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Section A4.1 Random Slopes, Random Intercepts Model5

Section A4.1.1 Model Description6

Our hierarchical Bayesian model allows us to test for differences among treatments in the rela-7

tionship between ANPP and soil moisture, and allowed us to account for the non-independence8

of observations through time within a plot. Treatment differences are modeled as fixed effects,9

which are modified by plot-level random effects. In what follows, X is the fixed effects design10

matrix including:11

1. a column of 1s for intercepts12

2. a column of continuous values for the scaled volumetric water content for each observation13

3. a column of 0s or 1s indicating whether the observation is from a drought treatment14

4. a column of 0s or 1s indicating whether the observation is from an irrigation treatment15

5. a column of continuous values for the interaction between scaled volumetric water content16

and the drought treatment indicator (column 2)17

6. a column of continuous values for the interaction between scaled volumetric water content18

and the irrigation treatment indicator (column 3)19

An example of six rows of the fixed effects design matrix (three control plots and three drought20

plots) is as follows:21

## Int VWC Drought Irrig Drought:VWC Irrig:VWC22

## 12 1 0.5878409 0 0 0.0000000 023

## 13 1 0.5878409 0 0 0.0000000 024

## 14 1 0.5878409 0 0 0.0000000 025

## 15 1 -0.3533735 1 0 -0.3533735 026

## 16 1 -0.3533735 1 0 -0.3533735 027

## 17 1 -0.3533735 1 0 -0.3533735 028

Note that within a year, all plots within a treatment share the same value of volumetric water29

content. This is because we could not monitor soil moisture in each plot, and instead used sparse30

observations to model average soil moisture in each treatment in each year (see main text). Using31

this design matrix, we can estimate six fixed effects (βs):32

1. the intercept of the soil moisture-ANPP relationship for control plots33
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2. the slope of the soil moisture-ANPP relationship for control plots34

3. the intercept offset for drought plots35

4. the intercept offset for irrigation plots36

5. the slope offset for drought plots37

6. the slope offset for irrigation plots38

We are particularly interested in the slope offsets, because these allow us to test whether the39

slopes for drought or irrigation are different from the control slope. If the slope offset is different40

from zero, this indicates the slopes are different. We assess whether the slope offsets are different41

from zero by calculating the probability that the posterior distribution is less or greater than zero42

(one-tailed tests). If the probability is greater than 0.95, then there is strong evidence that the slope43

offset is different from zero, and thus different from the control treatment slope.44

To account for the fact that observations within plots through time are not independent, we include45

random effects that modify the fixed effects in each plot. We model these random effects (γs) as46

offsets drawn from a multivariate normal distribution with mean 0 and a variance-covariance47

matrix (Σ) that includes a covariance between the intercept and slope offsets. We implement this48

random effects structure by including a random effects design matrix (Z) with a column of 1s for49

intercept offsets and a column of continuous values for the volumetric water content for each50

observation.51

Lastly, to account for unkown variation across years, we include random year effects. These year52

effects (ηs) act as offsets on the intercept.53

Putting it all together, our model is defined mathematically as follows, where i denotes observation,54

j denotes plot, and t denotes year. We assume the observations are conditionally Gaussian,55

y ∼ Normal
(
µ, σ2) , (A4.1)

where µ is the determinstic expectation from the regression model,56

µi = βxi + γj(i)zi + ηt. (A4.2)

All fixed effect βs were drawn from normally distributed priors with mean 0 and standard57

deviation 5: β ∼ Normal(0, 5). γ random effects were drawn from a multivariate prior centered58

on zero with a shared variance covariance matrix:59

γ ∼ MVN (0, Σ) , (A4.3)

Σ = σ2
pltR, (A4.4)

σplt ∼ Cauchy(0, 2.5), (A4.5)

R ∼ LKJ(2.0) (A4.6)
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The random year effects (η) are modeled as intercept offsets centered on zero with a shared60

variance (σyr): γ ∼ Normal
(
0, σyr

)
. Σ is the variance-covariance matrix for the intercept and slope61

offsets for each plot, which is defined as the among plot variance (σ2
plt) times the matrix R that62

defines the correlation between intercept and slope offsets.63

The Bayesian posterior distribution of our model can be expressed as:64

[
β, γ, η, σyr, σplt, R, σ

∣∣ y] ∝

(
n

∏
i=1

[yi|β, γ, η, σ]

)(
J

∏
j=1

[
γj|σplt, R

])
(A4.7)

×
(

T

∏
t=1

[
ηt|σyr

])
[β][σplt][R][σyr][σ] (A4.8)

We fit the model using MCMC as implemented in the software Stan (Stan Development Team 2016).65

Our Stan code is below. All code necessary to reproduce our results has been archived on Figshare66

(link here) and released on GitHub (https://github.com/atredennick/usses_water/releases/v0.1).67
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Section A4.1.2 Stan Code68

data {

int<lower=0> Npreds; # number of covariates, including intercept

int<lower=0> Npreds2; # number of random effect covariates

int<lower=0> Nplots; # number of plots

int<lower=0> Ntreats; # number of treatments

int<lower=0> Nobs; # number of observations

int<lower=0> Nyears; # number of years

vector[Nobs] y; # vector of observations

row_vector[Npreds] x[Nobs]; # design matrix for fixed effects

row_vector[Npreds2] z[Nobs]; # simple design matrix for random effects

int plot_id[Nobs]; # vector of plot ids

int treat_id[Nobs]; # vector of treatment ids

int year_id[Nobs]; # vector of year ids

}

parameters {

vector[Npreds] beta; # overall coefficients

vector[Nyears] year_off; # vector of year effects

cholesky_factor_corr[Npreds2] L_u; # cholesky factor of plot random effect corr matrix

vector[Npreds2] beta_plot[Nplots]; # plot level random effects

vector<lower=0>[Npreds2] sigma_u; # plot random effect std. dev.

real<lower=0> sd_y; # treatment-level observation std. dev.

real<lower=0> sigma_year; # year std. dev. hyperprior

}

transformed parameters {

vector[Nobs] yhat; # vector of expected values

vector[Npreds2] u[Nplots]; # transformed plot random effects

matrix[Npreds2,Npreds2] Sigma_u; # plot ranef cov matrix

Sigma_u = diag_pre_multiply(sigma_u, L_u); # plot-level covariance matrix

for(j in 1:Nplots)

u[j] = Sigma_u * beta_plot[j]; # plot random intercepts and slopes

# regression model for expected values (one for each plot-year)

for (i in 1:Nobs)

yhat[i] = x[i]*beta + z[i]*u[plot_id[i]] + year_off[year_id[i]];
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}

model {

#### PRIORS

sigma_u ~ cauchy(0,2.5)

sigma_year ~ cauchy(0,2.5)

year_off ~ normal(0,sigma_year); # priors on year effects, shared variance

beta ~ normal(0,5); # priors on treatment coefficients

L_u ~ lkj_corr_cholesky(2.0); # prior on the cholesky factor which controls the

# correlation between plot level treatment effects

for(i in 1:Nplots)

beta_plot[i] ~ normal(0,1); # plot-level coefficients for intercept and slope

#### LIKELIHOOD

for(i in 1:Nobs)

y[i] ~ normal(yhat[i], sd_y); # observations vary normally around expected values

}

generated quantities{

corr_matrix[Npreds2] R = multiply_lower_tri_self_transpose(L_u);

cov_matrix[Npreds2] V = quad_form_diag(R,sigma_u);

}

5



200

400

600

35 40 45 50 55

March−June Cumulative VWC

A
N

P
P

 (
g 

m
2 ) Treatment

Control

Drought

Irrigation

Figure A4-1 Scatterplot, on the arithmetic scale, of the data and model estimates shown as solid lines.
Model estimates come from treatment level coefficients (colored lines).

Stan Development Team. 2016. Stan: A C++ Library for Probability and Sampling, Version 2.14.1.69
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Figure A4-2 Prior (dashed lines) and posterior (solid line) distributions of intercepts and slopes for each
treatment. The slope represents the main effect of soil moisture on log(ANPP). The red line marks 0.
Shrinkage of the posterior distribution and/or changes in the mean indicate the data informed model
parameters beyond the information contained in the prior for all coefficients.
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Figure A4-3 Posterior distributions of random year effects (intercept offsets). Kernel bandwidths of
posterior densities were adjusted by a factor of 5 to smooth the density curves for visual clarity.
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