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Appendix S1 
 

1. The simulation models 
 

In both simulation models the abundance 𝑦𝑦𝑖𝑖𝑖𝑖 of species j with trait value 𝑡𝑡𝑗𝑗 in 
community i with environmental value 𝑒𝑒𝑖𝑖 is drawn from a negative-binomial 
distribution NBI(𝜇𝜇𝑖𝑖𝑖𝑖, 𝜎𝜎, 𝜈𝜈) with mean parameter 𝜇𝜇𝑖𝑖𝑖𝑖, overdispersion parameter 1, 
giving variance function 𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖2 .  

1.1 The Gaussian response model 

Since Swan (1970), many numerical ecologists have evaluated their numerical and 
statistical methods using the Gaussian response model, and so did Dray and Legendre 
(2008), ter Braak et al.(2012) and Peres Neto et al. (2016) in evaluating the fourth-
corner correlation and the Community Weigthed Means approach. In our simulations, 
the expected abundance 𝜇𝜇𝑖𝑖𝑖𝑖 of species j with trait value 𝑧𝑧𝑗𝑗∗ in community i with 
environmental value 𝑥𝑥𝑖𝑖∗ is 
 

𝜇𝜇𝑖𝑖𝑖𝑖 = ℎ𝑗𝑗 exp [−
�𝑥𝑥𝑖𝑖

∗−𝑧𝑧𝑗𝑗
∗�
2

2𝜎𝜎𝑗𝑗
2 ],  (A.1) 

where 
• ℎ𝑗𝑗  is the maximum value of species j which is drawn from the uniform 

distribution on the interval [3,10], i.e. ℎ𝑗𝑗~𝑈𝑈(3,10). 
• 𝜎𝜎𝑗𝑗 is the tolerance of species j which is drawn from the uniform distribution on 

the interval [0,2], i.e. 𝜎𝜎𝑗𝑗~𝑈𝑈(0,2).  
 
In the simulations, 𝑧𝑧𝑗𝑗∗~𝑁𝑁(0,1), and 𝑥𝑥𝑖𝑖∗~𝑁𝑁(0,1), so the setting of 𝜎𝜎𝑗𝑗 gives at least for 
some species visible unimodal response to x* in the data.  
 
The observed trait value 𝑡𝑡𝑗𝑗 and observed environmental value 𝑒𝑒𝑖𝑖 are generated as a 
combination of the trait and environmental variable used to generate the expected 
abundance (𝑧𝑧𝑗𝑗∗ and 𝑥𝑥𝑖𝑖∗) and new, independent normal draws 𝑧𝑧𝑗𝑗~𝑁𝑁(0,1) and 
𝑥𝑥𝑖𝑖~𝑁𝑁(0,1): 
 
𝑡𝑡𝑗𝑗 = 𝜌𝜌𝑡𝑡𝑧𝑧𝑗𝑗∗ + �(1 − 𝜌𝜌𝑡𝑡2)𝑧𝑧𝑗𝑗 and 𝑒𝑒𝑖𝑖 = 𝜌𝜌𝑒𝑒𝑥𝑥𝑖𝑖∗ + �(1 − 𝜌𝜌𝑒𝑒2)𝑥𝑥𝑖𝑖, (A.2) 

 
so that 𝜌𝜌𝑡𝑡 and 𝜌𝜌𝑒𝑒 are correlations between the observed trait and observed 
environmental variable with the variables used to generate the expected abundance 
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values. In the ‘trait random’ case 𝜌𝜌𝑡𝑡 = 0 and 𝜌𝜌𝑒𝑒 = 1, in the ‘environment random’ 
case 𝜌𝜌𝑒𝑒 = 0 and 𝜌𝜌𝑡𝑡 = 1, and in the ‘both random case’ 𝜌𝜌𝑡𝑡 = 0 and 𝜌𝜌𝑒𝑒 = 0. The 
strength of the trait-environment association is in this model dependent on a number 
of parameters: 𝜌𝜌𝑒𝑒, 𝜌𝜌𝑡𝑡 and the parameters {𝜎𝜎𝑗𝑗}; the association is absent if 𝜌𝜌𝑡𝑡𝜌𝜌𝑒𝑒 = 0.  
 
In the ‘trait random’ case 𝜌𝜌𝑡𝑡 = 0 and 𝜌𝜌𝑒𝑒 = 1, so that 𝑡𝑡𝑗𝑗=𝑧𝑧𝑗𝑗 and 𝑒𝑒𝑖𝑖 = 𝑥𝑥𝑖𝑖∗, making the 
Gaussian model in Equation (A.1) equivalent with Equation (1) in the main text. 
 
The essential point in the data generation is that the observed trait (𝑡𝑡𝑗𝑗) and the variable 
(𝑧𝑧𝑗𝑗∗) used to generate the Gaussian model in Equation (A.1) are standard normals with 
correlation 𝜌𝜌𝑡𝑡, and a similarly for 𝑒𝑒𝑖𝑖 and 𝑥𝑥𝑖𝑖∗. In the R script, {𝑡𝑡𝑗𝑗} and {𝑒𝑒𝑖𝑖} are 
generated first and then {𝑥𝑥𝑖𝑖∗} and {𝑧𝑧𝑗𝑗∗} by addition of ‘noise’ variables 𝑧𝑧𝑗𝑗~𝑁𝑁(0,1) and 
𝑥𝑥𝑖𝑖~𝑁𝑁(0,1), using an equation similar to Equation A.2, 
 
𝑧𝑧𝑗𝑗∗ = 𝜌𝜌𝑡𝑡𝑡𝑡𝑗𝑗 + �(1 − 𝜌𝜌𝑡𝑡2)𝑧𝑧𝑗𝑗 and 𝑥𝑥𝑖𝑖∗ = 𝜌𝜌𝑒𝑒𝑒𝑒𝑖𝑖 + �(1 − 𝜌𝜌𝑒𝑒2)𝑥𝑥𝑖𝑖, (A.2) 

 
This set-up is easy to generalize to multi-trait observations without generalizing 
Equation A.1: 𝑡𝑡𝑗𝑗 is obtained by generating q trait values from a multivariate normal 
distribution 𝑁𝑁(𝟎𝟎, Σ), calculating a linear combination c and dividing by the standard 
deviation of the sum, (𝐜𝐜𝑇𝑇Σ𝐜𝐜)1/2. In the simulations, Σ = I𝑞𝑞 and 𝐜𝐜 = 𝟏𝟏𝒒𝒒𝑻𝑻 so that the 
linear combination is simply the sum. 

1.2 The log-linear simulation model 

The log-linear simulation model is a generalized linear mixed model with main effects 
and interactions. In this model the expected abundance 𝜇𝜇𝑖𝑖𝑖𝑖 of species j with trait value 
𝑡𝑡𝑗𝑗 in community i with environmental value 𝑒𝑒𝑖𝑖 is 

log�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝜇𝜇0 +  𝑅𝑅𝑖𝑖 + 𝐶𝐶𝑗𝑗 + 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑒𝑒𝑖𝑖 + 𝑏𝑏𝑧𝑧𝑧𝑧𝑧𝑧𝑗𝑗𝑒𝑒𝑖𝑖 + 𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑧𝑧𝑧𝑧∗ 𝑧𝑧𝑗𝑗∗𝑥𝑥𝑖𝑖∗ + 𝜖𝜖𝑖𝑖𝑖𝑖, (A.3) 

where 

• 𝜇𝜇0 is a parameter (intercept), 

• 𝑅𝑅𝑖𝑖 is the row main effect that is a function of i and/or 𝑒𝑒𝑖𝑖 only, 

•  𝐶𝐶𝑗𝑗 is the column main effect that is a function of j and/or 𝑡𝑡𝑗𝑗 only,  

• 𝑏𝑏𝑡𝑡𝑡𝑡, 𝑏𝑏𝑧𝑧𝑧𝑧, 𝑏𝑏𝑡𝑡𝑡𝑡, 𝑏𝑏𝑧𝑧𝑧𝑧∗  are parameters that govern the importance of the associated 
interaction terms, 

• 𝑧𝑧𝑗𝑗~𝑁𝑁(0,1) and 𝑧𝑧𝑗𝑗∗~𝑁𝑁(0,1), two independent normal random variables, that 
could represent two unobserved trait variables that are independent of the 
observed variable 𝑡𝑡𝑗𝑗. 

• 𝑥𝑥𝑖𝑖~𝑁𝑁(0,1) and 𝑥𝑥𝑖𝑖∗~𝑁𝑁(0,1), two independent normal random variables, that 
could represent two unobserved environmental variables that are independent 
of the observed variable 𝑒𝑒𝑖𝑖. 

• 𝜖𝜖𝑖𝑖𝑖𝑖~𝑁𝑁(0, 𝜎𝜎𝜖𝜖2), an independent normal random variable (with variance 𝜎𝜎𝜖𝜖2) that 
could represent unobserved full rank variation leading to overdispersion in the 
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abundance beyond the overdispersion via the conditional distribution of 𝑦𝑦𝑖𝑖𝑖𝑖 
given 𝜇𝜇𝑖𝑖𝑖𝑖.  

For the purpose of trait-environment association the key parameters are 𝑏𝑏𝑡𝑡𝑡𝑡, 𝑏𝑏𝑧𝑧𝑧𝑧, 𝑏𝑏𝑡𝑡𝑡𝑡 
and the most important distinction is whether 𝑏𝑏𝑡𝑡𝑡𝑡 = 0 or 𝑏𝑏𝑡𝑡𝑡𝑡 ≠ 0. If 𝑏𝑏𝑡𝑡𝑡𝑡 = 0, then the 
trait and the environment may influence abundance through the row and column 
effects 𝑅𝑅𝑖𝑖 and 𝐶𝐶𝑗𝑗, but there is no trait-environment association. However, if 𝑏𝑏𝑡𝑡𝑡𝑡 ≠ 0 
then there is trait-environment association. With the simulations, we investigated 
whether the statistical methods under investigation can measure the trait-environment 
association and whether the associated significance tests can detect it, in particular 
whether these tests are valid and useful to test the null hypothesis 𝐻𝐻0: 𝑏𝑏𝑡𝑡𝑡𝑡 = 0 versus 
the alternative hypothesis 𝐻𝐻1: 𝑏𝑏𝑡𝑡𝑡𝑡 ≠ 0. For validity, the tests should control the type I 
error 𝛼𝛼, taken as 𝛼𝛼 = 0.05 in the main text, that is, they should lead to at most 
100 𝛼𝛼% rejections of the null hypothesis if in fact 𝐻𝐻0: 𝑏𝑏𝑡𝑡𝑡𝑡 = 0 holds (closer to 
100 𝛼𝛼% is better). For usefulness, they should have sufficient power, that is, they 
should lead to a large fraction of rejections under the alternative hypothesis (larger is 
better).  

The null hypothesis is a composite null hypothesis and there are four important cases.  

• Case 1 has parameters (𝑏𝑏𝑡𝑡𝑡𝑡 = 0, 𝑏𝑏𝑧𝑧𝑧𝑧 = 0, 𝑏𝑏𝑡𝑡𝑡𝑡 = 0) so that neither e nor t have 
an interaction effect. This is the ‘both random’ case. 

• Case 2 has parameters (𝑏𝑏𝑡𝑡𝑡𝑡 = 0, 𝑏𝑏𝑧𝑧𝑧𝑧 ≠ 0, 𝑏𝑏𝑡𝑡𝑡𝑡 = 0) so that the environmental 
variable has an interaction effect with an unobserved variable z, possibly an 
unobserved trait variable that is uncorrelated with t. This is the ‘trait random’ 
case. 

• Case 3 has parameters (𝑏𝑏𝑡𝑡𝑡𝑡 = 0, 𝑏𝑏𝑧𝑧𝑧𝑧 = 0, 𝑏𝑏𝑡𝑡𝑡𝑡 ≠ 0) so that the trait variable has 
an interaction effect with an unobserved variable x, possibly an unobserved 
environmental variable that is uncorrelated with e. This is the ‘environment 
random’ case. 

• Case 4 has parameters (𝑏𝑏𝑡𝑡𝑡𝑡 = 0, 𝑏𝑏𝑧𝑧𝑧𝑧 ≠ 0, 𝑏𝑏𝑡𝑡𝑡𝑡 ≠ 0) so that neither e nor t have 
an interaction effect. This case is not covered in the Gaussian simulation 
model. This is the ‘both random interaction’ case. 

Case 1 is the simplest case and many methods will work fine. The challenge for the 
test is to work fine for the other cases as well.  

The log-linear simulation model is closely related to Goodman’s Row-Column (RC) 
model (Goodman 1979) and was first used in ecology by Ihm and van Groenewoud 
(1975); see ter Braak (2014) and Jamil and ter Braak (2013) for its ramifications and 
links to the Gaussian response model and correspondence analysis. 

In the description of the model it is suggested that the random variables x and z are 
latent (unobserved) environmental and trait variable, respectively. Another interesting 
interpretation of the model is that it is a generalized linear mixed model (GLMM) for 
trait-environment association as formulated by Jamil et al. (2013). They started from a 
model relating abundance to the environment e by a GLM model, which is in the 
current setting a log-linear model of abundance against environment of the form 

log�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝛾𝛾𝑖𝑖 + 𝛼𝛼𝑗𝑗 +  𝛽𝛽𝑗𝑗𝑒𝑒𝑖𝑖. (A.4) 
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In Jamil et al. (2013) the parameter 𝛾𝛾𝑖𝑖 was taken random as they dealt primarily with 
binary data, but in the count-case it can also be taken fixed in GLM with a pseudo-
Poisson likelihood (Gourieroux et al. 1984a; Gourieroux et al. 1984b). The parameters 
𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑗𝑗 are the intercept and the slope of the log-linear relation between abundance 
and environment. This RC model has both linear and unimodal properties (Jamil & ter 
Braak 2013). The next step in Jamil et al. (2013) was to investigate whether the 
intercept and slope, which are both species-specific, are related to a specific trait t by 
the linear regression models 

𝛼𝛼𝑗𝑗 = 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡𝑗𝑗 + 𝜖𝜖𝛼𝛼𝛼𝛼 and 𝛽𝛽𝑗𝑗 = 𝑏𝑏0∗ + 𝑏𝑏1∗𝑡𝑡𝑗𝑗 + 𝜖𝜖𝛽𝛽𝛽𝛽 (A.5) 

with 𝑎𝑎0, 𝑎𝑎1, 𝑏𝑏0∗ and 𝑏𝑏1∗ unknown parameters and 𝜖𝜖𝛼𝛼𝛼𝛼 and 𝜖𝜖𝛽𝛽𝛽𝛽 (possibly correlated) 
normal random variables with variance 𝜎𝜎𝛼𝛼2 and 𝜎𝜎𝛽𝛽2. There is trait-environment 
association if 𝑏𝑏1∗ is nonzero. After insertion of these equations in the previous one, the 
model becomes 

log�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝛾𝛾𝑖𝑖 + 𝑎𝑎0 + 𝑎𝑎1𝑡𝑡𝑗𝑗 + 𝜖𝜖𝛼𝛼𝛼𝛼  + (𝑏𝑏0∗ + 𝑏𝑏1∗𝑡𝑡𝑗𝑗 + 𝜖𝜖𝛽𝛽𝛽𝛽)𝑒𝑒𝑖𝑖  

= 𝑎𝑎0 + (𝛾𝛾𝑖𝑖 + 𝑏𝑏0∗𝑒𝑒𝑖𝑖) + (𝑎𝑎1𝑡𝑡𝑗𝑗 + 𝜖𝜖𝛼𝛼𝛼𝛼) +  𝑏𝑏1∗𝑡𝑡𝑗𝑗𝑒𝑒𝑖𝑖 + 𝜖𝜖𝛽𝛽𝛽𝛽𝑒𝑒𝑖𝑖 

= 𝜇𝜇0 + 𝑅𝑅𝑖𝑖 + 𝐶𝐶𝑗𝑗 +  𝑏𝑏1𝑡𝑡𝑗𝑗𝑒𝑒𝑖𝑖 + 𝑏𝑏2𝑧𝑧𝑗𝑗𝑒𝑒𝑖𝑖 (A.6) 

with 𝜇𝜇0 =  𝑎𝑎0, 𝑅𝑅𝑖𝑖 =  𝛾𝛾𝑖𝑖 + 𝑏𝑏0∗𝑒𝑒𝑖𝑖, 𝐶𝐶𝑗𝑗 =  𝑎𝑎1𝑡𝑡𝑗𝑗 + 𝜖𝜖𝛼𝛼𝛼𝛼, 𝑏𝑏𝑡𝑡𝑡𝑡 = 𝑏𝑏1∗, 𝑧𝑧𝑗𝑗 = 𝜖𝜖𝛽𝛽𝛽𝛽/𝜎𝜎𝛽𝛽 and 𝑏𝑏𝑧𝑧𝑧𝑧 = 𝜎𝜎𝛽𝛽, 
which is a special case of the log-linear simulation model with 𝑏𝑏𝑡𝑡𝑡𝑡 = 0 and 𝜎𝜎𝜖𝜖2 = 0.  
Unless noted explicitly otherwise, we used in our simulations 

• 𝜇𝜇0 = log(30),  

• 𝑅𝑅𝑖𝑖 =  0.05𝑒𝑒𝑖𝑖 − 0.1𝑒𝑒𝑖𝑖2 +  𝜀𝜀𝑟𝑟𝑟𝑟 with 𝜀𝜀𝑟𝑟𝑟𝑟 an independent normal random variable: 
𝜀𝜀𝑟𝑟𝑟𝑟~𝑁𝑁(0, 0.01), giving an common Gaussian response component with 
optimum at 0.25 and tolerance 2.24, 

• 𝐶𝐶𝑗𝑗 =  0.05𝑡𝑡𝑗𝑗 − 0.1𝑡𝑡𝑗𝑗2 +  𝜀𝜀𝑡𝑡𝑡𝑡 with 𝜀𝜀𝑡𝑡𝑡𝑡 an independent normal random variable: 
𝜀𝜀𝑡𝑡𝑡𝑡~𝑁𝑁(0, 0.01), giving an common Gaussian response component with 
optimum at 0.25 and tolerance 2.24, 

• 𝑏𝑏𝑧𝑧𝑧𝑧∗ = 0.2 and 𝜎𝜎𝜖𝜖2 = 0.22 to give both structured and unstructured interaction 
among species and sites that is unrelated to the trait-environment association 
between {𝑡𝑡𝑗𝑗} and {𝑒𝑒𝑖𝑖}. 
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