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This supplemental information provides details of a more general model with
additional theoretical arguments and simulations supporting the results presented in

the main text.

Details of the full model

Recruitment of individuals into the population is included through the compartment
S at a constant rate y, and therefore the model does not include any additional sources
of infection from outside the population. We include treatment into our model with
the delay 7 for all infectious individuals who have not been recovered. Drug-resistance
may develop as a result of treatment failure, which occurs with the probability q(7) as

a function of delay in start of treatment. New infections are modelled by mass-action
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incidence with the baseline transmission rate B for the wild-type infection. Direct
transmission of the resistant-type infection occurs at the rate 8, where é denotes the
relative transmission fitness of the resistant-type compared with the wild-type. We
assume the same recovery rate <y for both the wild-type and resistant-type infections.

Since treatment is ineffective against resistant infection, individuals infected with
the resistant-type in the I, class remain infectious until recovery or death. However,
individuals infected with the wild-type in the I, class will be treated at time T (before
recovery or death), and are successfully treated with the probability of 1 — g(t). We as-
sume that these individuals are non-infectious, and therefore move to a non-infectious
(recovered) class T. A fraction q(7) of treated individuals will develop resistance and
move to the I, class. The class T accumulates recovered individuals as well as those
who are successfully treated from the wild-type infection. Here, we consider a more
general case of the model presented in the main text where the average lifetime may
differ between infectious and healthy individuals as a result of disease-induced death.
We represent these two rates with p and p,; for infectious and healthy individuals, re-
spectively. Thus the infection dynamics in time ¢ is governed by the following system

of differential equations :

) = p— BS(H)[Lw(t) + L (t)] — puS(t),

) = BS(8) k() = BS(t = T (t — T)e™ MHNT — Iy (1) — palu(t), o
) = 6BS(E)T;(£) + () BS(t — T) L (t — T)e” Fat DT — 4L (£) — pal, (t),

) = (1= 4(0)BS(t = D) Iw(t — T)e MmN 4y [Iy () + 1(5)] = uT(1).

Note that the term —BS(t — 7)I,(t — T)e~ #+7)T corresponds to the treatment of in-
dividuals who have become infectious at time t — T and receive treatment at time ¢,
assuming that they have not been removed from the I, class upon recovery or death.
Since treatment is ineffective against the resistant-type infection, we have omitted the
treatment term in the I, class, while they are treated without moving out of this class
due to treatment. Without loss of generality, we assume that the initial size of the
total population is S(0) + I,(0) + I;(0) + T(0) = 1. Since the dynamics of infection is
independent of variable T, we have dropped the equation for T in the model analysis

discussed in the main text and detailed here.
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Equilibria analysis
In model (1), the reproduction numbers take the form:
Ry = Rp(1—e atM7), §Ry = dq(T)Roe” H+1T, Ry = 4Ry,

When Rj > 1, there is a resistant-type equilibrium E, = (0, IAr), where

~ i 1
I, = 1——).
" Haty ( R3)
If 5 > 1 (R3 > Rp), E, is the only equilibrium at which the disease is present. For

6 < 1, E, is the only infection equilibrium if T < 1y, where

_log(1—9)
Ha+

and Ri1(79) = Rs3. At 79, the cotype equilibrium E* = (I}, ) emerges whose infection

Ty =

components are

o H Ry(Ri —1) o M (R1 —R3)(Ry —1)
" wg+7\Ro(Ri —R3)+RaR3 )" ™  pg+9\ Ro(R1 — R3) + RyR3
In this case, for T > T, the model has both resistant-type and cotype equilibria.

Let G(t) = I}(t) + I;(T) denote the fraction of population infectious at the cotype
equilibrium (as a function of 7) for Rg > Ry > R3 > 1. It is easy to see that

1 _ K 1
Gw_rlg%oG(T)_yd—i—'y(l R())'

We claim that G(7) < Ge for any T > 1. To prove our claim, we show

(Ri-1)(Ri+R—Ry) _ 1
Ro(R1; — R3) + RoR3 Ry
which is equivalent to
R()(Rl — 1)(R1 + Ry — R3) < (R() — 1)[R0(R1 — Rg) + R2R3]. (2)
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Expanding both sides and using RyR3 < RoRy, it is sufficient to show

RoRiR; + RgR? + R3R3 < R3R; + RoRoR3 + RoR;Rs.

Substituting from the expression for Ry, Ry, and R3 in terms of Ry, we get

(1 — e~ HatNT)g(7)e™ MatNT (1 — o= Hat)TY2 4§ < 5g(T)e™ (Hat)T
+ (1406)(1 — e~ (Hat)T),

Rearranging this inequality gives (1 — e~ (#+71)7 — §)(1 — g(1))e~ (a+1)T > 0, which
holds if and only if § < 1 — e~ (H*+7)7_ Since R3 < Ry, the inequality (2) holds and our
claim is proven.

We now provide the details of calculation to obtain the inequality (4) in the main

text when § < 1. The derivative of the infection component of the resistant-type is

00~ gl - )]

Using the equation (3) in the main text, we have

G/(TO):(derv)[ n (1 1>}+ K [RZ—R0<1_i>}

9(t) lpa+7\" Rs q(10)R3 R3
1
= q(Tgl)Rg, Ra— (Rs=1)(5-1)].

Since R (1) = R, it follows that e~ (#4t7)™ = 1 — §, and therefore Ry = q(79)Ro(1 —
d). Thus,

o= g[8 (- 2) ()]
- il (1)~ (- 2)( )]

-1
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The above theoretical arguments also apply to the model presented in the main text

in which y = p4, from which the condition (4) in the main text is derived.

Final size for the epidemic case

For the epidemic scenario with y = p; = 0, we let _¢#;, represent the total number of
individuals infected with the wild-type throughout the epidemic. The probability of
receiving treatment is e~ 77, and therefore the total number of the wild-type infections

recovered before receiving treatment is given by

(=) Su=7 [ Lu(t)dt 4)

Given the probability q(7) for developing resistance, the total number of the wild-
type infections who are effectively treated is (1 — q(7))e™7"_#. Thus, the total num-

ber of the wild-type infections who recover without developing resistance is
e 1T [e9] 00
10— () [ dt+y [ L

(1—gq(r)e7) [
_ 7 1_’4;;; /0 Lo (t) dt.

(5)

Adding this to the total number of individuals recovered from the resistant-type

infection gives the total number of infection presented by F in the main text.

Probability of developing resistance

In this section, we provide the functional forms of the probability of developing re-
sistance. Figure S1 represents g(7) for the results of cotype equilibrium presented in

Figure 3(A) of the main text. The probability of developing resistance is given by

zefm'
T 1t e 21
We used a = 1.5 (Figure S1, solid curve) and a = 0.5 (Figure S1, dashed curve) for

q(T) for a > 0.

simulations presented in Figure 3(A) of the main text.
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Figure S1: Probability of developing resistance as a function of delay in start of treat-
ment. Parameters are: Ry = 3, 4 = pug = 1/70 year !, v = 1/5 day !, § = 04,
Tp = 2.55 days, and 171 = 3.4 days. The probability of developing resistance is given by
q(t) = 2e7°7/(1 + e 2(7=1) with a = 1.5 (Solid magenta curve) and a = 0.5 (dashed
magenta curve).

To illustrate the possible behaviour of the cotype equilibrium presented in Figure

3(B) of the main text, we used the following functional form of g(7):

0.6 if T <19—0.06
q(1) =
0.6~ 2T=0+0.06) if T > 7, —0.06
To simulate the model for epidemic final size without demographics, we used the

following functional forms of the probability of developing resistance:

1. Figure 4(A) of the main text

15¢—27

10 =15 ey

corresponding to the red curve in Figure S2;

2. Figure 4(B) of the main text

2e 7

T 14 e5(i-15) corresponding to the black curve in Figure S2;

q(7)

3. Figure 4(C) of the main text
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T 1422 corresponding to the blue curve in Figure S2.
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Figure S2: Probability of developing resistance with delay in start of treatment,
corresponding to the epidemic final sizes presented in Figure 4 of the main text.
Colour curves correspond to g(t) = 15¢727/(1 + e 2(72)) (red; Figure 4A of the
main text); g(t) = 2 7/(1 + e 5(""15) (black; Figure 4B of the main text); and
q(t) = 0.25/(1 + e 2(=2)) (blue; Figure 4C of the main text).

For each curve presented in Figure 52, we plotted the final size of epidemic and
the fraction of infected population treated in a pairwise coordinate for different trans-
mission fitness of the resistant-type (Figure S3). The corresponding curves show that
for some functional forms of g(7), it is possible to achieve the same final size with dif-
ferent fractions of infected population treated, which is achieved with different delays
in start of the treatment during the infectious period. Two specific cases for different

functional forms of q(7) and § = 0.48 are illustrated in Figure 5 of the main text.
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Figure S3: Illustration of parametric curves (F(7),e”""F(7)) for the epidemic final size
and the fraction of infected population treated, with T as an independent variable.
Parameters are: Ry = 3, v = 1/5 day ! when 7 varies between 0 and 1/ = 5. The
probability of developing resistance has the functional forms (A): g(t) = 1527 /(1 +
e=2(1=2)); (B): g(1) = 2677/ (1 + ¢ 3(7=19)); and (C) q(7) = 0.25/(1 4 e 2(7-2)),
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