
Likelihood and gradient

Jesse D. Bloom and Sarah K. Hilton

March 20, 2017

This document contains some information on the numerical implementation of phydms (version
2.0.0), particularly in regards to how the likelihoods and its derivatives are computed. It may be
of help in trying to understand the code.
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1 ExpCM substitution model parameters and derivatives

We begin by considering the basic ExpCM substitution model described in [1]. Pr,xy gives the
substitution rate from codon x to codon y 6= x at site r, and is defined by

Pr,xy =

Qxy × Fr,xy if x 6= y,

−
∑
z 6=x

Fr,xzQxz if x = y. (1)

where Qxy is the rate of mutation from codon x to y and is defined by

Qxy =


φw if x is converted to y by a single-nucleotide transversion to w,

κφw if x is converted to y by a single-nucleotide transition to w,

0 if x and y differ by more than one nucleotide,

(2)

where κ is the transition-transversion ratio and φw is the expected frequency of nucleotide w in the
absence of selection on amino-acid mutation (and so is subject to the constraint 1 =

∑
w φw).

The “fixation probability” Fr,xy of the mutation from x to y is

Fr,xy =


1 if A (x) = A (y)

ω if A (x) 6= A (y) and πr,A(x) = πr,A(y)

ω × −β ln(πr,A(x)/πr,A(y))
1−(πr,A(x)/πr,A(y))

β otherwise.

(3)

where πr,a is the preference of site r for amino acid a, A (x) is the amino acid encoded by codon x,
β is the stringency parameter, and ω is a relative rate of nonsynonymous to synonymous mutations
after accounting for the selection encapsulated by the preferences.

We define a variable transformation of the four nucleotide frequency parameters φw (three of
which are unique). This transformation aids in numerical optimization. Specifically, we number
the four nucleotides in alphabetical order so that w = 0 denotes A, w = 1 denotes C, w = 2 denotes
G, and w = 3 denotes T. We then define the three free variables η0, η1, and η2, all of which are
constrained to fall between zero and one. For notational convenience in the formulas below, we also
define η3 = 0; note however that η3 is not a free parameter, as it is always zero. We define φw in
terms of these ηi variables by

φw =

(
w−1∏
i=0

ηi

)
(1− ηw) (4)

or conversely

ηw = 1− φw/

(
w−1∏
i=0

ηi

)
. (5)
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Note that setting ηw = 3−w
4−w makes all of the φw values equal to 1

4 .
The derivatives are:

∂φw
∂ηi

=


(∏i−1

j=0 ηj

)(∏w−1
j=i+1 ηj

)
(1− ηw) = φw

ηi
if i < w

−
∏w−1
j=0 ηj = φw

ηi−1 if i = w

0 if i > w

(6)

=

{
φw

ηi−δiw if i ≤ w,

0 otherwise,
(7)

where δij is the Kronecker-delta, equal to 1 if i = j and 0 otherwise. Given these definitions, the
free parameters in and ExpCM model are κ, η0, η1, η2, β, and ω.

Here are the derivatives of Pr,xy with respect to each of these parameters:

∂Pr,xy
∂κ

=


Pr,xy
κ if x is converted to y by a transition of a nucleotide to w,

0 if x and y differ by something other than a single transition,

−
∑
z 6=x

∂Pr,xz
∂κ if x = y.

(8)

∂Pr,xy
∂ηi

=


Pr,xy
φw

∂φw
∂ηi

=
Pr,xy
ηi−δiw if x is converted to y by a single-nucleotide mutation to w ≥ i,

0 if i > w or x and y differ by more than one nucleotide,

−
∑
z 6=x

∂Pr,xz
∂ηi

if x = y.
(9)

∂Pr,xy
∂ω

=


0 if A (x) = A (y) and x 6= y
Pr,xy
ω if A (x) 6= A (y),

−
∑
z 6=x

∂Pr,xz
∂ω if x = y.

(10)

∂Pr,xy
∂β

=



0 if A (x) = A (y) and x 6= y,

0 if πr,A(x) = πr,A(y) and x 6= y,

Pr,xy
β + Pr,xy

(πr,A(x)/πr,A(y))
β×ln(πr,A(x)/πr,A(y))

1−(πr,A(x)/πr,A(y))
β if A (x) 6= A (y),

−
∑
z 6=x

∂Pr,xz
∂β if x = y.

(11)

2 ExpCM stationary state and derivatives

The stationary state of the substitution model defined by Pr,xy is

pr,x =
qxfr,x∑
z qzfr,z

(12)

where

fr,x =
(
πr,A(x)

)β
(13)
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and

qx = φx0
φx1

φx2
(14)

where x0, x1, and x2 are the nucleotides at the first, second, and third positions of codon x.
The derivatives of the stationary state with respect to κ and ω are zero as these do not affect

that state, so:

∂pr,x
∂κ

=
∂pr,x
∂ω

= 0. (15)

The stationary state is sensitive to the value of β, with derivative:

∂pr,x
∂β

=
pr,x

[
ln
(
πr,A(x)

)
(
∑
z fr,zqz)−

∑
z ln

(
πr,A(z)

)
fr,zqz

]∑
z qzfr,z

(16)

= pr,x

(
ln
(
πr,A(x)

)
−
∑
z ln

(
πr,A(z)

)
fr,zqz∑

z qzfr,z

)
(17)

= pr,x

(
ln
(
πr,A(x)

)
−
∑
z

ln
(
πr,A(z)

)
pr,z

)
(18)

The stationary state is also sensitive to the values of η0, η1, and η2:

∂pr,x
∂ηi

=
fr,x

∂qx
∂ηi

(
∑
z qzfr,z)− fr,xqx

(∑
z fr,z

∂qz
∂ηi

)
(
∑
z qzfr,z)

2 (19)

=
∂qx
∂ηi

pr,x
qx
− pr,x

∑
z fr,z

∂qz
∂ηi∑

z qzfr,z
(20)

where the ∂qx
∂ηi

terms are:

∂qx
∂ηi

=
∂φx0

∂ηi
φx1φx2 +

∂φx1

∂ηi
φx0φx2 +

∂φx2

∂ηi
φx0φx1 (21)

=

2∑
j=0

∂φxj
∂ηi

∏
k 6=j

φxk (22)

= qx

2∑
j=0

1

φxj

∂φxj
∂ηi

(23)

= qx

2∑
j=0

bool (i ≤ xj)
ηi − δixj

(24)
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where bool (i ≤ j) is 1 if i ≤ j and 0 otherwise, and so

∂pr,x
∂ηi

= pr,x

 2∑
j=0

bool (i ≤ xj)
ηi − δixj

−

∑
z fr,zqz

∑2
j=0

bool(i≤zj)
ηi−δizj∑

z qzfr,z

 (25)

= pr,x

 2∑
j=0

bool (i ≤ xj)
ηi − δixj

−

∑
z pr,z

∑2
j=0

bool(i≤zj)
ηi−δizj∑

z pr,z

 (26)

(27)

3 ExpCM with empirical nucleotide frequencies

In the description above, the nucleotide frequencies φw are fit as three free parameters. Now
let’s consider the case where we instead calculate them empirically to give a stationary state that
implies nucleotide frequencies that match those empirically observed in the alignment. This should
be beneficial in terms of optimization because it reduces the number of model parameters that need
to be optimized.

Let gw be the empirical frequency of nucleotide w taken over all sites and sequences in the
alignment. Obviously, 1 =

∑
w gw. We want to empirically set φw to some value φ̂w such that when

qx = φ̂x0 φ̂x1 φ̂x2 then

gw =
1

L

∑
r

∑
x

1

3
Nw (x) pr,x (28)

=
1

3L

∑
r

∑
xNw (x) fr,x

∏2
k=0 φ̂xk∑

y fr,y
∏2
k=0 φ̂yk

(29)

(30)

where Nw (x) =
∑2
k=0 δxk,w is the number of occurrence of nucleotide w in codon x, r ranges over

all codon sites in the gene, x ranges over all codons, and k ranges over the first three nucleotides.
There are three independent gw values and three independent φ̂w values (since 1 =

∑
w gw

∑
w =

φ̂w), so we have three equations and three unknowns. We could not solve the set of three equations

analytically for the φ̂w values, so instead we use a non-linear equation solver to determine their
values.

When using empirical nucleotide frequencies, we no longer need to calculate any derivatives with
respect to ηi as we no longer have the ηi free parameters.

However, now the value of φw = φ̂w depends on β via the fr,x parameters in Equation phihat.

So we need new formulas for
∂pr,x
∂β and

∂Pr,xy
∂β that accounts for this dependency.

Since we do not have an analytic expression for φ̂w, we cannot compute ∂φw
∂β analytically. But

we can compute these derivatives numerically. This is done using a finite-difference method.
We now update the formula for

∂Pr,xy
∂β for the case when φw depends on β. In that case, we

have:

∂Qxy
∂β

=


∂φw
∂β if x is converted to y by a single-nucleotide transversion to w,

κ∂φw∂β if x is converted to y by a single-nucleotide transition to w,

0 if x and y differ by more than one nucleotide,

(31)
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and

∂Fr,xy
∂β

=


0 if A (x) = A (y)

0 if A (x) 6= A (y) and πr,A(x) = πr,A(y)

Fr,xy
(

1−Fr,xyω (πr,A(x)/πr,A(y))
β
)

β otherwise,

(32)

so for all x 6= y, we have

∂Pr,xy
∂β

=
∂ (Qxy × Fr,xy)

∂β
(33)

= Qxy
∂Fr,xy
∂β

+ Fr,xy
∂Qxy
∂β

(34)

=

[
∂Pr,xy
∂β

]
free φw

+ Fr,xy
∂Qxy
∂β

. (35)

where
[
∂Pr,xy
∂β

]
free φw

is the expression given by the equation for
∂Pr,xy
∂β . When x = y, we have

∂Pr,xx
∂β =

∑
z 6=x
−∂Pr,xz∂β .

We also must update the formula in for
∂Pr,xy
∂β for the case where φw depends on β. We have:

∂qx
∂β

=
∂ (φx0

φx1
φx2

)

∂β
(36)

=

2∑
j=0

∂φxj
∂β

∏
k 6=j

φxk (37)

= qx

2∑
j=0

1

φxj

∂φxj
∂β

(38)

and

∂fr,x
∂β

= fr,x
[
ln
(
πr,A(x)

)]
. (39)
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So:

∂pr,x
∂β

=
∂

∂β

(
qxfr,x∑
z qzfr,z

)
(40)

=

(
qx

∂fr,x
∂β + fr,x

∂qx
∂β

)∑
z qzfr,z − qxfr,x

∑
z

(
qz
∂fr,z
∂β + fr,z

∂qz
∂β

)
(
∑
z qzfr,z)

2 (41)

=

(
qxfr,x

[
ln
(
πr,A(x)

)]
+ fr,xqx

2∑
j=0

1
φxj

∂φxj
∂β

)∑
z qzfr,z − qxfr,x

∑
z

(
qzfr,z

[
ln
(
πr,A(z)

)]
+ fr,zqz

2∑
j=0

1
φzj

∂φzj
∂β

)
(
∑
z qzfr,z)

2 (42)

= pr,x

([
ln
(
πr,A(x)

)]
+

2∑
j=0

1
φxj

∂φxj
∂β

)∑
z qzfr,z −

∑
z

(
qzfr,z

[
ln
(
πr,A(z)

)]
+ fr,zqz

2∑
j=0

1
φzj

∂φzj
∂β

)
∑
z qzfr,z

(43)

= pr,x

[ln (πr,A(x)

)]
+

2∑
j=0

1

φxj

∂φxj
∂β
−
∑
z

pr,z

[ln (πr,A(z)

)]
+

2∑
j=0

1

φzj

∂φzj
∂β

 (44)

=

[
∂pr,x
∂β

]
free φw

+ pr,x

 2∑
j=0

1

φxj

∂φxj
∂β
−
∑
z

pr,z

2∑
j=0

1

φzj

∂φzj
∂β

 (45)

where
[
∂pr,x
∂β

]
free φw

is the expresssion given by the equation for
∂pr,x
∂β .

4 ExpCM with empirical nucleotide frequencies and diver-
sifying pressure

The ω value in the previous models is the gene-wide relative rate of nonsynonymous to synonymous
mutations after accounting for the differing preferences among sites. In some cases, it might be
possible to specify a priori expections for the diversifying pressure at each site. For instance,
viruses benefit from amino-acid change in sites targeted by the immune system and, consequently,
these sites have a higher rate of amino-acid substitution than expected given their level of inherent
functional constraint. We can incorporate our expectations for diversifying pressure at specific sites
into the selection terms Fr,xy.

Let δr be the pre-determined diversifying pressure for amino-acid change at site r in the protein.
A large positive value of δr corresponds to high pressure for amino-acid diversification, and negative
value corresponds to expected pressure against amino-acid diversification beyond that captured
in the amino-acid preferences. We then replace ω in Equation Frxy with the expression ω ×
(1 + ω2 × δr), resulting in selection terms:

Fr,xy =


1 if A (x) = A (y)

ω × (1 + ω2 × δr) if A (x) 6= A (y) and πr,A(x) = πr,A(y)

ω × (1 + ω2 × δr)×
ln
(
(πr,A(y))

β
/(πr,A(x))

β
)

1−
(
(πr,A(x))

β
/(πr,A(y))

β
) otherwise.

(46)
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Whereas before ω reflected the elevation of non-synonymous substitution rate (averaged across
the entire gene) beyond that expected given the amino-acid preferences, now ω reflects a gene-
wide rate of elevated non-synonymous substitution after taking into account the expected sites of
diversifying pressure (as represented by δr) weighted by ω2 × δr. These new selection terms in are
identical the selection terms in the original equation for Fr,xy when ω2 = 0.

To ensure a positive value of ω × (1 + ω2 × δr), we constrain ω > 0, −1 < ω2 < ∞, and
|maxr δr| ≤ 1.

We have added one more parameter, ω2, so we need to add a new derivative,
∂Pr,xy
∂ω2

:

∂Pr,xy
∂ω2

=


0 if A (x) = A (y) and x 6= y

ω × δr ×
ln
(
(πr,A(y))

β
/(πr,A(x))

β
)

1−
(
(πr,A(x))

β
/(πr,A(y))

β
) ×Qxy if A (x) 6= A (y),

−
∑
z 6=x

∂Pr,xy
∂ω2

if x = y.

. (47)

5 ExpCM with the preferences as free parameters

In most situations, the amino-acid preferences πr,a are experimentally measured. But in certain
situations, we wish to treat these as free parameters that we optimize by maximum likelihood.
There are two different implementations of how this is done, instantiated in the ExpCM fitprefs and
ExpCM fitprefs2 classes. These classes differ in how the preferences are represented as parameters,
and so may have different optimization efficiencies.

First, we describe aspects general to both implementations, then we describe the details specific
to each.

The Fr,xy terms defined by Equation Frxy depend on πr,a. The derivative is

∂Fr,xy
∂πr,a

=



(
δaA(y) − δaA(x)

)
ωβ

2πr,a
if πr,A(x) = πr,A(y),

(
δaA(y) − δaA(x)

)
ωβ
πr,a

(πr,A(x)/πr,A(y))
β

[
ln

((
πr,A(x)
πr,A(y)

)β)
−1

]
+1(

1−
(
πr,A(x)
πr,A(y)

)β)2 if πr,A(x) 6= πr,A(y),
(48)

where the expressions when πr,A(x) = πr,A(y) are derived from application of L’Hopital’s rule, and
δij is the Kronecker delta.

Define

F̃r,xy =



0 if A (x) = A (y),
ωβ
2 if A (x) 6= A (y) and πr,A(x) = πr,A(y),

(ωβ)
(πr,A(x)/πr,A(y))

β

[
ln

((
πr,A(x)
πr,A(y)

)β)
−1

]
+1(

1−
(
πr,A(x)
πr,A(y)

)β)2 if A (x) 6= A (y) and πr,A(x) 6= πr,A(y),

(49)

so that

∂Fr,xy
∂πr,a

=
(
δaA(y) − δaA(x)

) F̃r,xy
πr,a

. (50)
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We also need to calculate the derivative of the stationary state pr,x given by Equation prx with
respect to the preference. In this calculation, we simplify the algebra by taking advantage of the
fact that for our fit preferences models, we always have β = 1 to simplify from the first to the
second line below:

∂pr,x
∂πr,a

=
∂

∂πr,x

(
qx
(
πr,A(x)

)β∑
z qz

(
πr,A(z)

)β
)

(51)

=
∂

∂πr,x

(
qxπr,A(x)∑
z qzπr,A(z)

)
(52)

=
qxδaA(x)

(∑
z qzπr,A(z)

)
− qxπr,A(x) ×

∑
z qzδaA(z)(∑

z qzπr,A(z)

)2 (53)

= δaA(x)
pr,x
πr,a
− pr,x

∑
z

δaA(z)
pr,z
πr,a

. (54)

5.1 ExpCM fitprefs implementation

We define a variable transformation from the 20 πr,a values at each site r (19 of these 20 values
are unique since they sum to one). This transformation is analogous to that from φ to η above.
Specifically, we number the 20 amino acids such that a = 0 means alanine, a = 1 means cysteine,
and so on up to a = 19 meaning tyrosine.. We then define 19 free variables for each site r:
ζr,0, ζr,1, . . . , ζr,18, all of which are constrained to value between zero and one. For notational
convenience, we also define ζr,19 = 0, but not that ζr,19 is not a free parameter as it is always zero.

We the define

πr,a =

(
a−1∏
i=0

ζr,i

)
(1− ζr,a) (55)

and conversely

ζr,a = 1− πr,a/

(
a−1∏
i=0

ζr,i

)
. (56)

Note that setting ζr,a = 19−a
20−a makes all the πr,a values equal to 1

20 .
We have

∂πr,a
∂ζr,i

=

{
πr,a

ζr,i−δia if i ≤ a,

0 otherwise,
(57)

where δij is the Kronecker-delta.
We then have

∂Pr,xy
∂ζr,i

= Qxy
∑
a

∂Fr,xy
∂πr,a

∂πr,a
∂ζr,i

=



0 if i > A (x) and i > A (y) and x 6= y,
QxyF̃r,xy
ζr,i−δiA(y)

if i > A (x) and i ≤ A (y) and x 6= y,

− QxyF̃r,xy
ζr,i−δiA(x)

if i ≤ A (x) and i > A (y) and x 6= y,

QxyF̃r,xy
ζr,i−δiA(y)

− QxyF̃r,xy
ζr,i−δiA(x)

if i ≤ A (x) and i ≤ A (y) and x 6= y

−
∑
z 6=x

∂Pr,xy
∂ζr,i

if x = y.

(58)

9



We also have:

∂pr,x
∂ζr,i

=
∑
a

∂pr,x
∂πr,a

∂πr,a
∂ζr,i

(59)

= pr,x
∑
a≥i

1

ζr,i − δia

(
δaA(x) −

∑
z

δaA(z)pr,z

)
. (60)

5.2 ExpCM prefs2 implementation

For this implementation, we define a different variable transformation from the 20 πr,a values at
each site r (19 of these 20 values are unique since they sum to one). We define 19 free variables for
each site r: ζr,0, ζr,1, . . . , ζr,18, all of which are constrained to be greater than zero. For notational
convenience, we also define ζr,19 = 1, but not that ζr,19 is not a free parameter as it is always one.

We then define

πr,a =
ζr,a∑
j ζr,j

(61)

and conversely

ζr,a =
πr,a
πr,19

. (62)

We therefore have

∂πr,a
∂ζr,i

=
1∑
j ζr,j

(
δia −

ζr,a∑
j ζr,j

)
(63)

=
πr,a
ζr,a

(δia − πr,a) (64)

where δij is the Kronecker-delta.
We then have

∂Pr,xy
∂ζr,i

= Qxy
∑
a

∂Fr,xy
∂πr,a

∂πr,a
∂ζr,i

(65)

= QxyF̃r,xy
∑
a

(
δaA(y) − δaA(x)

) 1

ζr,a
(δia − πr,a) (66)

= QxyF̃r,xy

[(∑
a

(
δaA(y) − δaA(x)

) δia
ζr,a

)
−

(∑
a

(
δaA(y) − δaA(x)

) πr,a
ζr,a

)]
(67)

= QxyF̃r,xy

[
δiA(y) − δiA(x)

ζr,i
−

(∑
a

(
δaA(y) − δaA(x)

) πr,a
ζr,a

)]
(68)

= QxyF̃r,xy

[
δiA(y) − δiA(x)

ζr,i
−

(
1∑
j ζr,j

∑
a

(
δaA(y) − δaA(x)

))]
(69)

= QxyF̃r,xy

[
δiA(y) − δiA(x)

ζr,i

]
. (70)
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We also have:

∂pr,x
∂ζr,i

=
∑
a

∂pr,x
∂πr,a

∂πr,a
∂ζr,i

(71)

= pr,x
∑
a

δia − πr,a
ζr,a

(
δaA(x) −

∑
z

δaA(z)pr,z

)
(72)

= pr,x

[
1

ζr,i

(
δiA(x) −

∑
z

δiA(z)pr,z

)
−
∑
a

πr,a
ζr,a

(
δaA(x) −

∑
z

δaA(z)pr,z

)]
(73)

= pr,x

[
1

ζr,i

(
δiA(x) −

∑
z

δiA(z)pr,z

)
−
πr,A(x)

ζr,A(x)
+
∑
a

πr,a
ζr,a

∑
z

δaA(z)pr,z

]
(74)

= pr,x

[
1

ζr,i

(
δiA(x) −

∑
z

δiA(z)pr,z

)
− 1∑

j ζr,j
+

1∑
j ζr,j

∑
a

∑
z

δaA(z)pr,z

]
(75)

=
pr,x
ζr,i

(
δiA(x) −

∑
z

δiA(z)pr,z

)
. (76)

6 Regularizing preferences for ExpCM with preferences as
free parameters

When the preferences are free parameters, we typically want to regularize them to avoid fitting lots
of values of one or zero. We do this by defining a regularizing prior over the preferences, and then
maximizing the product of the likelihood and this regularizing prior (essentially, the maximum a
posteriori estimate).

6.1 Inverse-quadratic prior

This is the prior used in [1] (note that the notation used here is slightly different than in that
reference). Let πr,a be the preference that we are trying to optimize, and let θr,a be our prior
estimate of πr,a. Typically, this estimate is the original experimentally measured preference πorig

r,a

re-scaled by the optimized stringency parameter β, namely θr,a =
(πorig
r,a )

β∑
a′
(
πorig

r,a′

)β .

The prior is then

Pr ({πr,a} | {θr,a}) =
∏
r

∏
a

(
1

1 + C1 × (πr,a − θr,a)
2

)C2

. (77)

or

ln [Pr ({πr,a} | {θr,a})] = −C2

∑
r

∑
a

ln
(

1 + C1 × (πr,a − θr,a)
2
)

(78)

where C1 and C2 are parameters that specify how concentrated the prior is (larger values make the
prior more strongly peaked at θr,a).
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The derivative is

∂ ln [Pr ({πr,a} | {θr,a})]
∂πr,a

=
−2C1C2 (πr,a − θr,a)

1 + C1 × (πr,a − θr,a)
2 , (79)

This prior can then be defined in terms of the transformation variable for the ExpCM fitprefs or
ExpCM fitprefs2 implementation:

6.1.1 ExpCM fitprefs implementation

∂ ln [Pr ({πr,a} | {θr,a})]
∂ζr,i

=
∑
a

∂ ln [Pr ({πr,a} | {θr,a})]
∂πr,a

∂πr,a
∂ζr,i

(80)

= −2C1C2

∑
a≥i

(πr,a − θr,a)

1 + C1 × (πr,a − θr,a)
2

πr,a
ζr,i − δia

. (81)

6.1.2 ExpCM fitprefs2 implementation

∂ ln [Pr ({πr,a} | {θr,a})]
∂ζr,i

=
∑
a

∂ ln [Pr ({πr,a} | {θr,a})]
∂πr,a

∂πr,a
∂ζr,i

(82)

= −2C1C2

∑
a

(πr,a − θr,a)

1 + C1 × (πr,a − θr,a)
2

πr,a
ζr,a

(δia − πr,a) (83)

=
−2C1C2∑

j ζr,j

∑
a

(πr,a − θr,a)

1 + C1 × (πr,a − θr,a)
2 (δia − πr,a) . (84)

7 YNGKP M0 model

We consider the basic Goldman-Yang style YNGKP M0 substitution model defined in [2]. This
model is not site-specific. Pxy is the substitution rate from codon x to codon y and is defined by

Pxy =


0 if x and y differ by more than one nucleotide,

µωΦy if x is converted to y by a single-nucleotide transversion,

κµωΦy if x is converted to y by a single-nucleotide transition,

−
∑
z 6=x

Pxz if x = y.

(85)

where κ is the transition-transversion ratio, Φy is the equilibrium frequency of codon y, ω is the gene-
wide rate of non-synonymous change, and µ is the substitution rate. Typically Φy is determined
empirically as described below, and κ and ω are optimized by maximum likelihood.

The derivatives are:

∂Pxy
∂κ

=


Pxy
κ if x is converted to y by a transition of a nucleotide to w,

0 if x and y differ by something other than a single transition,

−
∑
z 6=x

∂Pxz
∂κ if x = y.

(86)
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∂Pxy
∂ω

=


0 if A (x) = A (y) and x 6= y
Pxy
ω if A (x) 6= A (y),

−
∑
z 6=x

∂Pxz
∂ω if x = y.

(87)

The stationary state of the substitution model defined by Pxy is

px = Φx (88)

The derivatives of the stationary state with respect to κ and ω are zero as these do not affect that
state, so:

∂px
∂κ

=
∂px
∂ω

= 0 (89)

We calculate the codon frequencies Φx from the observed nucleotide frequencies.
The original F3X4 method calculated Φx directly from the empirical alignment frequencies.

Specifically, let epw be the empirical frequency of nucleotide w at codon position p. In the original
F3X4 method, Φx = e1

x1
× e2

x2
× e3

x3
. This method produces biased codon frequencies because the

stop codon nucleotide composition is not taken into account.
To address this issue, we follow the Corrected F3X4 (or CF3X4 ) method from [3]. The 12

nucleotide corrected nucleotide frequency parameters φpw are estimated from the observed nucleotide
frequencies by solving a set of 12 nonlinear equations:

e1
w =

φ1
w ×

(
1−

∑
wyzεX

φ2
y × φ3

z

)
1−

∑
xyzεX

φ1
x × φ2

y × φ3
z

(90)

e2
w =

φ2
w ×

(
1−

∑
ywzεX

φ1
y × φ3

z

)
1−

∑
xyzεX

φ1
x × φ2

y × φ3
z

(91)

e3
w =

φ3
w ×

(
1−

∑
yzwεX

φ1
y × φ2

z

)
1−

∑
xyzεX

φ1
x × φ2

y × φ3
z

(92)

(93)

where X = {TAA, TAG, TGA}. We use the φpw values determined in this way to compute Φx =
φ1
x1
× φ2

x2
× φ3

x3
.

8 Exponentials of the substitution matrix and derivatives

The definitions above can be used to define a set of matrices Pr = [Pr,xy] that give the rate of
transition from codon x to y at site r. A key computation is to compute the probability of a
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transition in some amount of elapsed time µt. These probabilities are given by

Mr (µt) = eµtPr . (94)

In this section, we deal with how to compute Mr (µt) and its derivatives. Because Pr is re-
versible with stationary state given by the vector pr = [pr,x], then as described by [4], the matrix

[diag (pr)]
1
2 Pr [diag (pr)]

−1
2 is symmetric.

We can use a numerical routine to compute the eigenvalues and orthonormal eigenvectors. Let
Dr be a diagonal matrix with elements equal to the eigenvalues, let Br be the matrix whose
columns are the right orthonormal eigenvectors (in the same order as the eigenvalues), and note

that Br
−1 = Br

T . Then we have [diag (pr)]
1
2 Pr [diag (pr)]

−1
2 = BrDrBr

T or equivalently

Pr = ArDrAr
−1 (95)

where

Ar = [diag (pr)]
−1
2 Br (96)

and

Ar
−1 = Br

T [diag (pr)]
1
2 . (97)

The matrix exponentials are then easily calculated as

Mr (µt) = eµtPr = Are
µtDrAr

−1. (98)

We also want to calculate the derivatives of Mr (µt) with respect to the other parameters on
which Pr,xy depends (e.g., β, ηi, κ, and ω).

According to [5] (see also [6, 7]), the derivative with respect to some parameter z is given by

∂Mr (µt)

∂z
= ArVr,zAr

−1 (99)

where the elements of Vr,z are

V r,zxy =


Br,zxy

exp(µtDrxx)−exp(µtDryy)
Drxx−Dryy

if x 6= y and Dr
xx 6= Dr

yy,

Br,zxy µt exp (µtDr
xx) if x 6= y and Dr

xx = Dr
yy,

Br,zxx µt exp (µtDr
xx) if x = y,

(100)

where Dr
xx and Dr

yy are the diagonal elements of Dr, and Br,zxy are the elements of the matrix Br,z

defined by

Br,z = Ar
−1 ∂Pr

∂z
Ar. (101)

9 Scaling the branch lengths with a mutation rate

The aforementioned section defines the substitution probabilities in terms of µt (e.g., Eq. Mr).
Here µ is a substitution rate, and t is the branch length. If we are freely optimizing all branch
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lengths, then we just set µ = 1 so that µt = t, and then µ effectively drops out. However, if we
have fixed the branch lengths are not optimizing them, then we might want to include a parameter
µ that effectively re-scales all the fixed branch lengths by a constant. In this case, µ also becomes
a free parameter of the model, and we want to compute the derivative of Mr (µt) with respect to
µ. This is straightforward:

∂Mr (µt)

∂µ
= tPre

µtPr = tPrMr (µt) . (102)

10 Calculating the likelihood and derivatives on a tree

Above we describe computing the transition probabilities as a function of branch length. Here we
consider how to use those computations to compute the actual likelihoods on a tree.

Figure 1: The tree used in the example calculation below.

We begin by computing the likelihood of the alignment at a specific site. Let Sr denote the set
of aligned codons at site r, let T by the phylogenetic tree with branch lengths specified, and let
Pr be the transition matrix at site r defined above. Then the likelihood at site r is Pr (Sr | T ,Pr).
For the example tree above, we can use the pruning algorithm [8] to write

Pr (Sr | T ,Pr) =
∑
y

pr,yMr,yGAA (t3)

[∑
x

Mr,yx (t4)Mr,xCAA (t1)Mr,xCAG (t2)

]
. (103)

Let n denote a node on a tree, let tn denote the length of the branch leading to node n, and let
d1 (n) and d1 (n) denote the right and left descendents of node n for all non-terminal nodes. Then
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define the partial conditional likelihood of the subtree rooted at n as:

Lr,n (x) =


δxSr,n if n is a tip node with codon Sr,n at site r,

1 if n is a tip node with a gap at site r,[∑
yMr,xy

(
td1(n)

)
Lr,d1(n) (y)

] [∑
yMr,xy

(
td2(n)

)
Lr,d2(n) (y)

]
otherwise.

(104)

where δxy is the Kronecker delta. So for instance in the example tree above, Lr,n4 (x) = Mr,xCAA (t1)Mr,xCAG (t2),
and Lr,n5

(y) = Mr,yGAA

∑
xMr,yx (t4)Lr,n4

(x).
Using this definition, we have

Pr (Sr | T ,Pr) =
∑
x

pr,xLr,nroot
(x) (105)

where nroot is the root node of tree T ; nroot = n5 in the example tree above.
In practice, we usually work with the log likelihoods (always using natural logarithms). The

total likelihood is the sum of the log likelihoods for each site:

ln [Pr (S | T , {Pr})] =
∑
r

ln [Pr (Sr | T ,Pr)] . (106)

We next consider how to compute the derivatives with respect to some model parameter. Let

α denote the model parameter in question, and assume that we have already determined
Mr,xy(t)
∂α .

By the chain rule, we have

∂Lr,n (x)

∂α
=



0 if n is a tip node,,

[∑
y

∂Mr,xy(td1(n))
∂α Lr,d1(n) (y) +Mr,xy

(
td1(n)

) ∂Lr,d1(n)(y)

∂α

] [∑
yMr,xy

(
td2(n)

)
Lr,d2(n) (y)

]
otherwise.

+
[∑

yMr,xy

(
td1(n)

)
Lr,d1(n) (y)

] [∑
y

∂Mr,xy(td2(n))
∂α Lr,d2(n) (y) +Mr,xy

(
td2(n)

) ∂Lr,d2(n)(y)

∂α

] (107)

The derivative of the likelihood at the site is then

∂ Pr (Sr | T ,Pr)

∂α
=
∑
x

(
∂pr,x
∂α

Lr,nroot (x) + pr,x
∂Lr,nroot

(x)

∂α

)
(108)

and the derivative of the log likelihood at the site is

∂ ln [Pr (Sr | T ,Pr)]

∂α
=

∑
x

(
∂pr,x
∂α Lr,nroot (x) + pr,x

∂Lr,nroot (x)

∂α

)
Pr (Sr | T ,Pr)

. (109)

The derivative of the overall log likelihood is

∂ ln [Pr (S | T , {Pr})]
∂α

=
∑
r

∂ ln [Pr (Sr | T ,Pr)]

∂α
. (110)
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11 Scaling to avoid numerical underflow

For larger trees, there can be numerical underflow due to multiplication of lots of small numbers
when computing the likelihoods. This issue, and how it can be solved by re-scaling the likelihoods
during the calculation, is discussed on page 426 of [9].

Let Lr,n (x) be the partial conditional likelihood at node n of codon x at site r as defined above.
These partial conditional likelihoods can get very small as we move up the tree towards the root,
as they are recursively defined as the products of very small numbers. For the scaling to avoid
underflow, we define the scaled partial condition likelilhood as

L̃r,n (x) =
Lr,n (x)

Ur,n ×
∏
k<n

Ur,k
(111)

where we use k < n to indicate all nodes k that are descendants of n, and where

Ur,n =

1 if n is divisible by K,

maxx

[
Lr,n (x)×

∏
k<n

Ur,k

]
otherwise

(112)

where K is the frequency with which we re-scale the likelihoods. A reasonable value of K might
be 5 or 10. Effectively, this means that every K nodes we are re-scaling so that the largest partial
conditional likelihood is one.

With this re-scaling, the total likelihood at site r is then

Pr (Sr | T ,Pr) =

(∑
x

pr,xL̃r,nroot
(x)

)
×

(∏
n

Ur,n

)
(113)

and the total log likelihood at site r is

ln [Pr (Sr | T ,Pr)] = ln

(∑
x

pr,xL̃r,nroot
(x)

)
+
∑
n

ln (Ur,n) . (114)

The derivative is then

∂ ln [Pr (Sr | T ,Pr)]

∂α
=

∂
∂α

[(∑
x
pr,xL̃r,nroot

(x)

)
×
(∏
n
Ur,n

)]
(∑
x
pr,xL̃r,nroot

(x)

)
×
(∏
n
Ur,n

) (115)

=

(∑
x

[
∂pr,x
∂α L̃r,nroot (x) + pr,x

∂L̃r,nroot (x)

∂α

])
×
(∏
n
Ur,n

)
+

(∑
x
pr,xL̃r,nroot (x)

)
×

∂

(∏
n
Ur,n

)
∂α(∑

x
pr,xL̃r,nroot (x)

)
×
(∏
n
Ur,n

) (116)

=

∑
x

(
∂pr,x
∂α L̃r,nroot

(x) + pr,x
∂L̃r,nroot (x)

∂α

)
∑
x
pr,xL̃r,nroot

(x)
+

∂

(∏
n
Ur,n

)
∂α∏

n
Ur,n

. (117)
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For reasons that are not immediately obvious to me but are clearly verified by numerical testing,

this last term of

∂

(∏
n
Ur,n

)
∂α∏

n
Ur,n

is zero, and so

∂ ln [Pr (Sr | T ,Pr)]

∂α
=

∑
x

(
∂pr,x
∂α L̃r,nroot

(x) + pr,x
∂L̃r,nroot (x)

∂α

)
∑
x
pr,xL̃r,nroot

(x)
. (118)

In practice, we work with the L̃r,n (x) values, and then apply the correction of adding
∑
n ln (Ur, n)

at the end.

12 Units of tree branch lengths

When we optimize with the Pr,xy substitution matrices described above, the resulting branch lengths
are not in units of substitutions per site. Therefore, for tree input / output, we re-scale the branch
lengths so that they are in units of substitution per site.

In a single unit of time, the probability that if site r is initially x, then it will undergo a
substitution to some other codon y is

∑
y 6=x Pr,xy = −Pr,xx. Since the equilibrium probability that

site r is x is pr,x, then the probability that site r undergoes a substitution in a unit of time is
−µ
∑
x pr,xPr,xx. So averaging over all L sites, the probability that the average site will undergo a

substitution in a unit of time is − µ
L

∑L
r=1

∑
x pr,xPr,xx.

Therefore, if we optimize the branch lengths tb and the model parameters in Pr,xy, and then at

the end re-scale the branch lengths to t′b = tb × −µL
∑L
r=1

∑
x pr,xPr,xx then the re-scaled branch

lengths tb are in units of substitutions per sites. Therefore, for input and output to phydms, we
assume that input branch lengths are already in units of substitutions per site, and scale them from
t′b to tb. Optimization is performed on tb, and then for output we re-scale the optimized branch
lengths from tb to t′b.

13 Models with gamma-distributed ω

The models described above fit a single ω value. We can also fit a distribution of ω values across
sites. For instance, when this is done for the YNGKP models, we get the YNGKP M5 model
described in [2].

Specifically, let the ω values be drawn fromK discrete categories with omega values ω0, ω2, . . . , ωK−1,
and give equal weight to each category. Then the overall likelihood at site r is

Pr (Sr | T ,Pr) =
1

K

K−1∑
k=0

Pr
(
Sr | T ,Prω=ωk

)
(119)

and the derivative with respect to model parameter λ is simply

∂ Pr (Sr | T ,Pr)

∂λ
=

1

K

K−1∑
k=0

∂ Pr
(
Sr | T ,Prω=ωk

)
∂λ

. (120)

18



The different ωk values are drawn from the means of a gamma-distribution discretized into
K categories as described by [10]. Specifically, this gamma distribution is described by a shape
parameter αω and an inverse scale parameter βω such that the probability density function of a
continuous ω is given by

g (ω;αω, βω) =
(βα)

αω e−βωωωαω−1

Γ (αω)
. (121)

This function can be evaluated by scipy.stats.gamma.pdf(omega, alpha omega, scale=1.0 /

beta omega). Note also that the mean of this distribution is αω
βω

and the variance is αω
(βω)2

.

The lower and upper boundaries of the interval for each category k are

ωk,lower = QΓ

(
k

K
;αω, βω

)
(122)

ωk,upper = QΓ

(
k + 1

K
;αω, βω

)
(123)

where QΓ is the quantile function (or percent-point function) of the gamma distribution. This func-
tion can be evaluated by scipy.stats.gamma.ppf(k / K, alpha omega, scale=1.0 / beta omega).

The mean for each category k is

ωk =
αωK

βω
[γ (ωk,upperβω, αω + 1)− γ (ωk,lowerβω, αω + 1)] (124)

where γ is the lower-incomplete gamma function and can be evaluated by scipy.special.gammainc(alpha omega

+ 1, omega k upper * beta omega).
Note that ωk is not actually a free parameter, as it is determined by αω and βω. The derivative

of the log likelihood at site r with respect to these parameters is simply

∂ Pr (Sr | T ,Pr)

∂αω
=

1

K

K−1∑
k=0

∂ωk
∂ωα

∂ Pr
(
Sr | T ,Prω=ωk

)
∂ωk

(125)

∂ Pr (Sr | T ,Pr)

∂βω
=

1

K

K−1∑
k=0

∂ωk
∂ωβ

∂ Pr
(
Sr | T ,Prω=ωk

)
∂ωk

. (126)

The derivatives ∂ωk
∂ωα

and ∂ωk
∂ωβ

are computed numerically using the finite-difference method.

14 Derivatives with respect to branch lengths

The section above describes how to compute the derivatives with respect to paramters (e.g., model
parameters) that affect all parts of the tree. In many cases, we may want to optimize individual
branch lengths rather than the overall mutation rate µ. In this case, we need to compute the
derivatives with respect to the branch lengths. This is somewhat simpler for each individual branch
length, since each individual branch length only affects part of the tree.
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Specifically, for each internal node n,

∂Lr,n (x)

∂td1(n)
=

∂

∂td1(n)

([∑
y

Mr,xy

(
td1(n)

)
Lr,d1(n) (y)

][∑
y

Mr,xy

(
td2(n)

)
Lr,d2(n) (y)

])
(127)

=

[∑
y

∂Mr,xy

(
td1(n)

)
∂td1(n)

Lr,d1(n) (y)

][∑
y

Mr,xy

(
td2(n)

)
Lr,d2(n) (y)

]
(128)

where

∂Mr,xy (t)

∂t
= µPre

µtPr = µPrMr (µt) . (129)

Therefore, for every node n with descendents n1 and n2:

∂Lr,n (x)

∂tn′
=


0 if n′ is not a descendent of n[∑

y
∂Mr,xy(tn′ )

∂tn′
Lr,n′ (y)

] [∑
yMr,xy (tn2

)Lr,n2
(y)
]

if n1 is n′[∑
yMr,xy (tn1

)
∂Lr,n1

(y)

∂tn′

] [∑
yMr,xy (tn2

)Lr,n2
(y)
]

if n′ is descendent of n1

(130)

and

∂ Pr (Sr | T ,Pr)

∂tn
=
∂Lr,nroot

(x)

∂tn
× pr,x. (131)

15 Optimization

The actual optimization is performed with the optimizer scipy.optimize.minimize(method=’L-BFGS-B’).
The approach is to first optimize all the model parameters along with branch-scaling parameter µ,
then to optimize all the branch lengths, and to continue to repeat until any optimization step fails
to lead to substantial further improvement in likelihood.

During the branch-length optimization, all branch lengths are updated simultaneously. This
appears to be the minority approach in phylogenetics (most software does one branch length at a
time), but reportedly some software does use simultaneous branch-length optimization (see table
on page 18 of [4]).
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