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A1 Data transformation6

Proportional cover data were transformed to isometric log-ratio (ilr) coordinates (Egozcue et al.,7

2003). Let zi, j,t = [z1,i, j,t ,z2,i, j,t ,z3,i, j,t ]
T denote a vector of observed proportional cover of coral8

(z1,i, j,t), algae (z2,i, j,t) and other (z3,i, j,t) at site i, transect j, at time t (the T denotes transpose).9

Then the ilr transformation for our data is given by10

ilr : S3 → R
2,

zi, j,t = [z1,i, j,t ,z2,i, j,t ,z3,i, j,t ]
T 7→

[

1√
2

log

(

z2,i, j,t

z1,i, j,t

)

,
2√
6

log

(

z3,i, j,t√
z1,i, j,tz2,i, j,t

)]T

,
(A.1)

where S
3 denotes the open 2-simplex in which three-part compositions lie. The first element of11

the transformed composition is proportional to the natural log of the ratio of algae to coral, and12

the second element is proportional to the natural log of the ratio of other to the geometric mean of13

algae and coral. The transformation can be thought of as stretching out the open 2-simplex14

(Figure A2(a)) so that it covers the whole of the real plane (Figure A2(b)).15
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As the domain of the transformation is the open simplex, which does not include compositions16

with zero parts, any observed zeros were replaced by half the smallest non-zero value recorded17

(0.0008) before transformation, and the other components rescaled accordingly. This is the simple18

replacement strategy described in Martı́n-Fernández et al. (2003), although more sophisticated19

approaches are possible. We denote the resulting transformed observations by20

yi, j,t = [y1,i, j,t ,y2,i, j,t ]
T .21

A2 The model22

For convenience, we reproduce the full model equations here:23

xi,t+1 = a+αi +Bxi,t +εi,t ,

αi ∼ N (0,Z),

εi,t ∼ N (0,Σ),

yi, j,t ∼ t2(xi,t ,H,ν),

(A.2)

where xi,t is the true transformed composition at site i, time t, a is a vector of among-site mean24

proportional changes evaluated at xi,t = 0, αi represents the amount by which these proportional25

changes for the ith site differ from the among-site mean, the 2×2 matrix B represents the effects26

of xi,t on the proportional changes, εi,t represents random temporal variation,27

Z =







ζ11 ζ12

ζ21 ζ22







is the covariance matrix of the among-site term αi (note that throughout, a diagonal element such28

as ζii of a covariance matrix represent the variance of the ith variable),29

Σ=







σ11 σ12

σ21 σ22
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is the covariance matrix of the temporal variation, yi, j,t is the observed log-ratio transformed30

cover in the jth transect of site i at time t,31

H =







η11 η12

η21 η22







is the scale matrix of the bivariate t distribution of the yi, j,t , and ν is the corresponding degrees of32

freedom.33

A3 Describing measurement error and small-scale temporal34

variability35

We initially considered using a bivariate normal distribution to describe the variability of observed36

transformed composition yi, j,t around true composition xi,t , but preliminary analyses showed that37

a heavier-tailed distribution was needed. We therefore used the bivariate t distribution with38

location vector xi,t , scale matrix H and degrees of freedom ν , which for ν > 2 has covariance39

matrix νH/(ν −2) (Lange et al., 1989). Support for the choice of the t over the normal40

distribution was provided by expected predictive accuracy based on leave-one-out cross-validation41

(Vehtari et al., 2015), which was much higher for the bivariate t model than for the bivariate42

normal model (difference in leave-one-out cross-validation score 527, standard error 48).43

A4 Visualizing model parameters44

The effects of reef composition on short-term dynamics are most easily visualized by the back45

transformation from ilr coordinates to the simplex of the columns of the matrix A = B− I2, where46

Ik denotes the k× k identity matrix. The matrix A describes effects of transformed reef47

composition on year-to-year changes in transformed reef composition (Cooper et al., 2015). This48

is a better visualization than the back transformation of B, because in the random walk case49
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(where there are no interesting composition effects), A = 02 (the 2×2 matrix of zeros), and each50

column of the back-transformation of A represents a point at the origin of the simplex. In51

contrast, in the random walk case, each column of the back transformation of B = I2 represents a52

point at a different location in the simplex. The first column a1 of A represents the effect of a unit53

increase in the first component of reef composition (proportional to log(algae/coral)) on54

year-to-year change in reef composition. For example, if the back-transformation of a1 lies to the55

left of the centre of the simplex (the origin, with equal proportions of coral, algae and other), but56

on the line of equal relative abundances of coral and other (the 1:1 coral-other isoproportion line),57

it indicates that high algal cover relative to coral tends to result in a decrease in algae relative to58

coral in the following year. Similarly, the second column a2 of A represents the effect of a unit59

increase in the second component of reef composition (proportional to log(other/geometric60

mean(algae,coral))) on year-to-year change in reef composition.61

A5 Parameter estimation62

Code for all analyses is available at https://www.liverpool.ac.uk/~matts/kenya.zip.63

A5.1 Priors64

For Z and Σ, our priors were based on data from the Great Barrier Reef (Cooper et al., 2015). We65

inspected the sample covariance matrices for ilr-transformed year-to-year changes in66

composition, and among-site variation in mean composition, on 55 sites in the Great Barrier Reef,67

where observation error is thought to be fairly small (Cooper et al., 2015). We chose inverse68

Wishart priors (Gelman et al., 2003, p. 574) with 4 degrees of freedom (the smallest value for69

which the prior mean exists, giving a fairly uninformative prior). We chose identity scale70

matrices, because ellipses of unit Mahalanobis distance around the origin for the mean of this71

prior almost enclosed corresponding ellipses for the sample covariance matrices of both72

year-to-year changes and among-site mean composition, and strong correlations among73
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transformed components are neither assumed nor ruled out. Thus, this seems a plausible prior for74

Σ and Z. In the absence of strong prior information, we used the same prior for H.75

For the degrees of freedom of measurement error, ν , we assumed a U(2,30) distribution. The76

lower bound was dictated by the requirement that ν > 2 for the covariance to exist, and the upper77

bound was chosen to be large enough that the resulting measurement error distribution was able to78

approach a multivariate normal if necessary. In practice, the posterior distribution of ν did not pile79

up against either of these bounds, indicating that the precise choice of prior was unlikely to matter.80

We chose vague priors for the other parameters. We assumed independent N (0,10) priors on81

each element of xi,0 for each site i (where the subscript 0 denotes the first time point at which the82

site was observed). For each element of a and B, we assumed independent N (0,100) priors.83

A5.2 Monte Carlo simulation84

We ran four Monte Carlo chains in parallel for 5000 iterations each, after a 5000-iteration85

warmup period. This took approximately two hours on a 64-bit Ubuntu 12.04 system with 4 3.286

GHz Intel Xeon cores and 16 GiB RAM. The potential scale reduction statistic, which takes the87

value 1 if all chains have converged to a common distribution, was 1.00 to two decimal places for88

all parameters, consistent with satisfactory convergence (Stan Development Team, 2015, pp.89

414-415). Effective sample sizes, which measure the size of the sample from the posterior90

distribution after accounting for autocorrelation in the Monte Carlo chains (Stan Development91

Team, 2015, pp. 417-419), were at least 2839 for all parameters (most were much larger, with first92

quartile 12430 and median 17490). Inspection of trace plots did not reveal any obvious problems93

with sampling. In addition, we evaluated the model’s performance in estimating known94

parameters. We generated 100 simulated data sets with identical structure to the real data, using95

posterior mean estimates for each parameter. We sampled the αi, εi,t and yi, j,t from distributions96

defined by Equation A.2, and set the initial true transformed compositions at a given site to the97

sample means from all years and transects on that site in the real data. The estimates were98

reasonably close to the true values, and lay within the 95% HPD intervals in 89-99 out of 10099
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cases (Figure A3). Thus, while estimating state-space models from ecological time series data can100

be challenging (Auger-Méthé et al., 2015), performance appears adequate in this case, perhaps101

because we have many replicate transects from which to estimate measurement error and102

small-scale spatial variability, and most parameters are estimated using data across many sites.103

A5.3 Model checking104

We examined plots of Bayesian residuals (Gelman et al., 2003, p. 170) against predicted values of105

the two components of transformed reef composition. For the kth Monte Carlo iteration, the106

Bayesian residual for the jth transect on the ith site at time t is yi, j,t −xi,t |θk, where θk denotes107

the estimated parameters in the kth iteration. If the model is performing well, there should be no108

obvious relationship between residuals and fitted values. We checked 16 randomly-chosen109

iterations, which did not reveal any major cause for concern (Figures A4, A5). However, no110

residuals for component 1 fell below an obvious diagonal line (Figure A4), which results from the111

treatment of observed zeros. Given the simple replacement strategy for zeros described in Section112

A1 and the definition of component 1 of the transformed composition in Equation A.1,113

y1,i, j,t =
1√
2

log

(

z2,i, j,t

z1,i, j,t

)

≥ 1√
2

log

(

0.0008

0.9984

)

=−5.0216.

Thus the Bayesian residual for component 1 is constrained by114

y1,i, j,t − x1,i,t |θk ≥−5.0216− x1,i,t |θk,

the orange line on Figure A4. Thus the assumption of a multivariate t distribution for individual115

transect deviations from true values (Equation A.2) cannot hold exactly. It might in future be116

worth attempting to develop a more mechanistic model of the process generating observed zeros,117

but we do not attempt this here because the majority of data are unaffected. Although a similar118

constraint exists on component 2, it did not appear to be important in practice, because there is no119

6



obvious diagonal line of residuals on Figure A5.120

Inspection of quantile-quantile plots and histograms of estimated skewness and kurtosis for 16121

iterations did not indicate any major problems with the assumptions of multivariate normal122

distributions with zero mean, covariance matrices Z and Σ respectively for α and ε, and a123

multivariate t distribution with zero location vector, scale matrix H, for Bayesian residuals.124

Quantile-quantile plots used the natural log of a squared Mahalanobis-like distance/2 against125

natural log of quantiles of χ2(2) for multivariate normal distributions, or against natural log of126

quantiles of F(2,ν) for multivariate t distributions (modified from Lange et al., 1989). We did not127

transform to asymptotically standard normal deviates because the degrees of freedom for the t128

distribution were small. We found it helpful to log transform both axes, particularly for the129

multivariate t distribution, for which some observations may have very large squared130

Mahalanobis-like distance. We obtained the p-values for several tests of multivariate normality of131

α and ε: Royston’s H (Royston, 1982), Henze-Zirkler’s test (Henze and Zirkler, 1990), and132

Mardia’s skewness and kurtosis (Mardia, 1970) using the MVN package in R (Korkmaz et al.,133

2014). There were more small p-values than expected (the distribution of p-values should be134

approximately uniform in the interval (0,1) if the data are normal) but that often is the case for135

very large samples, and does not indicate a major cause for concern.136

A6 Long-term behaviour137

Iterating Equation A.2 from a fixed initial transformed composition xi,0,138

xi,t =
t−1

∑
j=0

B ja+
t−1

∑
j=0

B jαi +Btx0 +
t−1

∑
j=0

B jεi,t−1− j (A.3)

If all the eigenvalues of B lie inside the unit circle in the complex plane, the system will converge139

to a stationary distribution as t → ∞ (e.g. Lütkepohl, 1993, p. 10). If the eigenvalues of B are140

complex, they will form a complex conjugate pair λ = re±iθ (where r is the magnitude and θ is141

the argument), and there will be oscillations with period 2π/θ , whose amplitudes will change by142
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a factor of r each year (e.g. Otto and Day, 2007, p. 355).143

The first term in Equation A.3 is deterministic, and converges to144

µ∗ = (I2 −B)−1a (A.4)

(e.g. Lütkepohl, 1993, p. 10), which represents the among-site mean of stationary mean145

transformed composition. The third term is also deterministic, and converges to 0, so that initial146

conditions are forgotten.147

The second term, representing among-site variation, has mean vector 0 by definition, and the148

covariance matrix of its limit is149

Z∗ = V
[

(I2 −B)−1αi

]

= (I2 −B)−1V [αi]
(

(I2 −B)−1
)T

= (I2 −B)−1Z
(

(I2 −B)−1
)T

, (A.5)

since (I2 −B)−1 is a constant matrix and αi is a random vector. The covariance matrix Z∗
150

represents the among-site variation in stationary mean transformed composition.151

The fourth term represents the long-term effects of temporal variability. It has mean vector 0 by152

definition, and it can be shown that it has covariance matrix153

Σ
∗ = vec−1

(

(I4 −B⊗B)−1vec(Σ)
)

(A.6)

(e.g. Lütkepohl, 1993, p. 22), where the vec operator stacks the columns of a matrix, vec−1
154

unstacks them, and ⊗ is the Kronecker product. The covariance matrix Σ
∗ can be interpreted as155

the stationary covariance of transformed reef composition, conditional on the value of αi. Since156

among-site variation and temporal variation were assumed independent, the unconditional157

stationary covariance is Σ∗+Z∗. Both the conditional and unconditional stationary distributions158
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are multivariate normal, since both εi,t and αi were assumed multivariate normal. Thus the159

stationary distribution for a randomly-chosen site is the multivariate normal vector160

x∗ ∼ N (µ∗,Σ∗+Z∗). (A.7)

To find the long-term behaviour for a given site i, we condition on the value of αi. Thus Equation161

A.4 is replaced by162

µ∗
i = (I2 −B)−1(a+αi),

and the stationary distribution is163

x∗i ∼ N (µ∗
i ,Σ

∗).

A7 How important is among-site variability?164

From Equation A.7, the covariance matrix Σ
∗+Z∗ of the stationary distribution for a165

randomly-chosen site contains contributions from both among- and within-site variability. To166

quantify the contributions from these two sources, we will use a statistic based on a ratio of167

generalized variances.168

The generalized variance of a multivariate distribution is defined as the determinant of the169

covariance matrix (Wilks, 1932; Johnson and Wichern, 2007, section 3.4). In the specific case of a170

multivariate normal distribution, the generalized variance may be interpreted in terms of ellipsoids171

of concentration, defined as follows. Suppose a random vector W is distributed according to a172

p-dimensional normal distribution with mean vector µ and covariance matrix V. Then for any173

constant k ≥ 0, the set Ek =
{

w : (w−µ)T
V−1 (w−µ) = k

}

consists of points w of constant174

probability density. In p = 2 dimensions, Ek is an ellipse, and may be referred to as a probability175

density contour. In p > 2 dimensions Ek is known as an ellipsoid of concentration of V about µ176

9



(Kenward, 1979). Taking k = 1, the set E1 is known as the unit ellipsoid of concentration. The177

volume within the unit ellipsoid E1 may be used as a measure of the dispersion of the distribution,178

and is equal to Sp

√

|V|, where Sp is the volume of the p-dimensional sphere of radius 1.179

In the light of the above interpretation, we chose to measure the contribution of within-site180

variability to total variability using the quantity181

ρ =

( |Σ∗|
|Σ∗+Z∗|

)1/2

, (A.8)

which is the ratio of volumes of two unit ellipsoids of concentration, the numerator corresponding182

to the stationary distribution in the absence of among-site variation, and the denominator to the183

full stationary distribution of transformed reef composition in the region. This ratio is undefined if184

Σ
∗+Z∗ is not of full rank, but this does not occur in our application. From Minkowski’s theorem185

(Mirsky, 1955, section 13.5) it follows that |Σ∗|+ |Z∗| ≤ |Σ∗+Z∗|, so that 0 ≤ ρ ≤ 1. However,186

in general |Σ∗|+ |Z∗| 6= |Σ∗+Z∗|, so that ρ cannot be simply interpreted as the proportion of187

total variability explained by within-site variation. Nevertheless, ρ provides an indication of how188

much of the total variability would remain if all among-site variability was removed.189

Furthermore, ρ2 is analogous to Wilks’ Lambda (Wilks, 1932; Kenward, 1979), a likelihood-ratio190

test statistic often used in multivariate analysis of variance.191

A8 Probability of low coral cover192

For a given site i, the long-term probability qκ ,i of coral cover less than or equal to κ is the193

integral of the multivariate normal stationary density for the site over the shaded area in Figure194

A37 (for κ = 0.1). This can be written as195

qκ ,i = 1−
∫ u

−∞
P(X2 ≤ γ|X1 = x1) fX1

(x1)dx1, (A.9)
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where, using Equations A.1 and the constraint that the untransformed components of benthic196

composition must sum to 1,197

u =
1√
2

log

(

1

κ
−1

)

is the largest value of the first ilr component x1 for which it is possible to have coral cover less198

than or equal to κ ,199

γ =
2√
6

log





1−κ
(

1+ e
√

2x1

)

κ
√

e
√

2x1





is the value of the second ilr component x2 for which coral cover is equal to κ , given the value of200

x1, P(X2 ≤ γ|X1 = x1) is the conditional marginal cumulative distribution of x2, given the value of201

x1, and fX1
(x1) is the unconditional marginal density of the first ilr component x1.202

Since203

X = [X1,X2]
T ∼ N (µ∗

i ,Σ
∗
i ),

the unconditional marginal distribution of x1 is204

N (µ∗
1,i,
√

σ∗
11,i), (A.10)

and the conditional marginal distribution of x2 given x1 is205

N

(

µ∗
2,i +

σ∗
21,i

σ∗
11,i

(x1 −µ∗
i,1),σ

∗
22,i −

(σ∗
21,i)

2

σ∗
11,i

)

(A.11)

(Gelman et al., 2003, p. 579). Then the integral in Equation A.9 can be approximated numerically206

using the integrate() function in R (R Core Team, 2015), which is based on routines in207

Piessens et al. (1983). The same approach can be used for qκ for a randomly-chosen site,208

replacing the elements of µ∗
i and Σ

∗
i in Equations A.10 and A.11 with the corresponding209
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elements of µ∗ and Σ
∗.210

A9 Effects of among-site variability on the relationship211

between probability of low coral cover and sample mean212

coral cover213

We generated simulated data sets with the same number of sites, number and spacing of214

observation times, and numbers of transects at each observation time, as the real data. Initial true215

transformed compositions at a given site were set to the sample means from all years and transects216

on that site in the real data. We used the posterior mean of each parameter from the real data to217

simulate these data, except that we set the among-site covariance matrix to cZ, where Z was the218

posterior mean among-site covariance matrix from the real data, and c took nine equally-spaced219

values between 0 and 1. Thus c = 0 gives no among-site variability, and c = 1 gives as much220

among-site variability as was estimated from the real data. For each value of c, we calculated the221

sample mean coral cover in the simulated data for each site, and the long-term probability of coral222

cover ≤ 0.1 at each site as described in section A8. We then plotted these site-specific223

probabilities against the simulated sample mean coral cover for each site (Figure A39).224

A10 Spline correlograms for spatial pattern in probability of225

low coral cover226

We calculated a spline correlogram (Bjørnstad and Falck, 2001) for each set of q0.1,i in the 20000227

Monte Carlo iterations, using the spline.correlog() function in the R package ncf version228

1.15. We constructed a 95% highest-density envelope (Hyndman, 1996) for the resulting set of229

correlograms using the R package hdrcde version 3.1.230
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A11 Which model parameters have the largest effects on the231

probability of low coral cover?232

For a given threshold κ , we can calculate (by numerical integration) the probability233

qκ = P(coral cover ≤ κ), for a composition drawn from the stationary distribution on a site234

chosen at random from the region. The probability qκ is a function of 12 parameters: all four235

elements of B; both elements of a; elements σ11, σ21 and σ22 of Σ; and elements ζ11, ζ21 and ζ22236

of Z. Note that because Σ and Z are covariance matrices, they must be symmetric, and so σ12 and237

ζ12 are not free parameters. These 12 parameters can be thought of as the coordinates of a point in238

R
12. The steepest reduction in qκ as we move through R

12 is achieved by moving in the direction239

of −∇qκ , where ∇qκ is the gradient vector [∂qκ/∂b11, . . . ,∂qκ/∂ζ22]
T (Riley et al., 2002, p.240

355).241

To understand the effects of each parameter, note that the probability qκ depends on these242

parameters only through µ∗, Σ∗ and Z∗. Thus, for any parameter matrix Θ, using the chain rule243

for matrix derivatives,244

Dqκ(Θ) = Dqκ(µ
∗)Dµ∗(Θ)+Dqκ(Σ

∗)DΣ
∗(Θ)+Dqκ(Z

∗)DZ∗(Θ),

where DE(X) denotes the matrix derivative of E with respect to X (Magnus and Neudecker,245

2007, p. 108). This allows us to break up the effects of a parameter into its effects via the246

stationary mean and stationary within- and among-site covariances. In each term, the first factor247

(Dqκ(µ
∗), Dqκ(Σ

∗) or DΣ
∗(Θ)) can only be found numerically. The non-zero second factors are248
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Dµ∗(B) = (aT ⊗ I2)
[

(

(I2 −B)−1
)T ⊗ (I2 −B)−1

]

, (A.12)

DΣ
∗(B) = F

[

(vecΣ)T ⊗ I4

]

[

(

(I4 −B⊗B)−1
)T ⊗ (I4 −B⊗B)−1

]

(I2 ⊗K4 ⊗ I2)(I4 ⊗vecB+vecB⊗ I4),

DZ∗(B) = F
[

(vecZ)T ⊗ I4

]

(I2 ⊗K4 ⊗ I2)
[

I4 ⊗vec(I2 −B)−1 +vec(I2 −B)−1 ⊗ I4

]

[

(

(I2 −B)−1
)T ⊗ (I2 −B)−1

]

,

Dµ∗(a) = (I2 −B)−1,

DΣ
∗(Σ) = F(I4 −B⊗B)−1G,

DZ∗(Z) = F
[

(I2 −B)−1 ⊗ (I2 −B)−1
]

G,

where K4 is the 4×4 commutation matrix (Magnus and Neudecker, 2007, p. 54),249

F =













1 0 0 0

0 1 0 0

0 0 0 1













,

and250

G =



















1 0 0

0 1 0

0 1 0

0 0 1



















.

A12 Elasticity of probability of low coral cover251

The derivatives in section A11 measure the rate of change of the probability of low coral cover,252

qκ , with respect to absolute changes in parameters. However, because parameters may differ in253

magnitude, it is also of interest to measure the rate of relative change of qκ with respect to relative254
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change in each parameter, in other words the elasticity of qκ with respect to the parameter. The255

usual definition of the elasticity Elθ (qκ(θ)) of qκ with respect to a parameter θ is256

Elθ (qκ(θ)) = lim
∆θ→0

(∆qκ)/qκ(θ)

(∆θ)/θ

= lim
∆θ→0

θ

qκ(θ)

qκ(θ +∆θ)−qκ(θ)

∆θ

=
θ

qκ(θ)
q′κ(θ)

(A.13)

(Nievergelt, 1983) for θ 6= 0 (typically, θ > 0) and qκ(θ) 6= 0. We need to slightly change the

usual definition because in our model there are three parameters (b12, b21 and ζ12) for which both

positive and negative values occur in the sample from the posterior. First, although the first line of

Equation A.13 is not defined at θ = 0, the continuous function on the second line is defined (and

has the value 0) at θ = 0, agrees with the first line at all points other than θ = 0, and tends to 0 as

θ → 0. It therefore fills the gap in a natural way. Second, we would like the elasticity to be

positive when the derivative of qκ with respect to θ is positive, even when θ is negative. We

therefore calculated elasticities as

Elθ (qκ(θ)) =
|θ |

qκ(θ)
q′κ(θ).

A13 How informative is a snapshot about long-term site257

properties?258

Denote the true state of a randomly-chosen site at a given time by x, and the corresponding259

stationary mean for that site by µ∗. Under the model of Equation A.2, µ∗ has covariance matrix260

Z∗ (Equation A.5). Write the true state as x = µ∗+∆, where ∆ is the deviation from the261

stationary mean, which has covariance matrix Σ
∗ (Equation A.6). The correlation ρk between the262

kth component xk of x and the corresponding component µ∗
k of µ∗ is an obvious way to measure263

how informative the snapshot will be for this component. This is264
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ρk =
cov(µ∗

k +∆k,µ
∗
k )

√

V [µ∗
k +∆k]V [µ∗

k ]

=
V [µ∗

k ]+ cov(µ∗
k ,∆k)

√

V [µ∗
k +∆k]V [µ∗

k ]

=
V [µ∗

k ]
√

(V [µ∗
k ]+V [∆k])V [µ∗

k ]
(because α and ε assumed independent)

=

(

ζ ∗
kk

ζ ∗
kk +σ∗

kk

)1/2

,

where ζ ∗
kk is the kth diagonal element of Z∗, and σ∗

kk is the kth diagonal element of Σ∗. If ρk is far265

from zero, a snapshot will be a reliable guide to the long-term value of the kth component of266

transformed reef composition. On the other hand, if ρk is close to zero, a snapshot will be267

unreliable. Thus ρk measures the extent to which conservation and management decisions could268

be based on observations at a single time point. We computed both ρ1 which tells us how much269

we could learn about the log of the ratio of algae to coral and ρ2, which tells us how much we270

could learn about the log of the ratio of other to the geometric mean of coral and algae.271

A14 Dynamics272

Consistent with the patterns suggesting negative feedbacks that will tend to maintain fairly stable273

reef composition, every set of sampled parameters led to a stationary distribution (Figure A38: all274

sampled eigenvalues of B fell inside the unit circle in the complex plane, with maximum275

magnitude 0.84). In 27% of iterations, there was evidence for oscillations on the approach to the276

stationary distribution, because the eigenvalues were complex. In such cases, the oscillations had277

a long period (posterior mean 113 years, 95% HPD interval (21,284) years), but their amplitude278

more than halved within three years because the magnitudes of the eigenvalues involved were279

small (original posterior mean magnitude of complex eigenvalues 0.59, 95% credible interval280

(0.51,0.67), cubed posterior mean magnitude 0.21, 95% HPD interval (0.13,0.30)). The281

distribution of eigenvalues was very different from that of the Great Barrier Reef (Cooper et al.,282

2015, Appendix A.10), where the largest eigenvalue lay close to the point beyond which the283
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stationary distribution would not exist (bootstrap mean magnitude 0.95), and there was no284

evidence for oscillations (no bootstrap replicates had complex eigenvalues). However, a different285

estimation method was used in Cooper et al. (2015), so the eigenvalues may not be directly286

comparable.287

A15 Probability of low coral cover: signs of derivatives288

Here, we explain the signs of the derivatives of the probability of low coral cover with respect to289

each parameter. We concentrate on coral cover threshold 0.1. The overall stationary mean µ∗ lies290

in the region where coral cover is greater than 0.1 for all iterations (Figure A37, black circle,291

shows a point estimate for µ∗, based on the stationary means of a and B). The shaded region of292

Figure A37 has coral cover ≤ 0.1. Because of the shape of the boundary of the shaded region,293

either increasing µ∗
1 (increasing the ratio of algae to coral) or increasing µ∗

2 (increasing the ratio294

of other to the geometric mean of coral and algae) will move the stationary mean closer to this295

region. Also, since the stationary mean lies outside the region of interest, increasing the296

variability in the stationary distribution by increasing the elements of Σ∗ or Z∗ will increase the297

probability of falling in the region of interest. Hence the derivatives of q0.1 with respect to µ∗,298

Σ
∗, Z∗ contain only positive elements.299

It is then intuitively obvious that the derivatives of q0.1 with respect to Σ and Z will contain only300

positive elements. Increasing the amount of year-to-year temporal variability or among-site301

variability will increase the variability in the stationary distribution, and hence the long-term302

probability of coral cover less than or equal to 0.1.303

The signs of the derivatives of q0.1 with respect to a are also easy to understand. The components304

a1, a2 represent the rates of increase of x1 and x2 respectively, so we would expect that increasing305

either of them will increase the corresponding component of the stationary mean. Thus the306

derivatives of µ∗ with respect to a will be positive, and from Figure A37, increasing either307

component of µ∗ will increase the probability of coral cover ≤ 0.1.308
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The derivatives of q0.1 with respect to B are a little harder to understand. They are309

(predominantly) negative with respect to b11 and b21, but positive with respect to b12 and b22.310

Since B affects both the stationary mean (Equation A.4) and the stationary covariance, which is311

the sum of Σ∗ (Equation A.6) and Z∗ (Equation A.5), all of these effects could be important.312

However, in 93% of iterations,313

|Dq0.1(µ∗)Dµ∗(B)| ≻ |Dq0.1(Σ
∗)DΣ

∗(B)+Dq0.1(Z
∗)DZ∗(B)|,

where ≻ is an elementwise inequality, and |D| indicates the elementwise magnitude, such that for314

two matrices D and E with the same dimensions, |D| ≻ |E| if and only if the magnitude of every315

di j is greater than the magnitude of the corresponding ei j. In other words, in almost all iterations,316

the sign of the effect of B on q0.1 via µ∗ determines the sign of the overall effect of B on q0.1. We317

therefore concentrate on understanding how B affects µ∗.318

To understand the signs of the effects of b11 and b22 on µ∗, consider the one-dimensional319

deterministic analogue320

xt+1 = a+bxt .

Iterating this gives321

xt = a
(

1+b+b2 + . . .+bt−1
)

+btx0.

For 0 < b < 1, the term btx0 → 0 as t → ∞. Then the derivative of x∞ with respect to b has the322

same sign as a. In our system, a1 < 0 and a2 > 0, so we expect the signs of derivatives of µ∗ with323

respect to b11 to be negative, and the signs of derivatives of µ∗ with respect to b22 to be positive.324

To understand the signs of the effects of b12 and b21 on µ∗, recall that b12 is the effect of325

component 2 (which typically takes positive values) on component 1, and b21 is the effect of326

component 1 (which typically takes negative values) on component 2. If, as in our system, b12327

and b21 are both positive, and the system is linear, we would expect that the signs of their effects328
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on µ∗ will be the same as the signs of components 2 and 1 respectively.329

Then, by the graphical argument above (Figure A37), we expect the signs of the derivatives of330

q0.1 with respect to b11, b21, b12 and b22 to be −,−,+,+ respectively.331

A16 Probability of low coral cover: rank order, other332

thresholds and elasticities333

For threshold 0.05, the signs of the effects of b11 and b21 were not clearly negative. The four most334

important parameters were (in descending order: Figure A43) ζ21, ζ22, b22 and b12 (the same four335

as for threshold 0.1, but in a different order). For threshold 0.2, the signs were as for threshold336

0.1, but the four most important parameters were (in descending order) b22, b21, b12 and ζ21 (with337

ζ22 now in fifth place: Figure A45). Thus, while the details depend to some extent on the338

threshold, the overall conclusion that both internal dynamics and among-site variability are the339

most important factors affecting the probability of low coral cover is robust.340

The effects of within-site temporal variability on the probability of low coral cover were always341

relatively unimportant (threshold 0.1, Figure A41, three of the last four positions in the ranked342

list; threshold 0.05, Figure A43, three of the last five positions; threshold 0.20, Figure A45, last343

three positions).344

For elasticities, the four most important parameters (in descending order) for threshold 0.1 were345

b22, a1, a2 and ζ11 (Figure A46). The rank order of importance was similar for thresholds 0.05346

(four most important parameters b22, a1, ζ11 and a2, Figure A47) and 0.2 (four most important347

parameters b22, a1, a2 and β11, Figure A48). In all cases, elasticities were higher for elements of348

the among-site covariance matrix Z than for the corresponding elements of the within-site349

temporal variability covariance matrix Σ, again supporting the argument that among-site350

variability is more important than within-site temporal variability.351
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Figure A1: Map of study sites, showing fringing reefs (triangles) and patch reefs (circles), shaded

by the site-specific long-term probability q0.1,i of coral cover ≤ 0.1 (for reefs with one site) or the

mean of site-specific probabilities (for reefs with two sites).
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Figure A2: The ilr transformation given by Equation A.1. (a) The open 2-simplex S
3, in which

three-part compositions lie. The dot represents the composition with equal relative abundances

of coral, algae and other. Lines are contours of constant relative abundance of one part. (b) The

ilr-transformed composition in R
2, with dot and contours as in (a).
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Figure A3: Posterior distributions of parameters estimated from simulated data. Thick green verti-

cal lines: parameter values used to generate simulated data (posterior means from real data). Black

lines: kernel density estimates of posterior distributions from 100 simulated data sets, each with

the same number of sites, number and spacing of observation times, and numbers of transects at

each observation time, as the real data. Number of simulated data sets in which true value was

within 95% HPD interval: 89 (a1), 95 (a2), 97 (b11), 91 (b21), 95 (b12), 90 (b22), 99 (σ11), 96 (σ21),

93 (σ22), 96 (ζ11), 93 (ζ21), 98 (ζ22), 93 (η11), 93 (η21), 96 (η22), 93 (ν).
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Figure A4: Fitted values against Bayesian residuals for component 1. Each panel is a single

randomly-chosen Monte Carlo iteration. Dots represent Bayesian residuals against fitted values

for individual transects. The green line is a loess smoother. The orange line is the minimum

possible value for component 1 residuals.

26



0 1 2 3

-4
-2

0
2

4

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3 4

-4
-2

0
2

4
Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls
0 1 2 3

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0.0 1.5 3.0

-4
-2

0
2

4

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

4

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3 4

-4
-2

0
2

4
Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls
0.0 1.5 3.0

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls
0 1 2 3

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

4

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

4

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0.0 1.5 3.0

-4
-2

0
2

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

0 1 2 3

-4
-2

0
2

4

Component 2 fitted values

C
o

m
p

o
n

e
n

t 
2

 r
e

s
id

u
a

ls

Figure A5: Fitted values against residuals for component 2. Each panel is a single randomly-

chosen Monte Carlo iteration. Dots represent Bayesian residuals against fitted values for individual

transects. The green line is a loess smoother.
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Figure A6: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Bongoyo1.

Circles are observations from individual transects. Grey lines join back-transformed posterior

mean true states from Equation A.2 and the shaded region is a 95% HPD band. The stationary

mean composition for the site is the black dot after the time series and the bar is a 95% HPD

interval.
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Figure A7: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Bongoyo2. See

Figure A6 legend for explanation.
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Figure A8: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Changale1. See

Figure A6 legend for explanation.
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Figure A9: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Changuu1. See

Figure A6 legend for explanation.
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Figure A10: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Chapwani1.

See Figure A6 legend for explanation.
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Figure A11: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Chumbe1.

See Figure A6 legend for explanation.
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Figure A12: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Chumbe2.

See Figure A6 legend for explanation.
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Figure A13: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Diani1. See

Figure A6 legend for explanation.

35



1990 1994 1998 2002 2006 2010 2014

0
.0

0
.5

1
.0

Diani2(a)

c
o

ra
l

1990 1994 1998 2002 2006 2010 2014

0
.0

0
.5

1
.0

(b)

a
lg

a
e

1990 1994 1998 2002 2006 2010 2014

0
.0

0
.5

1
.0

year

(c)

o
th

e
r

Figure A14: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Diani2. See

Figure A6 legend for explanation.
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Figure A15: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Funguni1.

See Figure A6 legend for explanation.
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Figure A16: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kanamai1.

See Figure A6 legend for explanation.
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Figure A17: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kanamai2.

See Figure A6 legend for explanation.
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Figure A18: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kisite1. See

Figure A6 legend for explanation.
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Figure A19: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kisite2. See

Figure A6 legend for explanation.
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Figure A20: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Makome1.

See Figure A6 legend for explanation.
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Figure A21: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Malindi1. See

Figure A6 legend for explanation.
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Figure A22: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Malindi2. See

Figure A6 legend for explanation.
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Figure A23: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mbudya1.

See Figure A6 legend for explanation.
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Figure A24: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mbudya2.

See Figure A6 legend for explanation.
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Figure A25: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mombasa1.

See Figure A6 legend for explanation.
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Figure A26: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mombasa2.

See Figure A6 legend for explanation.
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Figure A27: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mradi1. See

Figure A6 legend for explanation.
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Figure A28: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Nyali1. See

Figure A6 legend for explanation.
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Figure A29: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Nyali2. See

Figure A6 legend for explanation.
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Figure A30: Time series for cover of hard corals (a), macroalgae (b) and other (c) at RasIwatine1.

See Figure A6 legend for explanation.
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Figure A31: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Taa1. See

Figure A6 legend for explanation.
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Figure A32: Time series for cover of hard corals (a), macroalgae (b) and other (c) at TiwiInside1.

See Figure A6 legend for explanation.
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Figure A33: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Vipingo1. See

Figure A6 legend for explanation.
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Figure A34: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Vipingo2. See

Figure A6 legend for explanation.
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Figure A35: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Watamu1.

See Figure A6 legend for explanation.
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Figure A36: Relationship between sample generalized variance (determinant of sample covariance

matrix over Monte Carlo iterations) of site-specific effects on dynamics αi and number of time

points per site.
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Figure A37: Effects of the elements of B on the location of the stationary mean µ∗. Axes: the two

components of isometric logratio transformed benthic composition (Equation A.1). Component x1

is proportional to the log of the ratio of algae to coral. Component x2 is proportional to the log of

the ratio of other to the geometric mean of algae and coral. Black dot: point estimate of stationary

mean µ∗, calculated from Equation A.4 using posterior means of a and B. Arrows: directions of

derivatives of µ∗ with respect to each element of B (Equation A.12). Shaded region: coral cover

≤ 0.1.
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Figure A38: Distribution of the two eigenvalues of B in the complex plane. Each Monte Carlo

sample gives a pair of eigenvalues, represented by two points: λ1 (green), posterior mean magni-

tude 0.64, 95% HPD interval (0.53,0.75); λ2 (orange), posterior mean magnitude 0.53, 95% HPD

interval (0.41,0.66))
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Figure A39: Effects of among-site variability on simulated relationship between long-term prob-

ability of coral cover ≤ 0.1 (y-axis) and sample mean coral cover (x-axis). Data sets simulated as

described in section A9. Among-site covariance matrices were the posterior mean of Z from the

real data, scaled by a factor 0 ≤ c ≤ 1, whose value is given in the top left of each panel. Thus the

amount of among-site variability increases from top left to bottom right. The axis scales are the

same on all panels.

61



0 100 200 300 400

-1
.0

-0
.5

0
.0

0
.5

1
.0

Distance/km

S
p

a
ti
a

l 
a

u
to

c
o

rr
e

la
ti
o

n

Figure A40: Spline correlogram of spatial autocorrelation in q0,1,i. Grey lines: spline correlograms

from each of 20000 Monte Carlo iterations. Thick green lines: 95% highest posterior density

envelope. White horizontal line: zero-correlation reference line.
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Figure A41: Ranks of partial derivatives of the long-term probability of coral cover less than or

equal to 0.1 with respect to elements of the B matrix, the a vector, the covariance matrix of random

temporal variation Σ, and the covariance matrix of among-site variability Z. Parameters are ranked

in descending order of median rank (higher ranks indicate larger magnitudes of partial derivative).

Outliers are indicated as jittered black dots. For the covariance matrices, the elements σ12 and ζ12

are not shown, because they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A42: Elements of the gradient vector of partial derivatives of the long-term probability

of coral cover less than or equal to 0.05 with respect to elements of the B matrix, the a vector,

the covariance matrix of random temporal variation Σ, and the covariance matrix of among-site

variability Z. For each parameter, the dot is the posterior mean and the bar is a 95% HPD interval.

For the covariance matrices, the elements σ12 and ζ12 are not shown, because they are constrained

to be equal to σ21 and ζ21 respectively.
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Figure A43: Ranks of partial derivatives of the long-term probability of coral cover less than or

equal to 0.05 with respect to elements of the B matrix, the a vector, the covariance matrix of

random temporal variation Σ, and the covariance matrix of among-site variability Z. Parameters

are ranked in descending order of median rank (higher ranks indicate larger magnitudes of partial

derivative). Outliers are indicated as jittered black dots. For the covariance matrices, the elements

σ12 and ζ12 are not shown, because they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A44: Elements of the gradient vector of partial derivatives of the long-term probability

of coral cover less than or equal to 0.2 with respect to elements of the B matrix, the a vector,

the covariance matrix of random temporal variation Σ, and the covariance matrix of among-site

variability Z. For each parameter, the dot is the posterior mean and the bar is a 95% HPD interval.

For the covariance matrices, the elements σ12 and ζ12 are not shown, because they are constrained

to be equal to σ21 and ζ21 respectively.
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Figure A45: Ranks of partial derivatives of the long-term probability of coral cover less than or

equal to 0.2 with respect to elements of the B matrix, the a vector, the covariance matrix of random

temporal variation Σ, and the covariance matrix of among-site variability Z. Parameters are ranked

in descending order of median rank (higher ranks indicate larger magnitudes of partial derivative).

Outliers are indicated as jittered black dots. For the covariance matrices, the elements σ12 and ζ12

are not shown, because they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A46: Elasticities of the long-term probability of coral cover less than or equal to 0.1 with

respect to elements of the B matrix, the a vector, the covariance matrix of random temporal vari-

ation Σ, and the covariance matrix of among-site variability Z. For each parameter, the dot is the

posterior mean and the bar is a 95% HPD interval. For the covariance matrices, the elements σ12

and ζ12 are not shown, because they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A47: Elasticities of the long-term probability of coral cover less than or equal to 0.05

with respect to elements of the B matrix, the a vector, the covariance matrix of random temporal

variation Σ, and the covariance matrix of among-site variability Z. For each parameter, the dot is

the posterior mean and the bar is a 95% HPD interval. For the covariance matrices, the elements

σ12 and ζ12 are not shown, because they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A48: Elasticities of the long-term probability of coral cover less than or equal to 0.2 with

respect to elements of the B matrix, the a vector, the covariance matrix of random temporal vari-

ation Σ, and the covariance matrix of among-site variability Z. For each parameter, the dot is the

posterior mean and the bar is a 95% HPD interval. For the covariance matrices, the elements σ12

and ζ12 are not shown, because they are constrained to be equal to σ21 and ζ21 respectively.
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