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Abstract

When counting species- (or strain-) specific k-mers the resulting number
can vary due to randomness in placement of reads (if another run of reads is
made from the same sample with the same coverage the resulting number of
species-specific k-mers seen in the sample will be probably different from the
result achieved in the first run). This variability is present wether one counts
the k-mers specific to an interior node (k-mers present in all descendants
of the node but not present in any other species in other branches of the
phylogenetic tree) or counts the k-mers specific to the descendant of the
node. This results also in variability in the Expected k-mer count, which is
calculated under the assumption of existence of both descendants (in varying
quantity) in the sample:

Ê = (P̂1 + P̂2 − P̂1P̂2) · number of node specific k-mers,

where Ê denotes expected k-mer count of a node, P̂1 is the proportion of
descendant 1 specific k-mers found in the sample and P̂2 is the proportion
of k-mers specific to the descendant 2. In this report formulas for the vari-
ance of observed and expected k-mer counts, Var(O) and Var(Ê), are given;
also the formula and it’s derivation to calculate approximate (asymptoti-
cally correct) confidence intervals for observed/expected ratio is presented.
Also an asymptotic test to test hypothesis about observed/expected ratio is
proposed.



Chapter 1

Notations

O - number of unique k-mers seen in a random (next) sample;
O1 - number of k-mers specific to species 1 discovered;
O2 - number of k-mers specific to species 2 discovered;

o, o1, o2 - number of unique k-mers seen (one or more times) in the sample;
n - total number of unique k-mers searched;

n1 - number of k-mers specific to species 1 searched for;
n2 - number of k-mers specific to species 2 searched for;
nnode - number of k-mers specific to internal node searched for;

p1, p2 - probabilities to see a k-mer specific to species 1 and species 2 respectively.

P̂1, P̂2 - estimators for the probabilities p1 and p2: P̂1 = O1/n1, P̂2 = O2/n2.

p̂1, p̂2 - the realised values of P̂1 and P̂2 in the current sample.
l - read length;
k - length of k-mer;

Si - number of reads starting from base i;
Ii - indicator variable: Ii = 1, if k-mer starting from position i in genome

cannot be found in reads; Ii = 0 if the k-mer has been seen one or more times.

e - Excpected number of node-specific k-mers discovered, based on the number of
species-specific k-mers seen (e = p1 + p2 − p1p2)

Ê - estimator for E, Ê = P̂1 + P̂2 − P̂1 · P̂2. Random variable.

ê - the value of Ê in the current sample. Constant.
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Chapter 2

Variance for the number of
(unique) k-mers seen

2.1 Formulas

λ̂ =− ln (1− o/n) /(l − k + 1) (2.1)

V̂ar(O) =o(1− o/n) +

min(l−k,n−1)∑
j=1

2(n− j)
{

exp(−λ̂(l − k + 1 + j))

− exp(−2λ̂(l − k + 1))
}

(2.2)

V̂ar(Ê) =n2
node

(
V̂ar(O1)

n2
1

[1 + V̂ar(O2)/n2
2 + (o2/n2)2 − 2o2/n2]

+
V̂ar(O2)

n2
2

[1 + (o1/n1)2 − 2o1/n1]

)
. (2.3)

These formulas are derived under worst-case scenario — by assuming
the unique k-mers to be located next to each other (next base in genome is
also the starting point of a next k-mer in k-mer search list). If the unique
k-mers are separated from each other then the variance of O is smaller than
the number given by the formula (2.2) and the variance of Ê is smaller than
the value calculated by (2.3).
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2.2 Derivation

We assume the number of reads starting from a base i in genome to have
Poisson distribution,

Si ∼ Poi(λ).

Similar assumptions are also made in Illumina technical materials, see for
example [1].

One unique k-mer starting from position i is seen exactly Ki := Si +
Si−1 + . . . + Si−l+k times. Because the starting points of reads can be
assumed to be independent of each other

Ki ∼ Poi (λ[l − k + 1]) ,

because the sum of independent Poisson random variables is Poisson-distributed.
From Poisson distribution probability mass function it follows:

P (Ki = 0) = exp(λ(l − k + 1))

λ = ln (P (Ki = 0)) /(l − k + 1).

One can estimate the probability not to sequence a particular unique k-
mer, p := P (Ki = 0), by the ratio 1− o/n. Therefore one can also estimate
λ by

λ̂ = ln (1− o/n) /(l − k + 1).

Next one can investigate the statistical properties of an indicator variable
Ii defined as

Ii =

{
1, Ki = 0 (k-mer in the position i has not been seen in the sample)
0, Ki > 0 (k-mer in the position i has been seen in the sample)

The distribution of Ii is

x 1 0

P (Ii = x) p (1− p)

and E(Ii) = p; Var(Ii) = p(1− p).
Because the starting positions of reads are independent of each other

E(Ii · Ii−1) =P (Si = 0)P (Si−1 = 0) · . . . · P (Si−l+k−1 = 0)

= exp(−λ(l − k + 2))
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and similarly one can derive a more general result:

E(Ii · Ij) =

{
exp(−λ(l − k + 1 + |j − i|)), if |j − i| ≤ l − k

exp(−2λ(l − k + 1)), if |j − i| > l − k.

Therefore one can calculate the covariance between Ii and Ij as

cov(Ii, Ij) = E(Ii · Ij)− E(Ii)E(Ij)

=


exp(−λ(l − k + 1 + |j − i|))

− exp(−2λ(l − k + 1)), if |j − i| ≤ l − k
0, if |j − i| > l − k.

From the derived result one can notice all the covariances to be non-negative
(and the covariance decreases as the distance between the i and j increases).

Denote by Ψ the starting positions of all the unique k-mers searched.
The sum of Ii’s, ∑

i∈Ψ

Ii,

gives the number of unique k-mers not found from the reads. The variance
of the sum can be calculated as

Var
(∑

Ii

)
= n ·Var(Ii) +

∑
i,j∈Ψ;i 6=j

cov(Ii, Ij). (2.4)

If all (n) unique k-mers are positioned in the genome next to each other,
starting from a position i0, the equation (2.4) takes the form

Var
(∑

Ii

)
=

min(l−k,n−1)∑
j=0

cov (Ii0 , Ii0+j)

+

min(l−k,n−2)∑
j=−1

cov (Ii0+1, Ii0+1+j) + . . .

+

min(l−k,n−z)∑
j=max(−(l−k),−(z−1))

cov (Ii0+z, Ii0+z+j) + . . .

+
0∑

j=max(−(l−k),−(n−1))

cov (Ii0+n−1, Ii0+n−1+j) ,

because cov(Ii, Ij) = 0if |j − i| > l − k.
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After rearranging the terms and taking into account that covariance
between Ii and Ij depends only from the distance |j − i|, and not from
the actual position in the genome, eg cov (Ii, Ij) = cov (Ii+x, Ij+x), one can
write:

Var
(∑

Ii

)
=ncov (Ii0 , Ii0) + 2(n− 1)cov (Ii0 , Ii0+1)

+ 2(n− 2)cov (Ii0 , Ii0+2) + . . .

+ 2(n−min(l − k, n− 1))cov
(
Ii0 , Ii0+min(l−k,n−1)

)
=nVar(Ii0) +

min(l−k,n−1)∑
j=1

2(n− j)cov (Ii0 , Ii0+j)

=np(1− p) +

min(l−k,n−1)∑
j=1

2(n− j) {exp(−λ(l − k + 1 + j))

− exp(−2λ(l − k + 1))} (2.5)

Remark: because the non-negative covariances between Ii and Ij de-
crease as the distance between the positions i and j increases the formula
derived represents the worst case scenario — if the unique k-mers are posi-
tioned further away (and not next to each other) then the variance of the
sum is smaller than the one given in 2.5.

Because n is constant Var(O) = Var(n − O) = Var(
∑
Ii). To get an

estimate for Var(O) one has to plug in the estimates of λ and p to the
formula (2.5):

V̂ar(O) =
̂

Var(
∑

Ii)

= np̂(1− p̂) +

min(l−k,n−1)∑
j=1

2(n− j)
{

exp(−λ̂(l − k + 1 + j))

− exp(−2λ̂(l − k + 1))
}

= o(1− o/n) +

min(l−k,n−1)∑
j=1

2(n− j)
{

exp(−λ̂(l − k + 1 + j))

− exp(−2λ̂(l − k + 1))
}
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The formula acquired is presented as the formula (2.2) in the Formulas
section.

Next one can calculate the variance of expected number of unique k-
mers (expected for an internal node based on the proportions of species-
specific k-mers discovered; denoted by Ê). Let P̂1 be the estimator for
probability to discover a k-mer specific to species 1 (P̂1 = O1/n1) and P̂2 is
the estimator for probability to discover a k-mer specific to species 2 (P̂2 =
O2/n2). Because P̂1 and P̂2 can be considered to be independent (these
estimates are likely to be based on different genomes or at least different
genome regions of one previously unknown species) one can write:

Var(Ê) = Var
(
nnode(P̂1 + P̂2 − P̂1 · P̂2)

)
= n2

nodeVar
(
P̂1 + P̂2 − P̂1 · P̂2

)
,

= n2
node

{
Var(P̂1) + Var(P̂2) + Var(P̂1 · P̂2)− 2cov(P̂1 + P̂2, P̂1 · P̂2)

}
,

= n2
node

{
Var(P̂1) + Var(P̂2) + Var(P̂1 · P̂2)− 2Var(P̂1)E(P̂2)

−2Var(P̂2)E(P̂1)
}
,

IfX⊥Y then Var(X·Y ) = Var(X)·Var(Y )+Var(X) {E(Y )}2+Var(Y ) {E(X)}2
and therefore

Var(Ê) =n2
node

{
Var(P̂1) + Var(P̂2) + Var(P̂1) ·Var(P̂2) + Var(P̂1)E(P̂2)2

+Var(P̂2)E(P̂1)2 − 2Var(P̂1)E(P̂2)− 2Var(P̂2)E(P̂1)
}

=n2
node

{
Var(P̂1)[1 + Var(P̂2) + E(P̂2)2 − 2E(P̂2)] + Var(P̂2)[1 + E(P̂1)2 − 2E(P̂1)]

}
.

To get an estimate of Var(Ê) one can first notice

Var(P̂1) = Var(O1/n1)

= Var(O1)/n2
1

V̂ar(P̂1) = V̂ar(O1)/n2
1,

where V̂ar(O1) can be calculated by using formula (2.2). Similarly one can
estimate Var(P̂1); E(P̂1) can be estimated by p̂1; etc.
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After plugging in all the estimates one can write:

V̂ar(Ê) =n2
node

(
V̂ar(P̂1)[1 + V̂ar(P̂2) + p̂2

2 − 2p̂2]

+V̂ar(P̂2)[1 + p̂2
1 − 2p̂1]

)
=n2

node

(
V̂ar(O1)

n2
1

[1 + V̂ar(O2)/n2
2 + p̂2

2 − 2p̂2]

+
V̂ar(O2)

n2
2

[1 + p̂2
1 − 2p̂1]

)
.

This completes the derivation of formula (2.3).

7



Chapter 3

Confidence interval for
E(O)/e ratio

3.1 Formulas

The estimated variance of the logarithm of observed-expected ratio is

V̂ar(log(O/Ê)) = V̂ar(O)/o2 + V̂ar(Ê)/ê2.

Approximate distribution of the logarithm of O/Ê-ratio (under some mild
assumptions) is

log(O/Ê)
asympt.∼ N

(
log(E(O))− log(e), V̂ar(log(O/Ê))

)
,

The approximate (1− α)-confidence intervals for E(O)/e-ratio

exp

(
log(o/ê) + zα/2

√
V̂ar(log(O/Ê))

)
. . . exp

(
log(o/ê) + z1−α/2

√
V̂ar(log(O/Ê))

)
.

To calculate the p-value to test H0 : E(O)/e = θ0 one can use the (asymp-
totically valid) formula:

p− value = Φ

−
∣∣∣∣∣∣ ln(o/ê)− ln(θ0)√

V̂ar(log(O/Ê))

∣∣∣∣∣∣
 · 2.

3.2 Derivation

First one can notice that the proportion of specific k-mers discovered is
asymptotically normally distributed if n→∞ and 0 < p < 1 (so that both
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np→∞ and (1− p)n→∞):

√
n(O/n− p) D−→ N(0; Var(O)/n),

For observed k-mer count of a node therefore approximately holds (if nnode
is big and pnode > 0 — due to sequencing errors this is always true — and
pnode < 1, eg the sequencing coverage should not be extremely big):

Onode/nnode
approx.∼ N(pnode; Var(Onode)/n

2
node)

Onode
approx.∼ N(pnodennode(= E(Onode)); Var(Onode)).

Reasoning: If unique k-mers are located next to each other then indicator
variables showing a particular k-mer is discovered form a strictly stationary
stochastic process with strong mixing (α-mixing) property. Under weak
assumptions like coverage is greater than zero and less than infinity (λ >
0;λ <∞) one can show the central limit theorem to hold.

Similarily if nnode →∞ and 0 << p1, p2 << 1, one can show

Ê/nnode
approx.∼ N(e/nnode;D(Ê)/n2

node)

Ê
approx.∼ N(e; Var(Ê)).

One can prove the claim above by using the result by Aroian (1947).
Aroian showed the product of two independent normal variables X1 ∼
N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) to be approximately normal if µ1/σ1 → ∞

and µ2/σ2 →∞; therefore Ê =
(
P̂1 + P̂2 + P̂1 · P̂2

)
nnode can be viewed as

a linear combination of a normally distributed variables, if both n1 and n2

are big and 0 < p1 < 1, 0 < p2 < 1.
Next one can use delta method to derive the distribution of ln(Ê) and

ln(Onode). Here are presented the Delta method’s main idea (replicated from
wikipedia, [2]) :

If the distribution of a statistic Xn converges to normality as the sample
size increases, √

n(Xn − θ)
D−→ N(0, σ2),

where θ and σ2 are finite valued constants and
D−→ denotes convergence in

distribution, then

√
n[g(Xn)− g(θ)]

D−→ N (0, σ2[g′(θ)]2) (3.1)
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for any function g satisfying the property that g′(θ) exists and is non-zero
valued.

Therefore, by using delta method:

ln(Ê) ∼ N(ln(E); Var(Ê)/e2)

ln(Onode) ∼ N(ln(E(Onode)); Var(Onode)/E(Onode)
2).

The assumptions of the delta method are only fulfilled if e > 0 and
E(Onode) > 0, but both of these requirements are likely to be satisfied, at
least due to sequencing errors.

Because Ê and Onode are likely to be independent — probably the k-mers
are situated more than a read’s length apart — one can write

ln(Onode)− ln(Ê) ∼ N(ln(E(Onode)− ln(e); Var(Onode)/E(Onode)
2 + Var(Ê)/e2)

ln(Onode/Ê) ∼ N(ln(E(Onode/e)); Var(Onode)/E(Onode)
2 + Var(Ê)/e2).

One can conclude from the formula above that an estimator for the
variance of logarithm of observed-expected ratio is:

V̂ar
(

ln(Onode/Ê)
)

= V̂ar(Onode)/o
2
node + V̂ar(Ê)/ê2.

Now one can derive a test procedure to test hypothesis about the ratio
E(Onode/e). One can use the z-test to test the hypothesis H0 : E(Onode/e) =
θ0:

ln(Onode/Ê)− ln(θ0)√
V̂ar

(
ln(Onode/Ê)

) H0,approx.∼ N(0, 1)

and the p-value of the two-sided test can be calculated as

p− value = Φ

−
∣∣∣∣∣∣∣∣
ln(Onode/Ê)− ln(θ0)√

V̂ar
(

ln(Onode/Ê)
)
∣∣∣∣∣∣∣∣
 · 2.

Also one can get the approximate 1−α-confidence interval for ln(E(Onode/e))
as:

ln(Onode/ê)± zα/2 · V̂ar(ln(Onode/Ê)).
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