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5 Diána Knipl,1 Gergely Röst,2 Seyed M. Moghadas3,∗
6

7

1Department of Mathematics, University College London, London WC1E 6BT, United Kingdom8

2Bolyai Institute, University of Szeged, 6720 Szeged, Hungary9

3Agent-Based Modelling Laboratory, York University, Toronto, ON M3J 1P3, Canada10

∗ corresponding author (moghadas@yorku.ca)11

12

13

This supplemental information provides details of a more general model with14

additional theoretical arguments and simulations supporting the results presented in15

the main text.16

Details of the full model17

Recruitment of individuals into the population is included through the compartment18

S at a constant rate µ, and therefore the model does not include any additional sources19

of infection from outside the population. We include treatment into our model with20

the delay τ for all infectious individuals who have not been recovered. Drug-resistance21

may develop as a result of treatment failure, which occurs with the probability q(τ) as22

a function of delay in start of treatment. New infections are modelled by mass-action23
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incidence with the baseline transmission rate β for the wild-type infection. Direct24

transmission of the resistant-type infection occurs at the rate δβ, where δ denotes the25

relative transmission fitness of the resistant-type compared with the wild-type. We26

assume the same recovery rate γ for both the wild-type and resistant-type infections.27

Since treatment is ineffective against resistant infection, individuals infected with28

the resistant-type in the Ir class remain infectious until recovery or death. However,29

individuals infected with the wild-type in the Iw class will be treated at time τ (before30

recovery or death), and are successfully treated with the probability of 1− q(τ). We as-31

sume that these individuals are non-infectious, and therefore move to a non-infectious32

(recovered) class T. A fraction q(τ) of treated individuals will develop resistance and33

move to the Ir class. The class T accumulates recovered individuals as well as those34

who are successfully treated from the wild-type infection. Here, we consider a more35

general case of the model presented in the main text where the average lifetime may36

differ between infectious and healthy individuals as a result of disease-induced death.37

We represent these two rates with µ and µd for infectious and healthy individuals, re-38

spectively. Thus the infection dynamics in time t is governed by the following system39

of differential equations :40

S′(t) = µ− βS(t)[Iw(t) + δIr(t)]− µS(t),

I′w(t) = βS(t)Iw(t)− βS(t− τ)Iw(t− τ)e−(µd+γ)τ − γIw(t)− µd Iw(t),

I′r(t) = δβS(t)Ir(t) + q(τ)βS(t− τ)Iw(t− τ)e−(µd+γ)τ − γIr(t)− µd Ir(t),

T′(t) = (1− q(τ))βS(t− τ)Iw(t− τ)e−(µd+γ)τ + γ[Iw(t) + Ir(t)]− µT(t).

(1)

Note that the term −βS(t− τ)Iw(t− τ)e−(µd+γ)τ corresponds to the treatment of in-41

dividuals who have become infectious at time t− τ and receive treatment at time t,42

assuming that they have not been removed from the Iw class upon recovery or death.43

Since treatment is ineffective against the resistant-type infection, we have omitted the44

treatment term in the Ir class, while they are treated without moving out of this class45

due to treatment. Without loss of generality, we assume that the initial size of the46

total population is S(0) + Iw(0) + Ir(0) + T(0) = 1. Since the dynamics of infection is47

independent of variable T, we have dropped the equation for T in the model analysis48

discussed in the main text and detailed here.49
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Equilibria analysis50

In model (1), the reproduction numbers take the form:

R1 = R0
(
1− e−(µd+γ)τ

)
, δR2 = δq(τ)R0e−(µd+γ)τ, R3 = δR0.

When R3 > 1, there is a resistant-type equilibrium Er = (0, Îr), where51

Îr =
µ

µd + γ

(
1− 1

R3

)
.

If δ ≥ 1 (R3 ≥ R0), Er is the only equilibrium at which the disease is present. For52

δ < 1, Er is the only infection equilibrium if τ < τ0, where53

τ0 = − log(1− δ)

µd + γ

and R1(τ0) = R3. At τ0, the cotype equilibrium E∗ = (I∗w, I∗r ) emerges whose infection54

components are55

I∗r =
µ

µd + γ

(
R2(R1 − 1)

R0(R1 − R3) + R2R3

)
, I∗w =

µ

µd + γ

(
(R1 − R3)(R1 − 1)

R0(R1 − R3) + R2R3

)
.

In this case, for τ > τ0, the model has both resistant-type and cotype equilibria.56

Let G(τ) = I∗w(τ) + I∗r (τ) denote the fraction of population infectious at the cotype57

equilibrium (as a function of τ) for R0 > R1 > R3 > 1. It is easy to see that58

G∞ = lim
τ→∞

G(τ) =
µ

µd + γ

(
1− 1

R0

)
.

We claim that G(τ) < G∞ for any τ > τ0. To prove our claim, we show59

(R1 − 1)(R1 + R2 − R3)

R0(R1 − R3) + R2R3
< 1− 1

R0

which is equivalent to60

R0(R1 − 1)(R1 + R2 − R3) < (R0 − 1)[R0(R1 − R3) + R2R3]. (2)
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Expanding both sides and using R2R3 < R0R2, it is sufficient to show61

R0R1R2 + R0R2
1 + R2

0R3 < R2
0R1 + R0R2R3 + R0R1R3.

Substituting from the expression for R1, R2, and R3 in terms of R0, we get62

(1− e−(µd+γ)τ)q(τ)e−(µd+γ)τ + (1− e−(µd+γ)τ)2 + δ <δq(τ)e−(µd+γ)τ

+ (1 + δ)(1− e−(µd+γ)τ).

Rearranging this inequality gives (1− e−(µd+γ)τ − δ)(1− q(τ))e−(µd+γ)τ > 0, which63

holds if and only if δ < 1− e−(µd+γ)τ. Since R3 < R1, the inequality (2) holds and our64

claim is proven.65

We now provide the details of calculation to obtain the inequality (4) in the main66

text when δ < 1. The derivative of the infection component of the resistant-type is67

d
dτ

I∗r (τ0) =
µ

q(τ0)R3

[
R2 − R0

(
1− 1

R3

)]
. (3)

Using the equation (3) in the main text, we have68

G′(τ0) =
(µd + γ)

q(τ0)

[ µ

µd + γ

(
1− 1

R3

)]
+

µ

q(τ0)R3

[
R2 − R0

(
1− 1

R3

)]
=

µ

q(τ0)R3

[
R2 − (R3 − 1)

(1
δ
− 1
)]

.

Since R1(τ0) = R3, it follows that e−(µd+γ)τ0 = 1− δ, and therefore R2 = q(τ0)R0(1−69

δ). Thus,70

G′(τ0) =
µ

q(τ0)

[R2

R3
−
(

1− 1
R3

)(1
δ
− 1
)]

=
µ

q(τ0)

[
q(τ0)

(1
δ
− 1
)
−
(

1− 1
R3

)(1
δ
− 1
)]

=
µ

q(τ0)

(1
δ
− 1
)(

q(τ0)− 1 +
1

R3

)
.
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The above theoretical arguments also apply to the model presented in the main text71

in which µ = µd, from which the condition (4) in the main text is derived.72

Final size for the epidemic case73

For the epidemic scenario with µ = µd = 0, we let Jw represent the total number of74

individuals infected with the wild-type throughout the epidemic. The probability of75

receiving treatment is e−γτ, and therefore the total number of the wild-type infections76

recovered before receiving treatment is given by77

(1− e−γτ)Jw = γ
∫ ∞

0
Iw(t)dt (4)

Given the probability q(τ) for developing resistance, the total number of the wild-78

type infections who are effectively treated is (1− q(τ))e−γτJw. Thus, the total num-79

ber of the wild-type infections who recover without developing resistance is80

γ(1− q(τ))
e−γτ

1− e−γτ

∫ ∞

0
Iw(t)dt + γ

∫ ∞

0
Iw(t)dt

=
γ(1− q(τ)e−γτ)

1− e−γτ

∫ ∞

0
Iw(t)dt.

(5)

Adding this to the total number of individuals recovered from the resistant-type81

infection gives the total number of infection presented by F in the main text.82

Probability of developing resistance83

In this section, we provide the functional forms of the probability of developing re-84

sistance. Figure S1 represents q(τ) for the results of cotype equilibrium presented in85

Figure 3(A) of the main text. The probability of developing resistance is given by86

q(τ) =
2e−aτ

1 + e−2(τ−1)
, for a > 0.

We used a = 1.5 (Figure S1, solid curve) and a = 0.5 (Figure S1, dashed curve) for87

simulations presented in Figure 3(A) of the main text.88
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Figure S1: Probability of developing resistance as a function of delay in start of treat-
ment. Parameters are: R0 = 3, µ = µd = 1/70 year−1, γ = 1/5 day−1, δ = 0.4,
τ0 = 2.55 days, and τ1 = 3.4 days. The probability of developing resistance is given by
q(τ) = 2e−aτ/(1 + e−2(τ−1)) with a = 1.5 (Solid magenta curve) and a = 0.5 (dashed
magenta curve).

To illustrate the possible behaviour of the cotype equilibrium presented in Figure89

3(B) of the main text, we used the following functional form of q(τ):90

q(τ) =

0.6 if τ ≤ τ0 − 0.06

0.6e−2(τ−τ0+0.06) if τ > τ0 − 0.06

To simulate the model for epidemic final size without demographics, we used the91

following functional forms of the probability of developing resistance:92

1. Figure 4(A) of the main text93

q(τ) =
15e−2τ

1 + e−2(τ−2)
, corresponding to the red curve in Figure S2;

2. Figure 4(B) of the main text94

q(τ) =
2e−τ

1 + e−5(τ−1.5)
, corresponding to the black curve in Figure S2;

3. Figure 4(C) of the main text95
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q(τ) =
0.25

1 + e−2(τ−2)
, corresponding to the blue curve in Figure S2.
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Figure S2: Probability of developing resistance with delay in start of treatment,
corresponding to the epidemic final sizes presented in Figure 4 of the main text.
Colour curves correspond to q(τ) = 15e−2τ/(1 + e−2(τ−2)) (red; Figure 4A of the
main text); q(τ) = 2e−τ/(1 + e−5(τ−1.5)) (black; Figure 4B of the main text); and
q(τ) = 0.25/(1 + e−2(τ−2)) (blue; Figure 4C of the main text).

For each curve presented in Figure S2, we plotted the final size of epidemic and96

the fraction of infected population treated in a pairwise coordinate for different trans-97

mission fitness of the resistant-type (Figure S3). The corresponding curves show that98

for some functional forms of q(τ), it is possible to achieve the same final size with dif-99

ferent fractions of infected population treated, which is achieved with different delays100

in start of the treatment during the infectious period. Two specific cases for different101

functional forms of q(τ) and δ = 0.48 are illustrated in Figure 5 of the main text.102
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Figure S3: Illustration of parametric curves (F(τ),e−γτF(τ)) for the epidemic final size
and the fraction of infected population treated, with τ as an independent variable.
Parameters are: R0 = 3, γ = 1/5 day−1 when τ varies between 0 and 1/γ = 5. The
probability of developing resistance has the functional forms (A): q(τ) = 15e−2τ/(1+
e−2(τ−2)); (B): q(τ) = 2e−τ/(1 + e−5(τ−1.5)); and (C) q(τ) = 0.25/(1 + e−2(τ−2)).
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