
SymPy: symbolic computing in Python1

Supplementary material2

The supplementary material takes a deeper look at certain topics in SymPy which there was3

not enough room to discuss in the paper. Section 1 discusses the Gruntz algorithm, used to4

calculate limits in SymPy. Sections 2–8 discuss in depth some selected submodules. Section 95

discusses numerical simplification. Section 10 provides additional examples for topics discussed6

in the main paper. In section 11 the SymPy Gamma project is discussed. Finally, section 12 has7

a brief comparison of SymPy with Wolfram Mathematica.8

As in the paper, all examples in the supplement assume that the following has been run:9

>>> from sympy import *10

>>> x, y, z = symbols('x y z')11

1 LIMITS: THE GRUNTZ ALGORITHM12

SymPy calculates limits using the Gruntz algorithm, as described in [6]. The basic idea is as13

follows: any limit can be converted to a limit lim
x→∞

f(x) by substitutions like x→ 1
x . Then14

the subexpression ω (that converges to zero as x→∞ faster than all other subexpressions) is15

identified in f(x), and f(x) is expanded into a series with respect to ω. Any positive powers16

of ω converge to zero (while negative powers indicate an infinite limit) and any constant term17

independent of ω determines the limit. When a constant term still depends on x the Gruntz18

algorithm is applied again until a final numerical value is obtained as the limit.19

To determine the most rapidly varying subexpression, the comparability classes must first be
defined, by calculating L:

L≡ lim
x→∞

log |f(x)|
log |g(x)| (1)

The relations <, >, and ∼ are defined as follows: f > g when L=±∞ (it is said that f is more
rapidly varying than g, i.e., f goes to ∞ or 0 faster than g), f < g when L= 0 (f is less rapidly
varying than g) and f ∼ g when L 6= 0,±∞ (both f and g are bounded from above and below by
suitable integral powers of the other). Note that if f > g, then f > gn for any n. Here are some
examples of comparability classes:

2< x < ex < ex2
< eex

2∼ 3∼−5

x∼ x2 ∼ x3 ∼ 1
x
∼ xm ∼−x

ex ∼ e−x ∼ e2x ∼ ex+e−x

f(x)∼ 1
f(x)

The Gruntz algorithm is now illustrated with the following example:

f(x) = ex+2e−x
−ex + 1

x
. (2)

First, the set of most rapidly varying subexpressions is determined—the so-called mrv set. For (2),20

the mrv set {ex,e−x,ex+2e−x} is obtained. These are all subexpressions of (2) and they all21

belong to the same comparability class. This calculation can be done using SymPy as follows:22

>>> from sympy.series.gruntz import mrv23

>>> mrv(exp(x+2*exp(-x))-exp(x) + 1/x, x)[0].keys()24

dict_keys([exp(x + 2*exp(-x)), exp(x), exp(-x)])25

Next, an arbitrary item ω is taken from mrv set that converges to zero for x→∞ and doesn’t26

have subexpressions in the given mrv set. If such a term is not present in the mrv set (i.e.,27

all terms converge to infinity instead of zero), the relation f(x) ∼ 1
f(x) can be used. In the28

considered case, only the item ω = e−x can be accepted.29

The next step is to rewrite the mrv set in terms of ω = g(x). Every element f(x) of the mrv
set is rewritten as Aωc, where

c= lim
x→∞

logf(x)
logg(x) , A= elogf−c logg (3)

Note that this step includes calculation of more simple limits, for instance

lim
x→∞

logex+2e−x

loge−x
= lim

x→∞

x+ 2e−x

−x
=−1 (4)

In this example we obtain the rewritten mrv set: { 1
ω ,ω,

1
ω e

2ω}. This can be done in SymPy with30

>>> from sympy.series.gruntz import mrv, rewrite31

>>> m = mrv(exp(x+2*exp(-x))-exp(x) + 1/x, x)32

>>> w = Symbol('w')33

>>> rewrite(m[1], m[0], x, w)[0]34

1/x + exp(2*w)/w - 1/w35

Then the rewritten subexpressions are substituted back into f(x) in (2) and the result is expanded
with respect to ω:

f(x) = 1
x
− 1
ω

+ 1
ω
e2ω = 2 + 1

x
+ 2ω+O(ω2) (5)

Since ω is from the mrv set, then in the limit as x→∞, ω→ 0, and so 2ω+O(ω2)→ 0 in (5):

f(x) = 1
x
− 1
ω

+ 1
ω
e2ω = 2 + 1

x
+ 2ω+O(ω2)→ 2 + 1

x
(6)

In this example the result (2+ 1
x) still depends on x, so the above procedure is repeated until36

just a value independent of x is obtained. This is the final limit. In the above case the limit is 2,37

as can be verified by SymPy:138

>>> limit(exp(x+2*exp(-x))-exp(x) + 1/x, x, oo)39

240

In general, when f(x) is expanded in terms of ω, the following is obtained:

f(x) =O

(
1
ω3

)
︸ ︷︷ ︸
∞

+ C−2(x)
ω2︸ ︷︷ ︸
∞

+ C−1(x)
ω︸ ︷︷ ︸
∞

+C0(x) +C1(x)ω︸ ︷︷ ︸
0

+O(ω2)︸ ︷︷ ︸
0

(7)

The positive powers of ω are zero. If there are any negative powers of ω, then the result of41

the limit is infinity, otherwise the limit is equal to lim
x→∞

C0(x). The expression C0(x) is always42

simpler than original f(x), and the same is true for limits arising in the rewrite stage (3), so the43

algorithm converges. A proof of this and further details on the algorithm are given in Gruntz’s44

PhD thesis [6].45

1To see the intermediate steps discussed above, interested readers can switch on debugging output by setting
the environment variable SYMPY_DEBUG=True, before importing anything from the SymPy namespace.

2/15

2 SERIES46

2.1 Series Expansion47

SymPy is able to calculate the symbolic series expansion of an arbitrary series or expression48

involving elementary and special functions and multiple variables. For this it has two different49

implementations: the series method and Ring Series.50

The first approach stores a series as an instance of the Expr class. Each function has its51

specific implementation of its expansion, which is able to evaluate the Puiseux series expansion52

about a specified point. For example, consider a Taylor expansion about 0:53

>>> series(sin(x+y) + cos(x*y), x, 0, 2)54

1 + sin(y) + x*cos(y) + O(x**2)55

The newer and much faster approach called Ring Series makes use of the fact that a truncated56

Taylor series is simply a polynomial. Correspondingly, it may be represented by a sparse57

polynomial, which performs well in a under a wide range of cases. Ring Series also gives the user58

the freedom to choose the type of coefficients to use, resulting in faster operations on certain59

types.60

For this, several low-level methods for expansion of trigonometric, hyperbolic and other61

elementary operations (like series inversion, calculating the nth root, etc.) are implemented using62

variants of the Newton Method [1]. All these support Puiseux series expansion. The following63

example demonstrates the use of an elementary function that calculates the Taylor expansion of64

the sine of a series.65

>>> from sympy.polys.ring_series import rs_sin66

>>> R, t = ring('t', QQ)67

>>> rs_sin(t**2 + t, t, 5)68

-1/2*t**4 - 1/6*t**3 + t**2 + t69

The function sympy.polys.rs_series makes use of these elementary functions to expand70

an arbitrary SymPy expression. It does so by following a recursive strategy of expanding the71

lowermost functions first and then composing them recursively to calculate the desired expansion.72

Currently, it only supports expansion about 0 and is under active development. Ring Series is73

several times faster than the default implementation with the speed difference increasing with74

the size of the series. The sympy.polys.rs_series takes as input any SymPy expression and75

hence there is no need to explicitly create a polynomial ring. An example demonstrating its use:76

>>> from sympy.polys.ring_series import rs_series77

>>> from sympy.abc import a, b78

>>> rs_series(sin(a + b), a, 4)79

-1/2*(sin(b))*a**2 + (sin(b)) - 1/6*a**3*(cos(b)) + a*(cos(b))80

2.2 Formal Power Series81

SymPy can be used for computing the formal power series of a function. The implementation82

is based on the algorithm described in the paper on formal power series [7]. The advantage of83

this approach is that an explicit formula for the coefficients of the series expansion is generated84

rather than just computing a few terms.85

The following example shows how to use fps:86

>>> f = fps(sin(x), x, x0=0)87

>>> f.truncate(6)88

x - x**3/6 + x**5/120 + O(x**6)89

>>> f[15]90

-x**15/130767436800091

3/15

2.3 Fourier Series92

SymPy provides functionality to compute Fourier series of a function using the fourier_series93

function:94

>>> L = symbols('L')95

>>> expr = 2 * (Heaviside(x/L) - Heaviside(x/L - 1)) - 196

>>> f = fourier_series(expr, (x, 0, 2*L))97

>>> f.truncate(3)98

4*sin(pi*x/L)/pi + 4*sin(3*pi*x/L)/(3*pi) + 4*sin(5*pi*x/L)/(5*pi)99

3 LOGIC100

SymPy supports construction and manipulation of boolean expressions through the sympy.logic101

submodule. SymPy symbols can be used as propositional variables and subsequently be replaced102

with True or False values. Many functions for manipulating boolean expressions have been103

implemented in the sympy.logic submodule.104

3.1 Constructing Boolean Expressions105

A boolean variable can be declared as a SymPy Symbol. The Python operators &, | and ~ are106

overridden when using SymPy objects to use the SymPy functionality for logical And, Or, and107

Not. Other logic functions are also integrated into SymPy, including Xor and Implies, which are108

constructed with ^ and >>, respectively. Expressions can therefore be constructed either by using109

the shortcut operator notation or by directly creating the relevant objects: And(), Or(), Not(),110

Xor(), Implies(), Nand(), Nor(), etc.:111

>>> e = (x & y) | z112

>>> e.subs({x: True, y: True, z: False})113

True114

3.2 CNF and DNF115

Any boolean expression can be converted to conjunctive normal form, disjunctive normal form,116

or negation normal form. The API also exposes methods to check if a boolean expression is in117

any of the aforementioned forms.118

>>> from sympy.logic.boolalg import is_dnf, is_cnf119

>>> to_cnf((x & y) | z)120

And(Or(x, z), Or(y, z))121

>>> to_dnf(x & (y | z))122

Or(And(x, y), And(x, z))123

>>> is_cnf((x | y) & z)124

True125

>>> is_dnf((x & y) | z)126

True127

3.3 Simplification and Equivalence128

The sympy.logic submodule supports simplification of given boolean expression by making129

deductions from the expression. Equivalence of two logical expressions can also be checked. In130

the case of equivalence, the function bool_map can be used to show which variables of the first131

expression correspond to which variables of the second one.132

>>> a, b, c = symbols('a b c')133

>>> e = a & (~a | ~b) & (a | c)134

>>> simplify(e)135

And(Not(b), a)136

>>> e1 = a & (b | c)137

>>> e2 = (x & y) | (x & z)138

>>> bool_map(e1, e2)139

(And(Or(b, c), a), {a: x, b: y, c: z})140

4/15

3.4 SAT Solving141

The submodule also supports satisfiability (SAT) checking of a given boolean expression. If an142

expression is satisfiable, it is possible to return a variable assignment which satisfies it. The143

API also supports listing all possible assignments. The SAT solver has a clause learning DPLL144

algorithm implemented with a watch literal scheme and VSIDS heuristic [10].145

>>> satisfiable(a & (~a | b) & (~b | c) & ~c)146

False147

>>> satisfiable(a & (~a | b) & (~b | c) & c)148

{a: True, b: True, c: True}149

4 DIOPHANTINE EQUATIONS150

Diophantine equations play a central role in number theory. A Diophantine equation has the151

form, f(x1,x2, . . . ,xn) = 0 where n ≥ 2 and x1,x2, . . . ,xn are integer variables. If there are n152

integers a1,a2, . . . ,an such that x1 = a1,x2 = a2, . . . ,xn = an satisfies the above equation, the153

equation is said to be solvable.154

Currently, the following five types of Diophantine equations can be solved using SymPy’s155

Diophantine submodule (a1, . . . ,an+1, a, b, c, d, e, f , and k are explicitly given rational constants,156

x1, . . . ,xn+1, x, y, and z are unknown variables):157

• Linear Diophantine equations: a1x1 +a2x2 + · · · +anxn = b158

• General binary quadratic equation: ax2 + bxy+ cy2 +dx+ey+f = 0159

• Homogeneous ternary quadratic equation: ax2 + by2 + cz2 +dxy+eyz+fzx= 0160

• Extended Pythagorean equation: a1x
2
1 +a2x

2
2 + · · · +anx

2
n = an+1x

2
n+1161

• General sum of squares: x2
1 +x2

2 + · · · +x2
n = k162

The diophantine function factors the equation it is given (if possible), solves each factor sep-163

arately, and combines the results to give a final solution set. Solutions may include parametrized164

variables (over the integers). The following examples illustrate some of the basic functionalities165

of the Diophantine submodule.166

>>> from sympy.solvers.diophantine import *167

>>> diophantine(2*x + 3*y - 5)168

set([(3*t_0 - 5, -2*t_0 + 5)])169

170

>>> diophantine(2*x + 4*y - 3)171

set()172

173

>>> diophantine(x**2 - 4*x*y + 8*y**2 - 3*x + 7*y - 5)174

set([(2, 1), (5, 1)])175

176

>>> diophantine(x**2 - 4*x*y + 4*y**2 - 3*x + 7*y - 5)177

set([(-2*t**2 - 7*t + 10, -t**2 - 3*t + 5)])178

179

>>> diophantine(3*x**2 + 4*y**2 - 5*z**2 + 4*x*y - 7*y*z + 7*z*x)180

set([(-16*p**2 + 28*p*q + 20*q**2,181

3*p**2 + 38*p*q - 25*q**2,182

4*p**2 - 24*p*q + 68*q**2)])183

184

>>> x1, x2, x3, x4, x5, x6 = symbols('x1 x2 x3 x4 x5 x6')185

>>> diophantine(9*x1**2 + 16*x2**2 + x3**2 + 49*x4**2 + 4*x5**2 - 25*x6**2)186

set([(70*t1**2 + 70*t2**2 + 70*t3**2 + 70*t4**2 - 70*t5**2, 105*t1*t5,187

420*t2*t5, 60*t3*t5, 210*t4*t5, 42*t1**2 + 42*t2**2 + 42*t3**2 + 42*t4**2 +188

5/15

42*t5**2)])189

190

>>> a, b, c, d = symbols('a b c d')191

>>> diophantine(a**2 + b**2 + c**2 + d**2 - 23)192

set([(2, 3, 3, 1)])193

5 SETS194

SymPy supports representation of a wide variety of mathematical sets. This is achieved by first195

defining abstract representations of atomic set classes and then combining and transforming196

them using various set operations.197

Each of the set classes inherits from the base class Set and defines methods to check198

membership and calculate unions, intersections, and set differences. When these methods are199

not able to evaluate to atomic set classes, they are represented as abstract unevaluated objects.200

SymPy has the following atomic set classes:201

• EmptySet represents the empty set ∅.202

• UniversalSet is an abstract “universal set” of which everything is a member. The union of203

the universal set with any set gives the universal set and the intersection gives the other204

set itself.205

• FiniteSet is functionally equivalent to Python’s built in set object. Its members can be206

any SymPy object including other sets.207

• Integers represents the set of integers Z.208

• Naturals represents the set of natural numbers N, i.e., the set of positive integers.209

• Naturals0 represents the set of whole numbers N0, which are all the non-negative integers.210

• Range represents a range of integers. A range is defined by specifying a start value, an end211

value, and a step size. The enumeration of a Range object is functionally equivalent to212

Python’s range except it supports infinite endpoints, allowing the representation of infinite213

ranges.214

• Interval represents an interval of real numbers. It is defined by giving the start and the215

end points and by specifying if the interval is open or closed on the respective ends.216

In addition to unevaluated classes for the basic Union, Intersection, and Complement set217

operations, SymPy has the following set classes.218

• ProductSet defines the Cartesian product of two or more sets. The product set is useful219

when representing higher dimensional spaces. For example, to represent a three-dimensional220

space, SymPy uses the Cartesian product of three real sets.221

• ImageSet represents the image of a function when applied to a particular set. The image222

set of a function F with respect to a set S is {F (x) | x ∈ S}. SymPy uses image sets to223

represent sets of infinite solutions of equations such as sin(x) = 0.224

• ConditionSet represents a subset of a set whose members satisfy a particular condition.225

The subset of set S given by the condition H is {x |H(x),x ∈ S}. SymPy uses condition226

sets to represent the set of solutions of equations and inequalities, where the equation or227

the inequality is the condition and the set is the domain over which it is being solved.228

A few other classes are implemented as special cases of the classes described above. The229

set of real numbers, Reals, is implemented as a special case of Interval. ComplexRegion is230

implemented as a special case of ImageSet. ComplexRegion supports both the polar and rectangular231

representation of regions in the complex plane.232

6/15

6 STATISTICS233

The sympy.stats submodule provides random variable types and methods for computing statistical234

properties of expressions involving random variables, which can be either continuous or discrete,235

the latter ones being further divided into finite and infinite. The variables are associated with236

probability densities on corresponding domains and internally defined in terms of probability237

spaces. Apart from the possibility of defining the random variables from a user supplied density238

distribution, SymPy provides definitions of most common distributions, including Uniform,239

Poisson, Normal, Binomial, Bernoulli, and many others.240

Properties of random expressions can be calculated using, e.g., expectation (abbreviated E)241

and variance to calculate expectation and variance. Internally, these functions generate integrals242

and summations, which are automatically evaluated. The evaluation can be suppressed using243

evaluate=False keyword argument.244

Conditions on random variables can be defined with inequalities, equalities, and logical245

operators and their overall probabilities are obtained using P. The features can be illustrated on246

a model of two dice throws:247

>>> from sympy.stats import Die, P, E248

>>> X, Y = Die("X"), Die("Y")249

>>> P(Eq(X, 6) & Eq(Y, 6))250

1/36251

>>> P(X>Y)252

5/12253

The conditions can also be supplied as a second parameter to E, P, and other methods to calculate254

the property given the condition:255

>>> E(X, X+Y<5)256

5/3257

Using the facilities of the sympy.stats submodule, one can, for example, calculate the well258

known properties of the Maxwellian velocity distribution.259

>>> from sympy.stats import Maxwell, density260

>>> kT, m, t = symbols("kT m t", positive=True)261

>>> v = Maxwell("v", sqrt(kT/m))262

>>> E(v) # mean velocity263

2*sqrt(2)*sqrt(kT)/(sqrt(pi)*sqrt(m))264

>>> E(v, evaluate=False) # unevaluated mean velocity265

Integral(sqrt(2)*m**(3/2)*v**3*exp(-m*v**2/(2*kT))/(sqrt(pi)*kT**(3/2)),266

(v, 0, oo))267

>>> E(m*v**2/2) # mean energy268

3*kT/2269

>>> solve(density(v)(t).diff(t), t)[0] # most probable velocity270

sqrt(2)*sqrt(kT)/sqrt(m)271

More information on the sympy.stats submodule can be found in [12].272

7 CATEGORY THEORY273

SymPy includes a submodule for dealing with categories—abstract mathematical objects repre-274

senting classes of structures as classes of objects (points) and morphisms (arrows) between the275

objects. It was designed with the following two goals in mind:276

1. automatic typesetting of diagrams given by a collection of objects and of morphisms277

between them, and278

2. specification and semi-automatic derivation of properties using commutative diagrams.279

7/15

As of version 1.0, SymPy only implements the first goal, while a partially working draft280

of implementation of the second goal is available at https://github.com/scolobb/sympy/tree/281

ct4-commutativity.282

In order to achieve the two goals, the submodule sympy.categories defines several classes283

representing some of the essential concepts: objects, morphisms, categories, and diagrams. In284

category theory, the inner structure of objects is often discarded in the favor of studying the285

properties of morphisms, so the class Object is essentially a synonym of the class Symbol. There286

are several morphism classes which do not have a particular internal structure either, though an287

exception is CompositeMorphism, which essentially stores a list of morphisms.288

The class Diagram captures the properties of morphisms. This class stores a family of289

morphisms, the corresponding source and target objects, and, possibly, some properties of the290

morphisms. Generally, no restrictions are imposed on what the properties may be—for example,291

one might use strings of the form “forall”, “exists”, “unique”, etc. Furthermore, the morphisms292

of a diagram are grouped into premises and conclusions in order to be able to represent logical293

implications of the form “for a collection of morphisms P with properties p :P →Ω (the premises),294

there exists a collection of morphisms C with properties c :C→ Ω (the conclusions)”, where Ω is295

the universal collection of properties. Finally, the class Category includes a collection of diagrams296

which are deemed commutative and which therefore define the properties of this category.297

Automatic typesetting of diagrams takes a Diagram and produces LATEX code using the Xy-pic298

package [13]. Typesetting is done in two stages: layout and generation of Xy-pic code. The299

layout stage is taken care of by the class DiagramGrid, which takes a Diagram and lays out the300

objects in a grid, trying to reduce the average length of the arrows in the final picture. By301

default, DiagramGrid uses a series of triangle-based heuristics to produce a rectangular grid. A302

linear layout can also be imposed. Furthermore, groups of objects can be given; in this case, the303

groups will be treated as atomic cells, and the member objects will be typeset independently of304

the other objects.305

The second phase of diagram typesetting consists in actually drawing the picture and is306

carried out by the class XypicDiagramDrawer. An example of a diagram automatically typeset by307

DiagramgGrid and XypicDiagramDrawer is given in Figure 1.

A
f
//
h2

))lA,,
nA
MM B

g

��

D
k
oo

h

}}

h1

�� lD
��

nD

ll

C
lC
MMnC

ll

Figure 1. A diagram typeset in Xy-pic automatically by XypicDiagramDrawer.
308

As far as the second main goal of sympy.categories is concerned, the principal idea consists in309

automatically deciding whether a diagram is commutative or not, given a collection of “axioms”:310

diagrams known to be commutative. The implementation is based on graph embeddings (injective311

maps): whenever an embedding of a commutative diagram into a given diagram is found, one312

concludes that the subdiagram is commutative. Deciding commutativity of the whole diagram is313

therefore based (theoretically) on finding a “cover” of the target diagram by embeddings of the314

axioms. The naïve implementation proved to be prohibitively slow; a better optimized version is315

therefore in order, as well as application of heuristics.316

8 TENSORS317

Ongoing work to provide the capabilities of tensor computer algebra has so far produced318

the sympy.tensor submodule. It comprises three submodules whose purposes are quite differ-319

ent: sympy.tensor.indexed and sympy.tensor.indexed_methods support indexed symbols, sympy.320

tensor.array contains facilities to operate on symbolic N -dimensional arrays, and finally sympy.321

8/15

https://github.com/scolobb/sympy/tree/ct4-commutativity
https://github.com/scolobb/sympy/tree/ct4-commutativity
https://github.com/scolobb/sympy/tree/ct4-commutativity

tensor.tensor is used to define abstract tensors. The abstract tensors submodule is inspired322

by xAct [9] and Cadabra [11]. Canonicalization based on the Butler-Portugal [8] algorithm323

is supported in SymPy. Tensor support in SymPy is currently limited to polynomial tensor324

expressions.325

9 NUMERICAL SIMPLIFICATION326

The nsimplify function in SymPy (a wrapper of identify in mpmath) attempts to find a simple327

symbolic expression that evaluates to the same numerical value as the given input. It works328

by applying a few simple transformations (including square roots, reciprocals, logarithms and329

exponentials) to the input and, for each transformed value, using the PSLQ algorithm [5] to330

search for a matching algebraic number or optionally a linear combination of user-provided base331

constants (such as π).332

>>> t = 1 / (sin(pi/5)+sin(2*pi/5)+sin(3*pi/5)+sin(4*pi/5))**2333

>>> nsimplify(t)334

-2*sqrt(5)/5 + 1335

>>> nsimplify(pi, tolerance=0.01)336

22/7337

>>> nsimplify(1.783919626661888, [pi], tolerance=1e-12)338

pi/(-1/3 + 2*pi/3)339

10 EXAMPLES340

This section provides some additional examples for the features listed in the paper.341

10.1 Simplification342

• expand:343

>>> expand((x + y)**3)344

x**3 + 3*x**2*y + 3*x*y**2 + y**3345

• factor:346

>>> factor(x**3 + 3*x**2*y + 3*x*y**2 + y**3)347

(x + y)**3348

• collect:349

>>> collect(y*x**2 + 3*x**2 - x*y + x - 1, x)350

x**2*(y + 3) + x*(-y + 1) - 1351

• cancel:352

>>> cancel((x**2 + 2*x + 1)/(x**2 - 1))353

(x + 1)/(x - 1)354

• apart:355

>>> apart((x**3 + 4*x - 1)/(x**2 - 1))356

x + 3/(x + 1) + 2/(x - 1)357

• trigsimp:358

>>> trigsimp(cos(x)**2*tan(x) - sin(2*x))359

-sin(2*x)/2360

• hyperexpand (showing 2F1

(
1,1
2

∣∣∣∣−x)= log(x+1)
x):361

>>> hyperexpand(hyper([1, 1], [2], -x))362

log(x + 1)/x363

9/15

10.2 Polynomials364

• Factorization:365

>>> t = symbols('t')366

>>> f = (2115*x**4*y + 45*x**3*z**3*t**2 - 45*x**3*t**2 -367

... 423*x*y**4 - 47*x*y**3 + 141*x*y*z**3 + 94*x*y*z*t -368

... 9*y**3*z**3*t**2 + 9*y**3*t**2 - y**2*z**3*t**2 +369

... y**2*t**2 + 3*z**6*t**2 + 2*z**4*t**3 - 3*z**3*t**2 -370

... 2*z*t**3)371

>>> factor(f)372

(t**2*z**3 - t**2 + 47*x*y)*(2*t*z + 45*x**3 - 9*y**3 - y**2 +373

3*z**3)374

• Gröbner bases:375

>>> x0, x1, x2 = symbols('x0 x1 x2')376

>>> I = [x0 + 2*x1 + 2*x2 - 1,377

... x0**2 + 2*x1**2 + 2*x2**2 - x0,378

... 2*x0*x1 + 2*x1*x2 - x1]379

>>> groebner(I, order='lex')380

GroebnerBasis([7*x0 - 420*x2**3 + 158*x2**2 + 8*x2 - 7,381

7*x1 + 210*x2**3 - 79*x2**2 + 3*x2,382

84*x2**4 - 40*x2**3 + x2**2 + x2], x0, x1, x2, domain='ZZ',383

order='lex')384

• Root isolation:385

>>> f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20386

>>> intervals(f, all=True, eps=0.001)387

([],388

[((-425/1024 - 625*I/1024, -1485/3584 - 2185*I/3584), 1),389

((-425/1024 + 2185*I/3584, -1485/3584 + 625*I/1024), 1),390

((3175/1792 - 2605*I/1792, 1815/1024 - 10415*I/7168), 1),391

((3175/1792 + 10415*I/7168, 1815/1024 + 2605*I/1792), 1)])392

10.3 Solvers393

• Single solution:394

>>> solveset(x - 1, x)395

{1}396

• Finite solution set, quadratic equation:397

>>> solveset(x**2 - pi**2, x)398

{-pi, pi}399

• No solution:400

>>> solveset(1, x)401

EmptySet()402

• Interval solution:403

>>> solveset(x**2 - 3 > 0, x, domain=S.Reals)404

(-oo, -sqrt(3)) U (sqrt(3), oo)405

10/15

• Infinitely many solutions:406

>>> solveset(x - x, x, domain=S.Reals)407

(-oo, oo)408

>>> solveset(x - x, x, domain=S.Complexes)409

S.Complexes410

• Linear systems (linsolve)411

>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])412

>>> b = Matrix([3, 6, 9])413

>>> linsolve((A, b), x, y, z)414

{(-1, 2, 0)}415

>>> linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))416

{(-y - 1, y, 2)}417

Below are examples of solve applied to problems not yet handled by solveset.418

• Nonlinear (multivariate) system of equations (the intersection of a circle and a parabola):419

>>> solve([x**2 + y**2 - 16, 4*x - y**2 + 6], x, y)420

[(-2 + sqrt(14), -sqrt(-2 + 4*sqrt(14))),421

(-2 + sqrt(14), sqrt(-2 + 4*sqrt(14))),422

(-sqrt(14) - 2, -I*sqrt(2 + 4*sqrt(14))),423

(-sqrt(14) - 2, I*sqrt(2 + 4*sqrt(14)))]424

• Transcendental equations:425

>>> solve((x + log(x))**2 - 5*(x + log(x)) + 6, x)426

[LambertW(exp(2)), LambertW(exp(3))]427

>>> solve(x**3 + exp(x))428

[-3*LambertW((-1)**(2/3)/3)]429

10.4 Matrices430

• Matrix expressions431

>>> m, n, p = symbols('m n p', integer=True)432

>>> R = MatrixSymbol('R', m, n)433

>>> S = MatrixSymbol('S', n, p)434

>>> T = MatrixSymbol('T', m, p)435

>>> U = R*S + 2*T436

>>> U.shape437

(m, p)438

>>> U[0, 1]439

2*T[0, 1] + Sum(R[0, _k]*S[_k, 1], (_k, 0, n - 1))440

• Block Matrices441

>>> n, m, l = symbols('n m l')442

>>> X = MatrixSymbol('X', n, n)443

>>> Y = MatrixSymbol('Y', m ,m)444

>>> Z = MatrixSymbol('Z', n, m)445

>>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])446

>>> B447

Matrix([448

[X, Z],449

11/15

[0, Y]])450

>>> B[0, 0]451

X[0, 0]452

>>> B.shape453

(m + n, m + n)454

11 SYMPY GAMMA455

SymPy Gamma is a simple web application that runs on the Google App Engine [3]. It executes456

and displays the results of SymPy expressions as well as additional related computations, in457

a fashion similar to that of Wolfram|Alpha. For instance, entering an integer will display its458

prime factors, digits in the base-10 expansion, and a factorization diagram. Entering a function459

will display its docstring; in general, entering an arbitrary expression will display its derivative,460

integral, series expansion, plot, and roots.461

SymPy Gamma also has several features beyond just computing the results using SymPy.462

• SymPy Gamma displays integration and differentiation steps in detail, as demonstrated in463

Figure 2.464

465

Figure 2. Integral steps of tan(x).466

• SymPy Gamma displays the factor tree diagrams for different numbers.467

• SymPy Gamma saves user search queries.468

Every input query from the user on SymPy Gamma is first parsed by its own parser capable of469

handling several different forms of function names which SymPy as a library does not support.470

For instance, SymPy Gamma supports queries like sin x, whereas SymPy will only recognise471

sin(x).472

12/15

http://sympygamma.com
http://www.sympygamma.com/input/?i=integrate+tan%28x%29

This parser converts the input query to the equivalent SymPy readable code, which is then473

processed by SymPy, and the result is finally printed with the built-in MathJax [2] output and474

rendered by the SymPy Gamma web application.475

12 COMPARISON WITH MATHEMATICA476

Wolfram Mathematica is a popular proprietary CAS that features highly advanced algorithms,477

has a core written in C++ [15], and interprets its own programming language, Wolfram Language.478

Analogous to Lisp S-expressions, Mathematica uses its own style of M-expressions, which479

are arrays of either atoms or other M-expressions. The first element of the expression identifies480

the type of the expression and is indexed by zero, and the first argument is indexed starting481

with one. In SymPy, expression arguments are stored in a Python tuple (that is, an immutable482

array), while the expression type is identified by the type of the object storing the expression.483

Mathematica can associate attributes to its atoms. Attributes may define mathematical484

properties and behavior of the nodes associated to the atom. In SymPy, the usage of static class485

fields is roughly similar to Mathematica’s attributes, though other programming patterns may486

also be used to achieve an equivalent behavior such, as class inheritance.487

Unlike SymPy, Mathematica’s expressions are mutable: one can change parts of the expression488

tree without the needing to create a new object. The mutability of Mathematica expressions489

allows for a lazy updating of any references to a given data structure.490

Products in Mathematica are determined by some built in node types, such as Times, Dot,491

and others. Times is a representation of the * operator, and is always meant to represent a492

commutative product operator. The other notable product is Dot, which represents the . operator.493

This product represents matrix multiplication. It is not commutative. Unlike Mathematica,494

SymPy determines commutativity with respect to multiplication from the expression type of the495

factors. Mathematica puts the Orderless attribute on the expression type.496

Regarding associative expressions, SymPy handles associativity of sums and products by497

automatically flattening them. Mathematica specifies the Flat attribute on the expression type.498

Mathematica relies heavily on pattern matching—even the so-called equivalent of function499

declaration is in reality the definition of a pattern generating an expression tree transformation500

on input expressions. Mathematica’s pattern matching is sensitive to associative, commutative,501

and one-identity properties of its expression tree nodes. SymPy has various ways to perform502

pattern matching. All of them play a lesser role in the CAS than in Mathematica and are503

basically available as a tool to rewrite expressions. The differential equation solver in SymPy504

somewhat relies on pattern matching to identify differential equation types, but it is envisaged to505

replace that strategy with analysis of Lie symmetries in the future. Mathematica’s real advantage506

is the ability to add (at runtime) new overloading to the expression builder or specific subnodes.507

Consider for example:508

In[1]:= Unprotect[Plus]509

Out[1]= {Plus}510

511

In[2]:= Sin[x_]^2 + Cos[y_]^2 := 1512

513

In[3]:= x + Sin[t]^2 + y + Cos[t]^2514

Out[3]= 1 + x + y515

This expression in Mathematica defines a substitution rule that overloads the functionality of516

the Plus node (the node for additions in Mathematica). A symbol with a trailing underscore is517

treated as a wildcard. Although one may wish to keep this identity unevaluated, this example518

clearly illustrates the potential to define one’s own immediate transformation rules. In SymPy,519

the operations constructing the addition node in the expression tree are Python class constructors520

and cannot be modified at runtime.2 The way SymPy deals with extending the missing runtime521

overloadability is by subclassing the node types: subclasses may redefine the class constructor to522

yield the proper extended functionality.523

2Python does support monkey patching, but it is a discouraged programming pattern.

13/15

Unlike SymPy, Mathematica does not support type inheritance or polymorphism [4]. SymPy524

relies heavily on class inheritance, but for the most part, class inheritance is used to make sure525

that SymPy objects inherit the proper methods and implement the basic hashing system.526

While Mathematica interprets nested lists as matrices whenever the sublists have the same527

length, matrices in SymPy are a type in their own right, allowing ordinary operators and functions528

(like multiplication and exponentiation) to be used as they traditionally are in mathematics.529

>>> a, b = symbols('a b')530

>>> exp(Matrix([[1, 1], [0, 2]])) * Matrix([a, b])531

Matrix([532

[E*a + b*(-E + exp(2))],533

[b*exp(2)]])534

Using the standard multiplication in Mathematica performs an element-wise product and535

calling the exponential function Exp on a matrix returns an element-wise exponentiation of its536

elements.537

Unevaluated expressions in Mathematica can be achieved in various ways, most commonly538

with the HoldForm or Hold nodes, that block the evaluation of subnodes by the parser. Such a539

node cannot be expressed in Python because of greedy evaluation. Whenever needed in SymPy,540

it is necessary to add the parameter evaluate=False to all subnodes.541

In Mathematica, the operator == returns a boolean whenever it is able to immediately evaluate542

the truth of the equality, otherwise it returns an Equal expression. In SymPy, == means structural543

equality and is always guaranteed to return a boolean expression. To express a mathematical544

equality in SymPy it is necessary to explicitly construct an instance of the Equality class.545

SymPy uses ** to express the power operator, while Mathematica uses ^.546

SymPy’s use of floating-point numbers is similar to that of most other CAS’s, including547

Maple and Maxima. By contrast, Mathematica uses a form of significance arithmetic [14]548

for approximate numbers. This offers further protection against numerical errors, although it549

comes with its own set of problems (for a critique of significance arithmetic, see Fateman [4]).550

Internally, SymPy’s evalf method works similarly to Mathematica’s significance arithmetic, but551

the semantics are isolated from the rest of the system.552

REFERENCES553

[1] Brent, R. P. and Zimmermann, P. (2010). Modern Computer Arithmetic. Cambridge554

Monographs on Computational and Applied Mathematics. Cambridge University Press, version555

0.5.1 edition.556
[2] Cervone, D. (2012). Mathjax: a platform for mathematics on the web. Notices of the AMS,557

59(2):312–316.558
[3] Ciurana, E. (2009). Google app engine. Developing with Google App Engine, pages 1–10.559
[4] Fateman, R. J. (1992). A review of Mathematica. Journal of Symbolic Computation,560

13(5):545–579.561
[5] Ferguson, H. R. P., Bailey, D. H., and Arno, S. (1999). Analysis of PSLQ, an integer relation562

finding algorithm. Mathematics of Computation, 68(225):351–369.563
[6] Gruntz, D. (1996). On Computing Limits in a Symbolic Manipulation System. PhD thesis,564

Swiss Federal Institute of Technology, Zürich, Switzerland.565
[7] Gruntz, D. and Koepf, W. (1993). Formal power series.566
[8] Manssur, L. R. U., Portugal, R., and Svaiter, B. F. (2002). Group-theoretic approach for567

symbolic tensor manipulation. International Journal of Modern Physics C, 13.568
[9] Martín-García, J. (2002-2016). xAct, efficient tensor computer algebra.569
[10] Moskewicz, M., Madigan, C., and Malik, S. (2008). Method and system for efficient570

implementation of boolean satisfiability. US Patent 7,418,369.571
[11] Peeters, K. (2007). Cadabra: a field-theory motivated symbolic computer algebra system.572

Computer Physics Communications.573
[12] Rocklin, M. and Terrel, A. R. (2012). Symbolic statistics with SymPy. Computing in Science574

and Engineering, 14.575

14/15

[13] Rose, K. H. (1999). Xy-pic user’s guide.576
[14] Sofroniou, M. and Spaletta, G. (2005). Precise numerical computation. Journal of Logic577

and Algebraic Programming, 64(1):113–134.578
[15] Wolfram, S. (2003). The Mathematica Book. Wolfram Media, Champaign, IL, USA, fifth579

edition.580

15/15

	Limits: The Gruntz Algorithm
	Series
	Series Expansion
	Formal Power Series
	Fourier Series

	Logic
	Constructing Boolean Expressions
	CNF and DNF
	Simplification and Equivalence
	SAT Solving

	Diophantine Equations
	Sets
	Statistics
	Category Theory
	Tensors
	Numerical Simplification
	Examples
	Simplification
	Polynomials
	Solvers
	Matrices

	SymPy Gamma
	Comparison with Mathematica
	References

