Appendix 3

A.T. Tredennick, A.R. Kleinhesselink, J.B. Taylor & P.B. Adler

"Consistent ecosystem functional response across precipitation extremes in a sagebrush steppe"

PeerJ

Section A3.1 Estimating ANPP

² We used a radiometer to nondestructively estimate aboveground net primary productivity. Our

³ approach relies on relating greenness in a plot to aboveground biomass. In each year we recorded

⁴ ground reflectances at four bands, two associated with the red spectrum and two associated with

⁵ the near-infrared spectrum (Table A3-1). We took four readings per plot that were averaged for

⁶ each band. Bands 1 and 3 correspond to wavelengths collected by the MODIS satellite and bands

7 2 and 4 correspond to wavelengths collected by the AVHRR satellite.

Band number	Spectrum name	Center wavelength	Corresponding satellite
1	red	626 nm	AVHRR
2	red	652 nm	MODIS
3	near-infrared	875 nm	AVHRR
4	near-infrared	859 nm	MODIS

 Table A3-1
 Radiometer specifications.

⁸ Using the RED and NIR reflectance values, we calculate the normalized difference vegetation

⁹ index (NDVI) for each plot based on both AVHRR- and MODIS-based wavelengths. We calculated

10 NDVI as:

$$NDVI_{AVHRR} = \frac{b_3 - b_1}{b_3 + b_1} \tag{1}$$

$$NDVI_{MODIS} = \frac{b_4 - b_2}{b_4 + b_2}$$
(2)

where b_x refers to band x (x = 1,2,3,4) in Table A1-1.

¹² To convert plot NDVI to biomass, we regressed known biomass values from calibration plots

against NDVI calculate for those plots. Calibration plots were located near our experiment plots,

¹⁴ and each year we located a new set of 12-16 plots in which we clipped all aboveground biomass,

¹⁵ dried it to a constant weight at 60° C, and the weighed. We used these biomass values to estimate

¹⁶ regression parameters for both AVHRR- and MODIS-based NDVI. We assessed model fit using

 R^2 and, for each year, we used the regression parameters associated with the best fit model to estimate biomass in the experimental plots based on their NDVI values (Table A3-2). R code for this procedure is in the file "01_calibrate_radiometer_by_year.R" in the code set.

Year	Intercept	NDVI Slope	R^2	Min(biomass)	Max(biomass)	Ν	Algorithm
2012	9.03	144.23	0.59	8.57	41.42	15	MODIS
2013	1.44	111.39	0.39	8.63	77.62	15	MODIS
2014	16.31	222.38	0.63	14.61	62.30	15	MODIS
2015	-84.54	386.91	0.71	44.72	129.03	12	AVHRR
2016	14.15	493.85	0.72	50.16	163.70	16	MODIS

 Table A3-2
 Details of regression models used to estimate biomass each year.