
A. CONSTRUCTION OF COVARIANCE

ELLIPSES FOR NORMAL COMPONENTS

In this section, we introduce how the covariance ellipses are constructed by MclustDA584

when a scatterplot or a scatterplot matrix is graphed.585

586

For 2D data, suppose the mean and covariance estimates for component k of class j587

are µ̂jk and Σ̂jk, respectively. Also suppose that Σ̂jk has eigenvalues λ1 > λ2 and their588

corresponding eigenvectors eee1 and eee2. Then MclustDA computes the major and minor589

axes of the ellipse centered at µ̂jk the following way:590

major axis = µ̂jk ±
√
λ1eee1, minor axis = µ̂jk ±

√
λ2eee2,

and the resulting ellipse has coverage probability of approximately 0.393.591

592

In the case of higher dimensional data, MclustDA constructs the scatterplot and593

graphs the ellipses two dimensions at a time. Suppose µ̂jk and Σ̂jk are defined the same594

way as above, and consider data dimensions p and q for visualization via scatterplot.595

Let Σ(p,q) = [Σ̂jk](p,q) be the covariance submatrix corresponding to the two dimensions,596

and µ(p,q) = [µ̂jk](p,q) be the corresponding mean vector. Now, suppose Σ(p,q) has eigen-597

value/eigenvector pairs {λ(p,q)1 , eee
(p,q)
1 } and {λ(p,q)2 , eee

(p,q)
2 } with λ

(p,q)
1 > λ

(p,q)
2 . Then the598

ellipse plotted by MclustDA has major and minor axes as follows:599

major axis = µ(p,q) ±
√
λ
(p,q)
1 eee

(p,q)
1 , minor axis = µ(p,q) ±

√
λ
(p,q)
2 eee

(p,q)
2 ,

where the ellipse has the same coverage probability as the case above.600
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B. SCATTERPLOTS AND SCATTERPLOT

MATRICES FOR SELECT TOP RANKED

FEATURE COMBINATIONS

Figure A1: Scatterplot for 3-1 and 3-2
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Figure A2: Scatterplot for 4-7 and 5-2
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Figure A3: Scatterplot matrix for [3-2, 4-7, 5-2]
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Figure A4: Scatterplot matrix for [3-2, 5-2, 5-6]
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Figure A5: Scatterplot matrix for [1-1, 3-1, 5-2]
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Figure A6: Scatterplot matrix for [1-1, 4-2, 4-4, 5-2]
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Figure A7: Scatterplot matrix for [3-1, 4-4, 4-5, 5-2]
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Figure A8: Scatterplot matrix for [3-2, 4-5, 4-7, 5-7]

C. BIASEDNESS AND VARIABILITY OF GSI

PRODUCED BY REPEATED CV FOR

LARGE SAMPLES

The main purpose of CV is to prevent overfitting and to correct the biased estimation of601

misclassification error rate, while repetition of CV is performed to avoid any potentially602

“bad” partitioning of the data in CV process.603

To test the necessity of CV and repeated CV for large sample size, we performed604
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simulation studies to compare GSI values produced with and without CV/repeated CV605

for large, simulated data. Steps of the simulation are as follows:606

1. Choose a feature pair [i, j], and subset the data accordingly.607

2. Fit MclustDA model to obtain parameter estimates for each class Θ̂1 and Θ̂2. Denote608

sample size in each class as N1 and N2.609

3. For each class, simulate multivariate normal or mixture of normal data using Θ̂1610

and Θ̂2 as model parameters.611

– Simulate with sample sizes mN1 and mN2, with m = 1, 2, 5, 8, 10612

4. For each simulated dataset and the original dataset, calculate GSI, first using 10×10613

repeated CV and recording all 10 CV outputs, and then without using any CV.614

5. Repeat steps 1 ∼ 4 for all feature pairs.615

C.1 Test variability of cross-validation results for large sample

size

616 As observed in Figure A9, as sample size of the simulated data increases, CV results 

617 become more stable between repetitions.
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Figure A9: Variability of GSI values produced by repeated CV for simulated and original 

data. Feature pairs ranked by median GSI. All plots on the same scale.

C.2 Test necessity of CV for large dataset in terms of bias

618 As observed in Figure A10, for relatively small samples, GSI calculated without any 

cross-619 validation is often over-optimistic. The biasedness becomes ameliorated as 

sample size 620 increases.
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Figure A10: Comparision of GSI values produced with and without using RCV. All 

plots on the same scale.
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