausible at the first glance, it is not 
effective for two reasons. First, we observe that scripts in IE are always represented 
using wide-characters, which means the string “//” is already four-byte long. It 
requires 2564 attempts to guess.” 



 
Validation -- Case Studies (Applicability): 
 
“To verify the transparency of our implementation, our modified IE executable has 
been tested on many web applications. Table 1 shows a number of representative 
examples. We intentionally selected the web applications with rich user 
interaction capabilities in order to test the transparency of the mechanism. We 
observed that all these applications run properly in our IE executable.” 
 
Validation -- Case Studies (Performance): 
 
“To measure the upper bound of the performance overhead, we queried 
window.document.body.innerText for 400,000 times.” 
“To estimate how the performance overhead affects the end-to-end browsing 
time, we measured the page initialization time of popular websites.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

CANDID, CCS 2007 -  

 
Where is the policy enforced? -- Application: 
 
“Candid consists of two components: an offline Java program transformer that is 
used to instrument the application, and an (online) SQL parse tree checker.” 
 
When is the policy imposed? -- Hybrid: 
 
“In this paper we offer a solution, dynamic candidate evaluation, a technique that 
automatically (and dynamically) mines programmer-intended query structures at 
each SQL query location, thus providing a robust solution to the retrofitting 
problem.” 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
“A characteristic diagnostic feature of SQL injection attacks is that they change the 
intended structure of queries issued.” 
 



What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- Use sandbox as framework/library: 
 
“The automated transformation was implemented for Java byte-code using an 
extension to the SOOT optimization framework [22]. SOOT provides a 
three-address intermediate byte-code representation, Jimple, suitable for code 
analysis and optimization. Class files of the uninstrumented applications were 
processed using the SOOT framework with CANDID to generate instrumented class 
files for deployment.” 
“Immediately preceding this command location, the Candid instrumentation calls 
the parse tree comparison checker.” 
 
Security Policy Type -- Fixed Policy: 
 
“In this section, we formalize SQL injection attacks and, through a series of gradual 
refinements and approximations, we derive the detection scheme used by Candid. 
In order to simplify and concentrate on the main ideas in this analytic” 
 
Policy enforcements place in kill chain -- Pre-Exploit: 
 
“As mentioned earlier, we compare the parse trees of the real and candidate 
queries for attack detection. It is worthwhile to mention here that even the 
slightest mismatch of the parse trees is detected as an attack.” 
 
Policy Management -- No Management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Requirements of the application and Security Policy Type 
 
Validation claims -- Security: 
 
“Candid’s natural and simple approach turns out to be very powerful for 
detection of SQL injection attacks.” 



 
Validation claims -- Applicability: 
 
“A fully automated, program transformation mechanism for Java programs that 
employs this technique, with a discussion of practical issues and resilience to 
various artifacts of Web applications.” 
“Our tool, Candid, is implemented to defend applications written in Java, and 
works for any web application implemented through Java Server Pages or as Java 
servlets.” 
 
Validation claims -- Security, Performance: 
 
“A comprehensive evaluation of the effectiveness of attack detection and 
performance overheads.” 
 
Validation -- Argumentation (Applicability): 
 
“The transformation of programs to dynamically detect intentions of the 
programmer using candidate inputs as presented above is remarkably resilient in a 
variety of scenarios. We outline some interesting input manipulations Web 
applications perform, and illustrate how Candid handles them.” 
 
Validation -- Benchmark Suite (Performance, Security): 
 
“We evaluated our technique using a suite of applications that was obtained from 
an independent research group [11].” 
“The attack test suite was also obtained from the authors of [11]. It consists, for 
each application, both attack and non-attack inputs that test several kinds of SQL 
injection vulnerabilities.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Petroni, CCS 2007 -  

 
Where is the policy enforced? -- System (Hypervisor): 



 
“We have implemented SBCFI as part of the Xen and VMware Workstation virtual 
machine monitors.” 
 
When is the policy imposed? -- Hybrid: 
 
“As described in Section 2.2, to verify that the kernel’s control-flow has not been 
modified, the kernel monitor performs two tasks: (1) it validates that the kernel’s 
text has not been modified and (2) it verifies that all reachable function pointers 
are in accord with the kernel’s CFG.” 
“The generated monitor takes as input trusted copies of the kernel and LKM 
binaries for runtime comparison (this is shown by the dashed line in Figure 2).” 
“With this, a traversal algorithm can start at the roots and transitively follow the 
pointers embedded in objects it reaches until all function pointers have been 
discovered. 
We gather the necessary inputs via static analysis of the kernel’s source code and 
compiled binary, and the monitor generator constructs the traversal code in three 
steps:” 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
See When is the policy imposed? 
 
What is protected by the policy? (coarse grained) -- System Level Component: 
 
“This paper presents a new approach to dynamically monitoring operating system 
kernel integrity, based on a property called state-based control-flow integrity 
(SBCFI).” 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- Have source code: 
 
See When is the policy imposed? 
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Post-exploit: 
 



“When running at large intervals (currently three seconds or greater), the second 
“validation” run is commenced within three seconds, rather than waiting for the 
entire monitor period to expire. This narrows the window between detection and 
notification, while still allowing the performance tuning to remain in place.” 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? 
 
Validation claims -- Security, Performance: 
 
“SBCFI enforcement as part of the Xen and VMware virtual machine monitors. Our 
implementation detected all the control-flow modifying rootkits we could install, 
while imposing unnoticeable overhead for both a typical web server workload and 
CPU-intensive workloads when operating at 10 second intervals.” 
 
Validation -- Case Studies (Security): 
 
“To demonstrate the effectiveness of SBCFI at detecting kernel attacks, we 
collected as many publicly available rootkits as we could and tested them on our 
target platform. Of the 25 that we acquired, we were able to install 18 in our virtual 
test infrastructure.” 
 
Validation -- Benchmark Suite (Performance): 
 
“To evaluate the performance impact of SBCFI monitoring, we measured the 
performance of the target VMM using subsets of the SPECweb2005 and 
SPECCPU2006 benchmark suites [33].” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 
 



Abadi, CCS 2005 -  

 
Where is the policy enforced? -- Application: 
 
“Whereas CFI enforcement can potentially be done in several ways, we rely on a 
combination of lightweight static verification and machine-code rewriting that 
instruments software with runtime checks.” 
 
When is the policy imposed? -- Statically: 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
“The CFI security policy dictates that software execution must follow a path of a 
Control-Flow Graph (CFG) determined ahead of time. The CFG in question can be 
defined by analysis—source-code analysis, binary analysis, or execution profiling. 
For our experiments, we focus on CFGs that are derived by a static binary analysis.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? and Requirements of the person applying the 
sandbox. 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 
“We have implemented inlined CFI enforcement for Windows on the x86 
architecture. Our implementation relies on Vulcan [52], a mature, state-of-the art 
instrumentation system for x86 binaries that requires neither recompilation nor 
source-code access.” 
 
Requirements of the application -- No additional requirements: 
 
See Requirements of the person applying the sandbox. 
 
Security Policy Type -- Fixed Policy: 
 
See What is protected by the policy? (fine grained) 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 



Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Where is the policy enforced? 
 
Validation claims -- Security: 
 
“Current software attacks often build on exploits that subvert machine-code 
execution. The enforcement of a basic safety property. Control-Flow Integrity 
(CFI), can prevent such attacks from arbitrarily controlling program behavior.” 
 
Validation claims -- Applicability, Performance: 
 
“Moreover, CFI enforcement is practical: it is compatible with existing software 
and can be done efficiently using software rewriting in commodity systems.” 
 
Validation -- Argumentation (Applicability): 
 
“This system addresses the challenges of machine-code rewriting in a practical 
fashion—as evidenced by its regular application to software produced by 
Microsoft.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We measured the overhead of our inlined CFI enforcement on some of the 
common SPEC computation benchmarks [54].” 
 
Validation -- Case Studies (Security): 
 
“Even so, in order to assess the effectiveness of CFI, we examined by hand some 
well-known security exploits (such as those of the Blaster and Slammer worms) as 
well as several recently reported vulnerabilities (such as the Windows ASN.1 and 
GDI+JPEG flaws).” 
 
Validation -- Benchmark Suite (Security): 
 
“For a final set of experiments, we ported to Windows a suite of 18 tests for 
dynamic buffer-overflow prevention developed by Wilander and Kamkar [61].” 
 
Validation -- Proof (Security): 



 
“With these definitions, we obtain formal results about our instrumentation 
methods. Those results express the integrity of control flow despite memory 
modifications by an attacker.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. Security experiments not reasonably comparable. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 
 

Ringenburg, CCS 2005 -  

 
Where is the policy enforced? -- Application: 
 
“We use static dataflow analysis to determine automatically which addresses 
should be in the white-lit at any given time. Our source-to-source transformation 
then uses the knowledge gleaned from static analysis to insert the code that 
maintains and checks the white-list. Thus the programmer merely needs to update 
the Makefile and recompile.” 
 
When is the policy imposed? -- Static: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“We propose a simple, flexible, and direct way to control the memory modified by a 
function (such as printf): An explicit, dynamic white-list of address ranges can 
control writes that may be unsafe, such as those exploited by format-string 
attacks.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Run a Tool: 
 



See Where is the policy enforced? 
 
Requirements of the application -- Have source code: 
 
See Where is the policy enforced? 
 
Security Policy Type -- Fixed Policy: 
 
“The dynamic nature of our white-lists provides the flexibility necessary to encode 
a very precise security policy—namely, that %n-specifiers in printf-style functions 
should modify a memory location x only if the programmer explicitly passes a 
pointer to x.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
“To check the white-list, before executing a %n qualifier the printing function 
must first verify that the location it is about to write is in a registered address 
range.” 
“If a white-list check fails, we choose to abort the program, but other choices are 
possible (such as silently skipping the write or sending a signal).” 
 
Policy Management -- No Management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic the sandbox: 
 
See Where is the policy enforced? 
 
Validation claims -- Security, Performance: 
 
“We have implemented a white-list based approach to preventing format-string 
attacks, and determined that the performance overhead is reasonable.” 
 
Validation -- Case Studies (Security): 
 
“We tested our approach on four programs with known format string 
vulnerabilities: ...” 
 
Validation -- Case Studies (Performance): 
 
“To determine our overhead per printf call, we ran a series of simple 
microbenchmarks consisting of a single loop containing a single sprintf call.” 



“We also searched for a real, printf-intensive application to test our 
performance.” 
 
Validation -- Public Data (Security): 
 
See other validation quotes. 
 
Availability -- Source Code: 
 
“Our tool is available for download from our website [26].” 
 
 

VirtuOS, SOSP 2013 - 

 
Where is the policy enforced? -- System: 
 
“VirtuOS exploits virtualization to isolate and protect vertical slices of existing OS 
kernels in separate service domains.” 
“We have implemented a prototype based on the Linux kernel and Xen 
hypervisor.” 
 
When is the policy imposed? -- Statically: 
 
“VirtuOS allows its user processes to interact directly with service domains 
through an exceptionless system call interface [48], which can avoid the cost of 
local system calls in many cases.” 
“VirtuOS intercepts system calls using a custom version of the C library that 
dispatches system calls to the appropriate service domains.” 
 
What is protected by the policy? (fine grained) -- Files, Memory, 
Code/Instructions: 
 
“VirtuOS supports failure recovery for any faults occurring in service domains, 
including memory access violations, interrupt handling routine failure and dead- 
locks.” 
 
What is protected by the policy? (coarse grained) -- System-level component: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 



See Where is the policy enforced? 
 
Requirements of the application -- Use the sandbox as a framework/library: 
 
See When is the policy imposed?  
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposed?  
 
Policy enforcements place in kill chain -- Post-exploit: 
 
“We designed an experiment to demonstrate that (1) a failure of one service 
domain does not affect programs that use another one; (2) the primary domain 
remains viable, and it is possible to restart affected programs and domains.” 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed?  
 
Validation Claim -- Security: 
 
“Unlike competing solutions that merely isolate device drivers, or cannot protect 
from malicious and vulnerable code, VirtuOS provides full protection of isolated 
system components.” 
 
Validation Claim -- Performance/Applicability: 
 
“Thus, VirtuOS may provide a suitable basis for kernel decomposition while 
retaining compatibility with existing applications and good performance.” 
 
Validation -- Case Studies (Applicability, Performance): 
 
“Our current prototype implementation uses the Linux 3.2.30 kernel for all 
domains. We tested it with Alpine Linux 2.3.6, x86 64 (a Linux distribution which 
uses uClibc 0.9.33 as its standard C library) using a wide range of application 
binaries packaged with that distribution, including OpenSSH, Apache 2, mySQL, 
Firefox, links, lynx, and Busybox (which includes ping and other networking 



utilities). In addition, we tested compilation toolchains including GCC, make and 
abuild.” 
“Our first microbenchmark repeatedly executes the fcntl(2) call to read a flag for a 
file descriptor that is maintained by the storage domain.” 
“The benchmark writes 16MB in chunks of 32, 64, up to 2MB to a file created in a 
tmpfs filesystem, which is provided by a native kernel in the baseline case and by a 
storage domain in VirtuOS.” 
“We first measured streaming TCP network performance by sending and receiving 
requests using the TTCP tool [1], using buffer sizes from 512 bytes to 16 KB.” 
“We also tested VirtuOS with single-threaded, multiple process applications such 
as Apache 2, and compared performance with native Linux.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We use the OLTP/SysBench macrobenchmark [5] to evaluate the performance of 
VirtuOS’s network domain.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Source Code: 
 
“VirtuOS’s source code is available at http://people.cs.vt.edu/ r̃nikola/ under 
various open source licenses.” 
 
 

Hails, OSDI 2011 - 

 
Where is the policy enforced? -- Application: 
 
“A principled approach to code confinement could allow the integration of 
untrusted code while enforcing flexible, end-to-end policies on data access. This 
paper presents a new web framework, Hails, that adds mandatory access control 
and a declarative policy language to the familiar MVC architecture.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- User Data: 
 



See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See Where is the policy enforce? (Those applications written to use the framework) 
 
Requirements of the person applying the sandbox -- Write a policy, Install a 
Tool: 
 
“Browser-level confinement As previously noted, wecannot expect all users to 
install the Hails browser extension which provides confinement in the browser.” 
 
See Where is the policy enforced? 
 
Requirements of the application -- Use the sandbox as a framework/library: 
 
See Where is the policy enforced? 
 
Security Policy Type -- User-defined Policy: 
 
See Where is the policy enforced? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See Where is the policy enforced? 
 
Policy Management -- No management: 
 
NOTE: Uses labels that are necessarily not portable to other applications that use 
the framework. 
 
Policy Construction -- Manually written policy: 
 
See Where is the policy enforced? 
 
Validation Claim -- Applicability: 
 
“A criticism of past MAC systems has been the perceived difficulty for application 
programmers to understand the security model. Hails offers a new design point in 
this space by introducing MAC to the popular MVC pattern and binding access 
control policy to the model component in MPVC.” 
 
Validation Claim -- Performance: 



 
“We compare the performance of the Hails framework against existing web 
frameworks, and report on the experience of application authors not involved in 
the design and implementation of the framework.” 
 
Validation Claim -- Security: 
 
“To address these problems, we have developed an alter- 
nate approach for confining untrusted apps.” 
 
Validation -- Case Studies (Applicability): 
 
“We built and deployed GitStar.com, a Hails platform centered around source code 
hosting and project management.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We use httperf [31] to measure the throughput of each server setup when 100 
client connections continuously make requests in a closed-loop—we report the 
average responses/second.” 
 
Validation -- Proof (Security): 
 
“The Hails runtime, including the confinement mechanism, HTTP server, and 
libraries are part of the TCB. Parts of the system, namely our labels and 
confinement mechanism, have been formalized in [30, 39–41]. We remark that 
different from other work, our language-level concurrent confinement system is 
sound even in the presence of termination and timing covert channels [41].” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. Security experiments not reasonably comparable. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Dunn, OSDI 2012 - 

 
Where is the policy enforced? -- System: 
 



“Lacuna executes private sessions in a virtual machine (VM) under a modified 
QEMU-KVM hypervisor on a modified host Linux kernel.” 
 
When is the policy imposed? -- Dynamically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- User Data: 
 
“In this paper, we describe the design and implementation of Lacuna, a system 
that protects privacy by erasing all memories of the user’s activities from the host 
machine. Inspired by the “private mode” in Web browsers, Lacuna enables a 
“private session” abstraction for the whole system.” 
 
What is protected by the policy? (coarse grained) -- Targeted Applications: 
 
“Using a VM helps protect applications that consist of many executables 
communicating via inter-process communication (IPC), e.g., most modern Web 
browsers.” 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- None: 
 
See Validation Claim -- Applicability, Performance 
 
Security Policy Type -- Fixed Policy: 
 
See Validation Claim -- Applicability, Performance 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
“This adversary should not be able to extract any usable evidence of activities 
conducted in a private session, except (1) the fact that the machine ran a private 
session at some point in the past (but not which programs were executed during 
the session), and (2) which devices were used during the session.” 
 
Policy Management -- No management: 
 
Fixed Policy 
 



Policy Construction -- Encoded in the logic of the sandbox: 
 
See Validation Claim -- Applicability, Performance 
 
Validation Claim -- Applicability, Performance: 
 
“Lacuna can run unmodified applications that use graphics, sound, USB input 
devices, and the network, with only 20 percentage points of additional CPU 
utilization.” 
 
Validation Claim -- Security: 
 
“We design and implement Lacuna, a system that allows users to run programs in 
“private sessions.” After the session is over, all memories of its execution are 
erased.” 
 
Validation -- Case Studies (Security): 
 
“Following the methodology of [8], we inject 8-byte “tokens” into the display, 
audio, USB, network, and swap subsystems, then examine physical RAM for these 
tokens afterwards. Without Lacuna (but with QEMU and PaX), the tokens are 
present after the applications exit.” 
 
Validation -- Case Studies (Performance, Applicability): 
 
“We measure the overhead of Lacuna on a number of full-system tasks: watching a 
854 × 480 video with mplayer across the network, browsing the Alexa top 20 
websites, and using LibreOffice, a full-featured office suite, to create a document 
with 2,994 characters and 32 images.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes.  
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Cells, SOSP 2011 - 

 
Where is the policy enforced? -- System: 



 
“This model enables a new device namespace mechanism and novel device proxies 
that integrate with lightweight operating system virtualization to multiplex phone 
hardware across multiple virtual phones while providing native hardware device 
performance.” 
 
When is the policy imposed? -- Statically: 
“VPs are created and configured on a PC and downloaded to a phone via USB. A VP 
can be deleted by the user, but its configuration is password protected and can only 
be changed from a PC given the appropriate credentials.” 
 
What is protected by the policy? (fine grained) -- Files, Communication, User 
Data: 
 
“Each VP can be configured to have different access rights for different devices. For 
each device, a VP can be configured to have no access, shared access, or exclusive 
access. Some settings may not be available on certain devices; shared access is, for 
example, not available for the framebuffer since only a single VP is displayed at any 
time. These per device access settings provide a highly flexible security model that 
can be used to accommodate a wide range of security policies.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“No access means that applications running in the VP cannot access the given 
device at any time.” 
 
Requirements of the person applying the sandbox -- Write a Policy, Install a 
Tool: 
 
See Where is the policy enforced? and What is protected by the policy? (fine 
grained) 
 
Requirements of the application -- None: 
 
See Validation Claim -- Performance, Applicability 
 
Security Policy Type -- User-defined Policy: 
 
See What is protected by the policy? (fine grained) 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
See Validation Claim -- Security 



 
Policy Management -- Central Policy Repository: 
 
“On the other hand, IT administrators can also create VPs that users can download 
or remove from their phones, but cannot be reconfigured by users.” 
 
Policy Construction -- Manually Written Policy: 
 
See What is protected by the policy? (fine grained) 
 
Validation Claim -- Security: 
 
“We present Cells, a virtualization architecture for enabling multiple virtual 
smartphones to run simultaneously on the same physical cellphone in an isolated, 
secure manner.” 
“Cells isolates VPs from one another, and ensures that buggy or malicious 
applications running in one VP cannot adversely impact other VPs.” 
 
Validation Claim -- Performance, Applicability: 
 
“Cells imposes only modest runtime and memory overhead, works seamlessly 
across multiple hardware devices including Google Nexus 1 and Nexus S phones, 
and transparently runs Android applications at native speed without any 
modifications.” 
 
Validation -- Argumentation (Security): 
 
“Cells uses four techniques to isolate all VPs from the root namespace and from 
one another, thereby securing both system and individual VP data from malicious 
reads or writes. First, user credentials, virtualized through UID namespaces, isolate 
the root user in one VP from the root user in the root namespace or any other VP.” 
 
Validation -- Case Studies (Performance, Applicability): 
 
“We have implemented a Cells prototype using Android and demonstrated its 
complete functionality across different Android devices, including the Google 
Nexus 1 [8] and Nexus S [9] phones.” 
“We further quantitatively measured the performance of our unoptimized 
prototype running a wide range of applications in multiple VPs.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes.  



 
Availability -- Not Available: 
 
No mention in paper 
 
 

CloudVisor, SOSP 2011 - 

 
Where is the policy enforced? -- System: 
 
“A tiny security monitor is introduced underneath the commodity VMM using 
nested virtualization and provides protection to the hosted VMs.” 
 
When is the policy imposed? -- Dynamically: 
 
“The goal of CloudVisor is to prevent the malicious VM management stack from 
inspecting or modifying a tenant’s VM states, thus providing both secrecy and 
integrity to a VM’s states, including CPU states, memory pages and disk I/O data. 
CloudVisor guarantees that all accesses not from a VM itself (e.g., the VMM, other 
VMs), such as DMA, memory dumping and I/O data, can only see the encrypted 
version of that VM’s data.” 
 
What is protected by the policy? (fine grained) -- User Data: 
 
“As a result, our approach allows virtualization software (e.g., VMM, management 
VM and tools) to handle complex tasks of managing leased VMs for the cloud, 
without breaking security of users’ data inside the VMs.” 
 
What is protected by the policy? (coarse grained) -- System-level component: 
 
See When is the policy imposed? 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- None: 
 
“Further, CloudVisor can then be separately designed and verified, and be 
orthogonal to the evolvement of the VMM and management software.” 
 
Security Policy Type -- Fixed Policy: 



 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
See When is the policy imposed? 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic the sandbox: 
 
“As the essential protection logic for VM resources is quite fixed, CloudVisor can be 
small enough to verify its security properties (e.g., using formal verification 
methods [34]).” 
 
Validation Claim -- Security: 
 
See Where is the policy enforced? 
 
Validation Claim -- Performance: 
 
“Performance evaluation shows that CloudVisor incurs moderate slowdown for I/O 
intensive applications and very small slowdown for other applications.” 
 
Validation -- Argumentation (Security): 
 
“The code base is only around 5.5K lines of code (LOCs), which should be small and 
simple enough to verify.” 
 
Validation -- Benchmark Suite/Case Studies (Performance): 
 
“The application benchmarks for Linux VMs include: 1) Kernel Build (KBuild) that 
builds a compact Linux kernel 2.6.31 to measure the slowdown for CPU-intensive 
workloads; 2) Apache benchmark (ab) on Apache web server 2.2.15 [10] for network 
I/O intensive workloads; 3) memcached 1.4.5 [19] for memory and network I/O 
intensive workloads; 4) dbench 3.0.4 [65] for the slowdown of disk I/O workloads. 
SPECjbb [59] is used to evaluate the server side performance of Java runtime 
environment in the Windows VM. To understand the overhead in encryption and 
hashing and the effect of the VM read and VM write optimization, we also present a 
detailed performance analysis using KBuild and dbench.” 
 



Validation -- Public Data (Performance): 
 
See other validation quotes.  
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Mao, SOSP 2011 - 

 
Where is the policy enforced? -- System: 
 
“This paper proposes LXFI, a system which isolates kernel modules from the core 
kernel so that vulnerabilities in kernel modules cannot lead to a privilege 
escalation attack.” 
 
When is the policy imposed? -- Statically: 
 
See Requirements of the application 
 
What is protected by the policy? (fine grained) -- Memory, Code/Instructions: 
 
“To enforce control flow integrity on function returns, the LXFI runtime pushes 
the return address onto the shadow stack at the wrapper’s entry, and validate its 
value at the exit to make sure that the return address is not corrupted. ” 
 
What is protected by the policy? (coarse grained) -- System-level component: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Write a policy: 
 
See Requirements of the application 
 
Requirements of the application -- Have source code, Annotated source code, 
Use special compiler: 
 
“Programmers specify principals and API integrity rules through capabilities and 
annotations. Using a compiler plugin, LXFI instruments the generated code to 
grant, check, and transfer capabilities between modules, according to the 
programmer’s annotations. 



 
Security Policy Type -- User-defined Policy: 
 
See Requirements of the application 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained 
 
Policy Management -- No management: 
 
No official management, annotations are stored in program source code 
 
Policy Construction -- Manually written policy: 
 
See Requirements of the application 
 
Validation Claim -- Security: 
 
See Where is the policy enforced? 
 
Validation Claim -- Performance: 
 
“Stress tests of a network driver module also show that isolating this module using 
LXFI does not hurt TCP throughput but reduces UDP throughput by 35%, and 
increases CPU utilization by 2.2–3.7×.” 
 
Validation -- Case Studies (Security): 
 
“To answer the first question we inspected 3 privilege escalation exploits using 5 
vulnerabilities in Linux kernel modules revealed in 2010 that can lead to privilege 
escalation. Figure 8 shows three exploits and the corresponding vulnerabilities. 
LXFI successfully prevents all of the listed exploits as follows.” 
 
Validation -- Benchmark Suite (Performance): 
 
“To measure the enforcement overhead, we measure how much LXFI slows down 
the SFI microbenchmarks [23].” 
 
Validation -- Case Study (Performance): 
 
“To evaluate the overhead of LXFI on an isolated kernel module, we run netperf 
[14] to exercise the Linux e1000 driver as a kernel module.” 



 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

SPORC, OSDI 2010 - 

 
Where is the policy enforced? -- Application: 
 
“SPORC provides a framework for building collaborative applications that need to 
synchronize different kinds of state between clients. It consists of a generic server 
implementation and client-side libraries that implement the SPORC protocol, 
including the sending, receiving, encryption, and transformation of operations, as 
well as the necessarily consistency checks and document membership 
management. To build applications within the SPORC framework, a developer only 
needs to implement clientside functionality that (i) defines a data type for SPORC 
operations, (ii) defines how to transform a pair of operations, and (iii) defines how 
to combine multiple document operations into a single one. The server need not be 
modified, as it always deals with operations on encrypted data.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Files, Communication, User 
Data: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (coarse grained) -- Targeted application: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- None: 
 
See Where is the policy enforced? (NOTE: what the user has to define is not security 
policy) 



 
Requirements of the application -- Use the sandbox as a framework/library: 
 
See Where is the policy enforced? 
 
Security Policy Type -- Fixed Policy: 
 
NOTE: While the users of applications that use SPORC have some control over a 
security policy, this is may be required for the use of some application that uses 
SPORC, not the sandbox itself. 
 
“SPORC provides a generic collaboration service in which users can create a 
document, modify its access control list, edit it concurrently, experience fully 
automated merging of updates, and even perform these operations while 
disconnected. The SPORC framework supports a broad range of collaborative 
applications. Data updates are encrypted before being sent to a cloud-hosted 
server. The server assigns a total order to all operations and redistributes the 
ordered updates to clients. If a malicious server drops or reorders updates, the 
SPORC clients can detect the server’s misbehavior, switch to a new server, restore 
a consistent state, and continue. The same mechanism that allows SPORC to merge 
correct concurrent operations also enables it to transparently recover from attacks 
that fork clients’ views.” 
 
Policy enforcements place in kill chain -- Pre-exploit/Post-exploit: 
 
See Security Policy Type 
 
Policy Management -- No Management:  
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Security Policy Type 
 
Validation Claim -- Security: 
 
“To overcome this strict tradeoff, we present SPORC, a generic framework for 
building a wide variety of collaborative applications with untrusted servers.” 
 
Validation Claim -- Applicability: 
 



“SPORC allows concurrent, low-latency editing of shared state, permits 
disconnected operation, and supports dynamic access control even in the presence 
of concurrency.” 
 
Validation -- Case Studies (Applicability): 
 
“We demonstrate SPORC’s flexibility through two prototype applications: a 
causally-consistent key-value store and a browser-based collaborative text 
editor.” 
 
Validation -- Case Studies (Performance): 
 
“To measure SPORC’s latency, we conducted three minute runs with between one 
and sixteen clients for both key-value and text editor operations.” 
 
Validation -- Argumentation (Security): 
 
“SPORC clients use sequence numbers and a hash chain to ensure that operations 
are properly serialized and that the server is well behaved. Every operation has two 
sequence numbers: a client sequence number (clntSeqNo)...” 
 
NOTE: There are several other similar quotes that pertain to security the 
application that uses the framework. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Castro, SOSP 2009 - 

 
Where is the policy enforced? -- System: 
 
“We present BGI (Byte-Granularity Isolation), a new software fault isolation 
technique that addresses this problem. BGI uses efficient byte-granularity memory 
protection to isolate kernel extensions in separate protection domains that share 
the same address space.” 
 
When is the policy imposed? -- Statically: 
 
See Requirements of the application 
 



What is protected by the policy? (fine grained) -- Memory, Code/Instructions: 
 
“Previous work on fine-grained memory protection [45] relies on special hardware 
to achieve good performance. BGI achieves good performance with a software 
implementation by using a combination of compile time changes to the layout of 
data, careful design of the data structures that store ACLs, static analysis, and 
judicious tradeoffs between performance and isolation. Like other systems [11, 42, 
43], BGI does not check ACLs before reads, and checks before other types of access 
are not performed atomically with the access [11]. This enables efficient but still 
effective isolation of extensions that communicate frequently with the kernel. 
Additionally, BGI can detect common types of errors inside domains, for example, 
corruption of return addresses and exception handler pointers, and sequential 
buffer overflows and underflows.” 
 
What is protected by the policy? (coarse grained) -- System-level component: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox --  
 
Requirements of the application -- Use special compiler, Use sandbox as 
framework/library: 
 
“BGI is implemented as a compiler plug-in that generates instrumented code for 
kernel extensions, and an interposition library that mediates communication 
between the extensions and the kernel. BGI runs extensions in separate protection 
domains that share the same address space.” 
 
Security Policy Type -- Fixed Policy: 
 
“BGI runs extensions in separate protection domains that share the same address 
space. It associates an access control list (ACL) with each byte of virtual memory 
that lists the domains that can access the byte and how they can access it. Access 
rights are granted and revoked by code inserted by our compiler and by the 
interposition library according to the semantics of the operation being invoked.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Fixed Policy 



 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See Security Policy Type 
 
Validation Claim -- Performance, Applicability: 
 
“Our results show that BGI is practical: it can isolate Windows drivers without 
requiring changes to the source code and it introduces a CPU overhead between 0 
and 16%.” 
 
Validation Claim -- Security​: 
 
“BGI can prevent errors in isolated drivers from corrupting state elsewhere in the 
operating system, it can prevent attackers from exploiting these errors, and it can 
recover drivers with errors.” 
 
Validation -- Case Studies (Security): 
 
“We injected faults into the fat and intelpro drivers to measure BGI’s effectiveness 
at detecting faults before they propagate outside a domain.” 
“We selected 50 buggy drivers at random from the set of buggy drivers with 
escaping blue screens that BGI can contain. We loaded them into a BGI domain 
with recovery support and then activated the injected faults.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We also measured the overhead introduced by BGI. For the disk, file system, and 
USB drivers, we used the PostMark [23] file system benchmark that simulates the 
workload of an email server.” 
 
Validation -- Case Studies (Performance): 
 
“Next, we measured the overhead introduced by BGI to isolate the network card 
drivers. For our TCP tests, we used socket buffers of 256KB and 32KB messages with 
intelpro and socket buffers of 1MB and 64KB messages with xframe. 
 
Validation -- Case Studies (Applicability): 
 
“In our last experiment, we tested 6 of the extensions with BGI. We used existing 
test suites that achieve good code coverage. BGI found 28 new bugs in these widely 
used Windows extensions. Table 8 shows the different types of bugs found by BGI.” 
 



Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Williams, OSDI 2008 - 

 
Where is the policy enforced? -- System: 
 
“Therefore, in our driver architecture, a global, trusted reference validation 
mechanism (RVM) [3] mediates all interaction between device drivers and devices. 
The RVM invokes a device-specific reference monitor to validate every interaction 
between a device driver and its associated device, thereby ensuring the driver 
conforms to a device safety specification (DSS), which defines allowed and, by 
extension, prohibited behaviors.” 
 
When is the policy imposed? -- Dynamically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory, Communication, 
Code/Instructions: 
 
“The RVM protects the integrity, confidentiality, and availability of the system, by 
preventing: 
• Illegal reads and writes: Drivers cannot read or modify memory they do not own. 
• Priority escalation: Drivers cannot escalate their scheduling priority. 
• Processor starvation: Drivers cannot hold the CPU for more than a pre-specified 
number of time slices. 
• Device-specific attacks: Drivers cannot exhaust device resources or cause 
physical damage to devices.” 
“In addition, given a suitable DSS, an RVM can enforce site-specific policies to 
govern how devices are used. For example, administrators at 
confidentiality-sensitive organizations might wish to disallow the use of attached 
microphones or cameras; or administrators of trusted networks might wish to 
disallow promiscuous (sniffing) mode on network cards.” 
“In sum, this paper shows how to use standard mem- 
ory protection and device-specific reference monitors to 



execute device drivers with limited privilege and in user 
space. ” 
 
What is protected by the policy? (coarse grained) -- System-level component: 
 
“This paper introduces a practical mechanism for executing device drivers in user 
space and without privilege.” 
 
Requirements of the person applying the sandbox -- Write a Policy: 
 
See What is protected by the policy? (fine grained) 
 
Requirements of the application -- None: 
 
NOTE: Assumes the drivers are written to work with their OS. 
 
Security Policy Type -- Used-defined policy: 
 
See What is protected by the policy? (fine grained) 
 
Policy enforcements place in kill chain -- Pre-exploit/Post-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No Management: 
 
None specified 
 
Policy Construction -- Encoded in the logic of the sanbox/Manually written 
policy: 
 
See What is protected by the policy? (fine grained) NOTE: Parts of the policy apply 
to all drivers others are manually written by an admin for a specific driver. 
 
Validation Claim -- Security: 
 
“This paper describes how to move them out of the trusted computing base, by 
running them without supervisor privileges and constraining their interactions 
with hardware devices.” 
 
Validation Claim -- Performance: 
 



“These Nexus drivers exhibit performance nearly as fast as earlier in-kernel, 
trusted drivers.” 
 
Validation -- Case Studies (Performance): 
 
“To gain insight into the performance of our user-space device drivers, we tested 
each at idle and under load.” 
 
Validation -- Case Studies (Security): 
 
“Nevertheless, to establish the security of our RVM and reference monitors, we 
used two approaches others have used. First, we simulated unanticipated malicious 
drivers by randomly perturbing the interactions between drivers and the RVM, 
resulting in potentially invalid operations being submitted to the reference 
monitor and possibly to the device. Second, we built specific drivers that 
perpetrate known attacks on the kernel using interrupt and DMA capabilities.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Wang, SOSP 2007 - 

 
Where is the policy enforced? -- Application Host: 
 
“Our prototype is based on Internet Explorer 7 (IE) and runs on both Windows XP 
SP2 and Windows Server 2003 SP1, but our methodology and techniques can also be 
applied to other browsers. 
Instead of modifying IE’s source code directly, we leverage browser extensions and 
public interfaces exported by IE.” 
 
When is the policy imposed? -- Statically: 
 
“We introduce two new HTML tags for integrators to include unauthorized content: 
<Sandbox> for private unauthorized content that is hosted at and belongs to the 
integrator and <OpenSandbox> that may be hosted by any domain: 
 
.. 
 
Because the content in <Sandbox> is private, when the src attribute indicates a 
path from a different domain (principal), the enclosing page cannot access the 



content in the sandbox; only when the content comes from the same domain can 
the enclosing page access the content fully. In contrast, for <OpenSandbox>, no 
matter which domain hosts the content, the enclosing page can access the content 
fully including the HTML content. We use the term “sandbox” to loosely refer to 
either element.” 
 
What is protected by the policy? (fine grained) -- Communication, 
Code/Instructions, User Data: 
 
“Among the myriad of operating system issues, we focus on the most imminent 
needs of today’s browsers: abstractions for protection and communication. The 
goal of protection is to prevent one principal from compromising the 
confidentiality and integrity of other principals, while communication allows them 
to interact in a controlled manner.” 
 
What is protected by the policy? (coarse grained) -- Targeted Applications: 
 
NOTE: Applications that use specific HTML tags: 
 
“We introduce <Sandbox> and <OpenSandbox> abstractions and a 
provider-browser protocol to enable content providers to publish and integrators 
to consume unauthorized content without liability and overtrusting, providing 
both security and ease in creating client mashups.” 
 
Requirements of the person applying the sandbox -- Install a Tool, Write a 
Policy: 
 
See Where is the policy enforced? and When is the policy imposed? 
 
Requirements of the application -- Annotated source code: 
 
See When is the policy imposed? 
 
Security Policy Type -- User-defined policy: 
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
See When is the policy imposed? NOTE: Doesn’t stop an exploit from running, but 
does stop it from accessing protected content. 
 
Policy Management -- No management: 



 
None specified 
 
Policy Construction -- Manually written policy: 
 
See When is the policy imposed? 
 
Validation Claim -- Applicability: 
 
“We have designed our abstractions to be backward compatible and easily 
adoptable.” 
 
Validation Claim -- Security, Performance: 
 
“Our evaluation shows that our abstractions make it easy to build more secure and 
robust client-side Web mashups and can be easily implemented with negligible 
performance overhead.” 
 
Validation -- Case Study (Applicability): 
 
“In this section, we first demonstrate the ease of programming robust Web 
services with MashupOS protection abstractions by showcasing an example 
application in Section 10.1.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We found a JavaScript and DHTML script performance benchmark called BenchJS 
[2]. The benchmark contains the following 7 JavaScript and DHTML tests.” 
 
Validation -- Case Study (Security): 
 
“PhotoLoc puts Google’s map library along with the <Div> display element that the 
library needs into “g.uhtml” and serves “g.uhtml” as private unauthorized 
content. PhotoLoc’s main service page (index.htm) uses <Sandbox> to contain 
“g.uhtml”. PhotoLoc can access everything inside the sandbox, but Google’s map 
library cannot reach out of the sandbox.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 



No mention in paper 
 
 

Criswell, SOSP 2007 - 

 
Where is the policy enforced? -- System: 
 
“A virtual machine implementing SVA achieves these goals by using a novel 
approach that exploits properties of existing memory pools in the kernel and by 
preserving the kernel’s explicit control over memory, including custom allocators 
and explicit deallocation.” 
 
When is the policy imposed? -- Hybrid: 
 
“The SAFECode compiler and run-time system together enforce the following 
safety properties for a complete, standalone C program with no manufactured 
addresses [11, 12, 10]:” 
 
What is protected by the policy? (fine grained) -- Memory, Code/Instructions: 
 
“SVA aims to enforce fine-grain (object level) memory safety, control-flow 
integrity, type safety for a subset of objects, and sound analysis.” 
 
What is protected by the policy? (coarse grained) -- System-level component, 
Class of Applications: 
 
“This paper describes an efficient and robust approach to provide a safe execution 
environment for an entire operating system, such as Linux, and all its 
applications.” 
 
Requirements of the person applying the sandbox -- Install a Tool:  
 
See Where is the policy enforced? 
 
Requirements of the application -- Use special compiler: 
 
“SVA is also designed to ensure that the (relatively complex) safety checking 
compiler does not need to be a part of the trusted computing base.” 
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposed? 



 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? 
 
Validation Claim -- Security: 
 
“SVA is able to prevent 4 out of 5 memory safety exploits previously reported for 
the Linux 2.4.22 kernel for which exploit code is available, and would prevent the 
fifth one simply by compiling an additional kernel library.” 
 
Validation -- Proof (Security): 
 
“The SVA guarantees provided to a kernel vary for different (compiler-computed) 
partitions of data, or equivalently, different metapools. The strongest guarantees 
are for partitions that are proven type-homogeneous and complete. For partitions 
that lack one or both of these properties, the guarantees are correspondingly 
weakened.” 
 
Validation -- Case Studies (Security): 
 
“To see how well our system detects exploits that use memory error 
vulnerabilities, we tried five different exploits on our system that were previously 
reported for this version of the Linux kernel, and which occur in different 
subsystems of the kernel.” 
 
Validation -- Public Data (Security): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 



SecVisor, SOSP 2007 - 

 
Where is the policy enforced? -- System: 
 
“We propose SecVisor, a tiny hypervisor that ensures code integrity for commodity 
OS kernels.” 
 
When is the policy imposed? -- Dynamically: 
 
“We implement SecVisor as a tiny hypervisor that uses hardware memory 
protections to ensure kernel code integrity. SecVisor virtualizes the physical 
memory, which allows it to set hardware protections over kernel memory, that are 
independent of any protections set by the kernel.” 
 
What is protected by the policy? (fine grained) -- Code/Instructions: 
 
“In particular, SecVisor ensures that only user-approved code can execute in 
kernel mode over the entire system lifetime. This protects the kernel against code 
injection attacks, such as kernel rootkits.” 
 
What is protected by the policy? (coarse grained) -- System-level component: 
 
See Where is the policy enforced? 
 
Requirements of the person applying the sandbox -- Install a Tool: 
 
See Where is the policy enforced? 
 
Requirements of the application -- None: 
 
NOTE: Some minor coding changes to port to hypervisor in some cases, but 
nothing to code. 
 
Security Policy Type -- Fixed Policy: 
 
See When is the policy imposted? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See When is the policy imposted? 
 
Policy Management -- No management:  



 
Fixed Policy 
 
Policy Construction -- Encoded in the logic the sandbox: 
 
See When is the policy imposted? 
 
Validation Claim -- Security: 
 
“Further, SecVisor can even defend against attackers with knowledge of zero-day 
kernel exploits.” 
 
Validation Claim -- Applicability: 
 
“It is easy to port OS kernels to SecVisor.” 
 
Validation -- Case Study (Applicability): 
 
“We port the Linux kernel version 2.6.20 by adding 12 lines and deleting 81 lines, 
out of a total of approximately 4.3 million lines of code in the kernel.” 
 
Validation -- Argumentation (Security): 
 
“The hypercall interface is small which reduces the attack surface available to the 
attacker through the kernel. Also, the parameters passed in each hypercall are 
well-defined, making it possible for SecVisor to ensure the validity of these 
arguments.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Krohn, SOSP 2007 - 

 
Where is the policy enforced? -- System: 
 
“We present a user-space implementation of Flume for Unix, with some 
extensions for managing data for large numbers of users (as in Web sites). Flume’s 
user space design is influenced by other Unix systems that build confinement in 
user space, such as Ostia [12] and Plash [29]. ... 



Flume’s Linux implementation, like Ostia’s, runs a small component in the kernel: 
a Linux Security Module (LSM) [36] implements Flume’s system call interposition 
(see Section 5.2).” 
 
When is the policy imposed? -- Statically: 
 
“Flume’s approach for enhancing Moin’s read and write protection is to factor out 
security code into a small, isolated security module, and leave the rest of Moin 
largely unchanged. The security module needs to configure only a Flume DIFC 
policy and then run Moin according to that policy.” 
 
What is protected by the policy? (fine grained) -- Communication, User Data: 
 
“As applied to privacy, DIFC allows untrusted software to compute with private 
data while trusted security code controls the release of that data.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“The Flume system provides DIFC at the granularity of processes, and integrates 
DIFC controls with standard communication abstractions such as pipes, sockets, 
and file descriptors, via a user-level reference monitor.” 
 
Requirements of the person applying the sandbox -- Write a Policy: 
 
See When is the policy imposed? 
 
Requirements of the application -- Use the sandbox as a framework/library: 
 
“Though wrapper programs like wikilaunch could be expressed in other DIFC 
systems like Asbestos or HiStar, the integration within Moin would be difficult 
without an application-level API like the one presented here.” 
 
Security Policy Type -- User-defined policy:  
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
“Moin can pull third-party plug-ins into its address space, but with end-to-end 
integrity protection, users can enforce that selected plug-ins never touch (and 
potentially corrupt) their sensitive data, either on input or output.” 
 
Policy Management -- No management: 



 
None specified 
 
Policy Construction -- Manually written policy: 
 
See When is the policy imposed? 
 
Validation Claim -- Security: 
 
“Flume eases DIFC’s use in existing applications and allows safe interaction 
between conventional and DIFC-aware processes.” 
 
Validation Claim -- Applicability: 
 
“ Refinements to Flume DIFC required to build real systems, such as machine 
cluster support, and DIFC primitives that scale to large numbers of users.” 
 
Validation -- Case Study (Security): 
 
“The most important evaluation criterion for Flume is whether it improves the 
security of existing systems. Of the five recent ACL bypass vulnerabilities [25, 26], 
three are present in the MoinMoin version (1.5.6) we forked to create FlumeWiki.” 
 
Validation -- Case Study (Applicability): 
 
“To evaluate Flume’s programmability, we ported a complex and popular 
application, MoinMoin wiki [22], to the Flume system. MoinMoin is a feature-rich 
Web document sharing system (91,000 lines of Python code), with support for 
access control lists, indexing, Web-based editing, versioning, syntax highlighting 
for source code, downloadable “skins”, etc.” 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Castro, OSDI 2006 - 

 
Where is the policy enforced? -- Application: 
 
“To enforce data-flow integrity at runtime, our implementation instruments the 
program to compute the definition that actually reaches each use at runtime.” 



 
When is the policy imposed? -- Statically: 
 
“We implemented data-flow integrity enforcement using the Phoenix compiler 
infrastructure [29].” 
 
What is protected by the policy? (fine grained) -- Memory: 
 
“For example, attackers exploit buffer overflows and format string vulnerabilities 
to write data to unintended locations. We present a simple technique that prevents 
these attacks by enforcing data-flow integrity.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See When is the policy imposed? 
 
Requirements of the person applying the sandbox -- None: 
 
NOTE: Just use their compiler 
 
Requirements of the application -- Use special compiler: 
 
See When is the policy imposed? 
 
Security Policy Type -- Fixed Policy: 
 
“The analysis relies on the same assumptions that existing compilers rely on to 
implement standard optimizations. These are precisely the assumptions that 
attacks violate and data-flow integrity enforcement detects when they are 
violated.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See When is the policy imposed? 
 



Validation Claim -- Applicability, Security, Performance: 
 
“This implementation can be used in practice to detect a broad class of attacks and 
errors because it can be applied automatically to C and C++ programs without 
modifications, it does not have false positives, and it has low overhead.” 
 
Validation -- Benchmark Suite (Performance): 
 
“We used several programs from the SPEC CPU 2000 benchmark suite to measure 
the overhead added by our instrumentation. We chose these programs to facilitate 
comparison with other techniques that have been evaluated using the same 
benchmark suite, for example, [5].” 
 
Validation -- Benchmark Suite/Argumentation (Applicability): 
 
NOTE: Implicit -- they do their analysis and instrumentation on the high-level 
intermediate representation in their modified compiler. 
 
Validation -- Benchmark Suite/Case Studies (Security): 
 
“We used a benchmark with synthetic exploits [40] and several exploits of real 
vulnerabilities in existing programs. This section describes the programs, the 
vulnerabilities, and the exploits.” 
 
Validation -- Public Data (Security, Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Ta-Min, OSDI 2006 - 

NOTE: Struck due to the requirements of the application. This sandbox requires 
so much implementation work in the private OS side that it doesn’t encompass 
a reasonable number of real world applications. 
 
Where is the policy enforced? -- System: 
 
“This ability is provided by running both commodity and private OSs on a VMM, 
and using a thin operating system proxy, called Proxos, which we have designed.” 



 
When is the policy imposed? -- Statically: 
 
“Using high-level system call routing rules specified by the application developer, 
Proxos transparently routes each system call made by the application to the 
commodity OS if the request does not need to be trusted, or to the private OS if it 
does.” 
 
What is protected by the policy? (fine grained) --  
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
See When is the policy imposed? 
 
Requirements of the person applying the sandbox -- Install a Tool, Write a 
Policy: 
 
See Where is the policy enforced? and  When is the policy imposed? 
 
Requirements of the application -- Use the sandbox as a framework/library: 
 
“With this knowledge, the developer identifies the system calls that access these 
objects and specifies that they are to be forwarded to the private OS using the 
routing language described in Section 2.3. The private OS methods can be 
implemented especially for the application by the developer, or even obtained 
from a library of generic private OS methods provided by a third-party.” 
 
Security Policy Type -- User-defined Policy: 
 
See When is the policy imposed? 
 
Policy enforcements place in kill chain --  
 
Policy Management --  
 
Policy Construction -- Manually written policy: 
 
See When is the policy imposed? 
 
Validation Claim -- Performance: 
 
“In addition, applications in Proxos incur only modest performance overhead, with 
most of the cost resulting from inter-VM context switches.” 



 
Validation Claim -- Security: 
 
“Consequently, the application developer is able to remove the entire commodity 
OS from the TCB of their application while maintaining reasonable performance.” 
 
Validation --  
 
 

BrowserShield, OSDI 2006 - 

 
Where is the policy enforced? -- Application: 
 
“We avoid this undecidability problem by rewriting web pages and any embedded 
scripts into safe equivalents, inserting checks so that the filtering is done at 
run-time. The rewritten pages contain logic for recursively applying run-time 
checks to dynamically generated or modified web content, based on known 
vulnerabilities.” 
 
When is the policy imposed? -- Dynamically: 
 
“To this end, we have designed BrowserShield, a system that performs dynamic 
instrumentation of embedded scripts and that admits policies for changing web 
page behavior. A vulnerability signature is one such policy, which sanitizes web 
pages according to a known vulnerability.” 
 
What is protected by the policy? (fine grained) -- Memory, Code/Instructions, 
User Data: 
 
“The BrowserShield design is focused on HTML, script, and ActiveX controls, and it 
can successfully handle all 12 of these vulnerabilities. This includes vulnerabilities 
where the underlying programmer error is at a higher layer of abstraction than a 
buffer overrun, e.g., a cross-domain scripting vulnerability.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
“Because BrowserShield protects web browsers by transforming their inputs, not 
the browser itself, the BrowserShield logic injector can be deployed at client or 
edge firewalls, browser extensions, or web publishers that republish third-party 
content such as ads.” 
 



Requirements of the person applying the sandbox -- Write a Policy, Install a 
Tool: 
 
See When is the policy imposed? and What is protected by the policy? (coarse 
grained) 
 
Requirements of the application -- None: 
 
See Validation Claim -- Security 
 
Security Policy Type -- User-defined Policy: 
 
“Policy functions are given the chance to inspect and modify script behavior at all 
interposition points, including property reads and writes, function and method 
invocations, and object creations. We also allow policy writers to introduce new 
global state and functions as part of the global bshield object, or introduce local 
state and methods for all objects or for specific objects.” 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See When is the policy imposed? 
 
Policy Management -- No management: 
 
None specified 
 
Policy Construction -- Manually written policy: 
 
See Security Policy Type 
 
Validation Claim -- Security: 
 
“We have designed BrowserShield to adhere to well established principles for 
protection systems: complete interposition of the underlying resource (i.e., the 
HTML document tree), tamper-proofness and transparency [3, 10, 33].” 
 
Validation Claim -- Performance: 
 
“We evaluated BrowserShield’s performance on realworld pages containing over 
125 KB of JavaScript. Our evaluation shows a 22% increase in firewall CPU 
utilization, and client rendering latencies that are comparable to the original page 
latencies for most page.” 
 



Validation -- Case Studies (Security): 
 
“We evaluated BrowserShield’s ability to protect IE against all critical 
vulnerabilities for which Microsoft released patches in 2005 [1]. Of the 29 critical 
patches that year, 8 are for IE, corresponding to 19 IE vulnerabilities.” 
 
Validation -- Case Study (Performance): 
 
“We evaluated BrowserShield’s performance by scripting multiple IE clients to 
download web pages (and all their embedded objects) through an ISA server 
running the BrowserShield firewall plugin.” 
“We designed microbenchmarks to measure the overhead of individual JavaScript 
operations after translation.” 
“We designed macrobenchmarks to measure the overall client experience when 
the BrowserShield framework is in place.” 
 
Validation -- Public Data (Security): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Zeldovich, OSDI 2006 - 

 
Where is the policy enforced? -- System: 
 
“HiStar is a new operating system designed to minimize the amount of code that 
must be trusted. HiStar provides strict information flow control, which allows 
users to specify precise data security policies without unduly limiting the structure 
of applications.” 
 
When is the policy imposed? -- Statically: 
 
See Where is the policy imposed? 
 
What is protected by the policy? (fine grained) -- Files, Memory, 
Communication, Code/Instruction, User Data: 
 
See Validation Claim -- Security, Performance 



 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
“HiStar tracks and enforces information flow using Asbestos labels [5]. All 
operating system abstractions are layered on top of six low-level kernel object 
types described in the next section—threads, address spaces, segments, gates, 
containers, and devices. Every object has a label. The label specifies, for each 
category of taint, whether the object has untainting privileges for that category 
(threads and gates can have such privileges), and, if not, how tainted the object is 
in that category.” 
 
Requirements of the person applying the sandbox -- Write a Policy: 
 
“The equivalent of setting Unix permissions bits is for Bob to allocate two 
categories, br and bw , to restrict read and write access to his files, respectively. 
Bob labels his data {br 3, bw 0, 1}.” 
 
Requirements of the application -- None: 
 
NOTE: To most effectively use HiStar an application needs to be decomposed into 
components of different privileges, but this is not a requirement to use HiStart. 
 
Security Policy Type -- User-defined Policy: 
 
See Requirements of the person applying the sandbox 
 
Policy enforcements place in kill chain -- Pre/Post-exploit: 
 
See What is protected by the policy? (coarse grained) 
 
Policy Management -- No management: 
 
“SELinux [11] lets Linux support MAC; like most MAC systems, policy is centrally 
specified by the administrator. In contrast, HiStar lets applications craft policies 
around their own categories of information.” 
 
Policy Construction -- Manually written policy: 
 
See Requirements of the person applying the sandbox 
 
Validation Claim -- Security, Performance: 
 



“HiStar’s security features make it possible to implement a Unix-like environment 
with acceptable performance almost entirely in an untrusted user-level library. 
The system has no notion of superuser and no fully trusted code other than the 
kernel.” 
 
Validation -- Case Studies (Security): 
 
“This section presents some applications that take advantage of HiStar to provide 
security guarantees not achievable on typical Unix systems.” 
 
Validation -- Argumentation (Security): 
 
“An object’s label controls information flow to and from the object. In particular, 
the kernel interface was designed to achieve the following property: 
The contents of object A can only affect object B if, for every category c in which A 
is more tainted than B, a thread owning c takes part in the process.” 
 
Validation -- Benchmark Suite/Case Studies (Performance): 
 
“To evaluate the performance of specific aspects of Hi-Star, we chose four 
microbenchmarks: LFS small-file and large-file benchmarks [20], an IPC 
benchmark which measures the latency of communication over a Unix pipe, and a 
fork/exec benchmark that measures the latency of executing /bin/true using fork 
and exec.” 
“For an application-level benchmark, we built the HiStar kernel using GNU make 
3.80 and GCC 3.4.5 on the three operating systems; Figure 13 summarizes the 
results.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

XFI, OSDI 2006 - 

 
Where is the policy enforced? -- Application: 
 
“For this purpose, XFI combines static analysis with inline software guards and a 



two-stack execution model. We have implemented XFI for Windows on the x86 
architecture using binary rewriting and a simple, stand-alone verifier; the 
implementation’s correctness depends on the verifier, but not on the rewriter.” 
 
When is the policy imposed? -- Static: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Memory, Code/Instructions: 
 
“An XFI module complies with the following policy in its interactions with its 
system environment: 
P1 Memory-access constraints: Memory accesses are either into (a) the memory of 
the XFI module, such as its global variables, or (b) into contiguous memory regions 
to which the host system has explicitly granted access. … 
P2 Interface restrictions: Control can never flow outside the module’s code, except 
via calls to a set of prescribed support routines, and via returns to external 
call-sites. ... 
P3 Scoped-stack integrity: The scoped stack is always 
well formed. ... 
P4 Simplified instruction semantics: Certain machine-code instructions can never 
be executed. 
P5 System-environment integrity: Certain aspects of the system environment, 
such as the machine model, are subject to invariants. For instance, the x86 
segment registers cannot be modified, nor can the x86 flags register—except for 
condition flags, which contain results of comparisons. 
P6 Control-flow integrity: Execution must follow a static, expected control-flow 
graph, even on computed calls and jumps. 
tions must return to their callers. 
P7 Program-data integrity: Certain module-global and function-local variables can 
be accessed only via static references from the proper instructions in the XFI 
module.” 
 
What is protected by the policy? (coarse grained) -- Targeted Application: 
 
“We produce XFI binary modules from Windows x86 executables with a rewriter 
based on the Vulcan library [37]; XFI rewriters could as easily be created using 
similar libraries for other architectures [37, Section 7].” 
 
Requirements of the person applying the sandbox -- Run a tool: 
 
See What is protected by the policy? (coarse grained) 
 



Requirements of the application -- Have compiler introduce metadata: 
 
“Although our x86 rewriter requires neither recompilation nor source-code access, 
it makes use of debug information (PDB files), for instance to distinguish code 
from data.” 
 
Security Policy Type -- Fixed Policy: 
 
See What is protected by the policy? (fine grained) 
 
Policy enforcements place in kill chain -- Pre-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See What is protected by the policy? (fine grained) 
 
Validation Claim -- Applicability: 
 
“We have applied XFI to software such as device drivers and multimedia codecs.” 
 
Validation Claim -- Security, Performance: 
 
“The resulting modules function safely within both kernel and user-mode address 
spaces, with only modest enforcement overheads.”  
 
Validation -- Argumentation (Security): 
 
“As discussed in Section 3, the correctness of XFI protection depends on the 
load-time verification of XFI modules. Our verifier was written from scratch and is 
self-contained. In particular, it is independent from our rewriter, and from any 
specific strategy for creating XFI modules. It is 3000 lines of straightforward, 
commented C++ code, most of which are tables for x86 opcode decoding. The 
verifier needs only a basic understanding of x86 behavior, modeling nothing more 
complex than integer comparisons and how instructions copy registers. Its 
simplicity contributes to our confidence in the verifier.” 
 
Validation -- Case Studies (Applicability): 



 
“XFI has a wide range of potential applications. To date, we have applied our XFI 
implementation to dynamic libraries, device drivers, and multimedia codecs. In 
this section we describe some of these applications; for brevity, we focus on device 
drivers.” 
 
Validation -- Benchmark Suite/Case Studies (Performance): 
 
“We applied our x86 XFI implementation to WDF device drivers, SFI benchmarks 
[36], the JPEG decoder [20], and Mediabench kernels [22], all compiled using 
Microsoft VC++ 8.0, with optimizations.” 
 
Validation -- Public Data (Performance): 
 
See other validation quotes. 
 
Availability -- Not Available: 
 
No mention in paper 
 
 

Efstathopoulos, SOSP 2005 - 

 
Where is the policy enforced? -- System: 
 
“Asbestos, a new prototype operating system, provides novel labeling and isolation 
mechanisms that help contain the effects of exploitable software flaws.” 
 
When is the policy imposed? -- Statically: 
 
See Requirements of the application 
 
What is protected by the policy? (fine grained) -- Files, Communication, User 
Data: 
 
“Applications can express a wide range of policies with Asbestos’s kernel-enforced 
label mechanism, including controls on inter-process communication and 
system-wide information flow. A new event process abstraction provides 
lightweight, isolated contexts within a single process, allowing the same process to 
act on behalf of multiple users while preventing it from leaking any single user’s 
data to any other user.” 
 



What is protected by the policy? (coarse grained) -- Targeted Application:  
 
See Requirements of the application 
 
Requirements of the person applying the sandbox -- None:  
 
See Requirements of the application (the policy is set by the application dev and 
carried with the application) 
 
Requirements of the application -- Use the sandbox as a framework/library: 
 
“Figure 3 summarizes the notation developed in earlier sections, and Figure 4 gives 
the final versions of the label operations associated with the send, new port, and 
set port label system calls.” 
“Appropriate access is defined by an application policy: the application defines 
which of its parts should be isolated, and how.” 
 
Security Policy Type -- Application-defined Policy: 
 
See Requirements of the application 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
See Where is the policy enforced? 
 
Policy Management -- No management: 
 
None specified 
 
Policy Construction -- Encoded in the logic of the application: 
 
See Requirements of the application 
 
Validation Claim -- Security: 
 
See Where is the policy enforced? 
 
Validation Claim -- Performance: 
 
“A Web server that uses Asbestos labels to isolate user data requires about 1.5 
memory pages per user, demonstrating that additional security can come at an 
acceptable cost.” 
 



Validation -- Case Study (Performance): 
 
“The performance measurements were conducted on a gigabit local network with a 
Linux HTTP client generating requests.” 
 
Availability -- Not Available: 
 
No mention in paper 
 

Terra, SOSP 2003 - 

 
Where is the policy enforced? -- System: 
 
“Terra achieves this synthesis by use of a trusted virtual machine monitor (TVMM) 
that partitions a tamper-resistant hardware platform into multiple, isolated 
virtual machines (VM), providing the appearance of multiple boxes on a single, 
general-purpose platform.” 
 
When is the policy imposed? -- Dynamically: 
 
See Where is the policy enforced? 
 
What is protected by the policy? (fine grained) -- Files, Communication, User 
Data: 
 
“To each VM, the TVMM provides the semantics of either an “open box,” i.e. a 
general-purpose hardware platform like today’s PCs and workstations, or a “closed 
box,” an opaque special-purpose platform that protects the privacy and integrity 
of its contents like today’s game consoles and cellular phones.” 
 
What is protected by the policy? (coarse grained) -- Class of Applications: 
 
NOTE: Terra is general purpose and can therefore be used for essentially any 
software system. 
 
“The TVMM mechanisms allow Terra to partition the platform into multiple, 
isolated VMs. Each VM can tailor its software stack to its security and compatibility 
requirements.” 
 
Requirements of the person applying the sandbox -- Install a Tool:  
 
See​ ​What is protected by the policy? (coarse grained) 



 
Requirements of the application -- None: 
 
See​ ​What is protected by the policy? (coarse grained) 
 
Security Policy Type -- Fixed Policy: 
 
See What is protected by the policy? (fine grained) 
 
Policy enforcements place in kill chain -- Post-exploit: 
 
See What is protected by the policy? (fine grained) 
 
Policy Management -- No management: 
 
Fixed Policy 
 
Policy Construction -- Encoded in the logic of the sandbox: 
 
See What is protected by the policy? (fine grained) 
 
Validation Claim -- Security, Applicability: 
 
“Our architecture, called Terra, provides a simple and flexible programming model 
that allows application designers to build secure applications in the same way they 
would on a dedicated closed platform.” 
 
Validation -- Argumentation/Case Studies (Security, Applicability): 
 
“In this section we describe the Terra prototype and provide an in-depth 
discussion of several applications that we built using the prototype. We also look at 
how these applications demonstrate the capabilities and the limitations of the 
closed-box abstraction that Terra provides.” 
 
Availability -- Not Available: 
 
No mention in paper 
 


