
	 1	

Resource availability and adjustment of social behaviour influence patterns of 1	

inequality and productivity across societies 2	

 3	

Supplementary material  4	

 5	

Antonio M. M. Rodrigues1,2,* 6	

 7	

1. Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ Cambridge, 8	

United Kingdom.  9	

2. Wolfson College, Barton Road, Cambridge, CB3 9BB United Kingdom. 10	

 11	

* corresponding author, email: ammr3@cam.ac.uk 12	

 13	

Contents: 14	

Appendix A - Ecology  15	

Appendix B - Reproductive success 16	

Appendix C - Marginal fitness 17	

Appendix D - Stable-class frequencies and reproductive value 18	

Appendix E - Relatedness 19	

Appendix F - Optimal behaviour and convergence stability 20	

Appendix G - Fecundity and social interactions 21	

Appendix H - Early-life acquisition of individual quality 22	

Appendix I - Patch size 23	

References 24	

 25	



	 2	

Appendix A. Ecology 26	

 27	

Given the life-cycle outline in the main text, the ecological dynamics can be described by a 28	

transition matrix (Rodrigues and Gardner 2012) that is given by  29	

 30	

𝐄 =
𝑝!→! 𝑝!→!
𝑝!→! 𝑝!→! .                                                                                                             (A1) 31	

 32	

The right-eigenvector of matrix E gives the fraction of each patch type at ecological 33	

equilibrium, which is given by  34	

 35	

𝑝! =
!!!!→!

!! !!→!!!!→!
, and                                                                                                       (A2) 36	

 37	

𝑝! = 1− 𝑝! =
!!!!→!

!! !!→!!!!→!
,                                                                                             (A3) 38	

 39	

for resource-rich and resource-poor patches, respectively. If we define a random variable Tt, 40	

denoting the state of a focal patch in season t, then the coefficient of correlation between two 41	

successive seasons, denoted by τ, is defined as τ ≡ cov(Tt,Tt+1)√(var(Tt)var(Tt+1)). Expanding 42	

the right-hand side of this equation, the coefficient of correlation becomes 43	

 44	

𝜏 = 𝑝!→! − 1− 𝑝!→! ,                                                                                                      (A4) 45	

 46	

where –1 ≤ τ ≤ 1 (Rodrigues and Gardner 2012).  47	

 48	

 49	
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Appendix B. Reproductive success 50	

 51	

Here I define the expressions for the class-specific reproductive success of breeders, i.e. 52	

𝑤!"→!". Let us denote the probability that a patch in state π becomes a patch in state 𝛾 in the 53	

next generation by 𝑝!→!. The reproductive success of a mother in condition ρ in a patch of 54	

quality π through her offspring that become breeders in condition η in patches of quality 𝛾 is 55	

then given by  56	

 57	

𝑤!"→!" = 𝑓!" 𝑥!!, 𝑥!! 𝑤!
! 𝑥!!,𝑥!! 𝑝!→!

+ 𝑝!!𝑝!!→!𝑤!!
! 𝑧!!!,𝑧!!!!!∈{!,!} ,𝜋 ∈ R,P

,                                     (B1) 58	

 59	

where  60	

 61	

𝑤!
! 𝑥!!,𝑥!! = !!!

!!" !!!,!!!!∈ !,! !!! ! !! !!" !!!,!!!!∈ !,!!∈ !,! ! !!!
,                   (B2)  62	

 63	

is the reproductive success of a single philopatric offspring competing for a breeding site in a 64	

type-π patch, and   65	

 66	

𝑤!!
! 𝑧!!!,𝑧!!! = ! !!!

!!!! !!!!,!!!!!∈ !,! !!! ! !! !!" !!!,!!!!∈ !,!!∈ !,! ! !!!
,            (B3)  67	

 68	

is the reproductive success of a single dispersed offspring competing for a breeding site in a 69	

type-γ! patch. 70	

 71	

 72	
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Appendix C. Marginal fitness 73	

 74	

As we have seen in the main text, the average fitness of a random recipient is given by  75	

 76	

!!
!!!"

= 𝑢!"𝑣!"
!!!"
!!!"!∈{!,!}!∈{!,!} .                                                                                  (C1) 77	

 78	

From equation (3) in the main text, expanding the right-hand side of equation (C1), and 79	

because social interactions occur within the local patch only, we get 80	

 81	

!!
!!!"

= 𝑢!"
!!!"⟶ηγ

!!!!

!!!!
!!!!

!!!!
!!!"!∈{!,!}!∈{!,!}!∈{!,!} 𝑣ηγ!∈{!,!} ,                               (C2) 82	

 83	

where: the partial derivatives represent the effect of the phenotype on the class-specific 84	

reproductive success; the derivatives of the phenotype with respect to the breeding value, 85	

denoted by g, represent the phenotype-to-genotype mapping, which, without loss of 86	

generality can be set to one; and the derivatives of breeding values with respect to breeding 87	

values represent the coefficient of consanguinity, gαλ,σ, between the actor α and the recipient λ 88	

(Bulmer 1994; Rodrigues and Gardner 2016). If we expand the right-hand side of equation 89	

(C2) and if we normalise it with respect to the coefficient of consanguinity between the actor 90	

and herself, we obtain Hamilton’s rule given by equation (6) in the main text.  91	

 92	

Appendix D. Stable-class frequencies and reproductive value 93	

 94	

From the expressions for the reproductive success of breeding females, as derived above in 95	

section B, we define a matrix of expected fitness, which is given by 96	

 97	
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𝐰 =

𝑤HR⟶HR 𝑤LR⟶HR 𝑤HP⟶HR 𝑤LP⟶HR
𝑤HR⟶LR 𝑤LR⟶LR 𝑤HP⟶LR 𝑤LP⟶LR
𝑤HR⟶HP 𝑤LR⟶HP 𝑤HP⟶HP 𝑤LP⟶HP
𝑤HR⟶LP 𝑤LR⟶LP 𝑤HP⟶LP 𝑤LP⟶LP

.                                                            (D1) 98	

 99	

The stable-class frequencies (u) are given by the elements of the right-eigenvector 100	

corresponding to the leading eigenvector of this matrix. The reproductive value of a breeding 101	

adult (v) is given by the elements of the left-eigenvector corresponding to the leading 102	

eigenvalue of the fitness matrix w, where we assume a neutral population (i.e. x = z; Fisher 103	

1930; Taylor 1990; Taylor and Frank 1996). Note that the reproductive value of a quality-α 104	

breeder in a type-σ patch, vασ, is given by the total number of offspring she has, fασ, times the 105	

reproductive value of each offspring, denoted by Vασ.  Therefore, the reproductive value of an 106	

offspring of a quality-α individual in a type-σ patch is simply given by  107	

 108	

𝑉!" =
!!"
!!"

.                                                                                                                              (D2)      109	

 110	

The reproductive success of a focal quality-α breeder in a type-σ patch via offspring that 111	

remain in the native patch is then given by 112	

 113	

𝑤!"→!"
! = 𝑓!" 𝑧!!, 𝑧!! 𝑤!

!𝑝!→!.                                                                                         (D3) 114	

 115	

This is simply the total number of offspring produced by a focal breeder multiplied by the 116	

probability that the offspring obtains a breeding site, which must be also multiplied by the 117	

probability that the patch becomes a type-γ patch. Finally, the philopatric component of a 118	

breeder’s reproductive value is given by  119	

 120	
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𝑣!"
! = 𝑤!"→!"

! 𝑣!"!∈{!,!}!∈ !,! .                                                                                     (D4) 121	

 122	

This is the reproductive success of each breeder times the reproductive value of each 123	

successful offspring according to their class.  124	

 125	

Appendix E. Relatedness 126	

 127	

To determine the relatedness coefficient between the high- and low-quality individuals I 128	

define recursion equations that describe how the genetic structure of the population change 129	

from one generation to the next (Bulmer 1994; Rodrigues and Gardner 2013a,b). The 130	

probability that a resource-rich patch (or a resource-poor patch) was a resource-rich patch in 131	

the previous generation is 𝑝!→! (or 𝑝!→!), while the probability that it was a low-quality 132	

patch in the previous generation is 𝑝!→! (or 𝑝!→!). The probability that two adults sampled at 133	

random are both born in a resource-rich patch (or in a resource-poor patch) is 134	

 135	

𝜑! =
!!!!!!! !!!

!!!!!!! !!! ! ! !!"!!!" ! !!! !!"!!!" !!!

!
.                                                  (E1) 136	

 137	

The probability that a philopatric juvenile is offspring of the high-quality breeder in a 138	

resource-rich patch (or in a resource-poor patch) is UHR = fHR/(fHR+fLP) (or UHP = 139	

fHP/(fHP+fLP)), and the probability that a philopatric juvenile is offspring of the low-quality 140	

breeder in a resource-rich patch (or in a resource-poor patch) is ULR = fLR/(fHR+fLR)  (or ULP = 141	

fLP/(fHP+fLP)). In resource-rich patches (or in resource-poor patches), with probability UHR
2 (or 142	

UHP
2) and with probability ULR

2 (or ULP
2) two juveniles sampled at random are siblings, in 143	

which case their relatedness is 1. In resource-rich patches (or in resource-poor patches), with 144	
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probability 2UHRULR (or 2UHPULP) two juveniles sampled at random are not siblings, in 145	

which case their relatedness is rR (or rP). The recursion equations are the given by  146	

 147	

𝑟!′ = 𝑝!|!!∈ !,! 𝜑! 𝑈!!! + 𝑈!!! + 2𝑈!!𝑈!!𝑟! ,𝜎 ∈ R,P                                        (E2) 148	

 149	

At equilibrium, the relatedness coefficients among breeders will not change between 150	

successive generations, in which case rR´ = rR, and rP´ = rP. We can then solve this system of 151	

equation to find the relatedness coefficients among breeders.   152	

 153	

Appendix F. Optimal behaviour and convergence stability 154	

 155	

Here I determine the convergence stability (Christiansen 1991; Eshel 1996; Taylor 1996) of 156	

the optimal competitive effort strategies. To determine if a set of optimal competitive effort 157	

strategies is convergence stable we define the matrix: 158	

 159	

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!"

! !!" !!!
!!!" !!!∗

.                                                        (F1) 160	

 161	

where Sρσ represents the left-hand side of Hamilton’s rule for the expression of the behaviour 162	

of each individual depending on its status and patch type. The set of optimal strategies (zHR
*, 163	

zLR
*, zHP

*, and zLP
*) are convergence stable if the eigenvalues of matrix (F1) have negative real 164	

parts (Otto and Day 2007). 165	

 166	

 167	
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Appendix G. Fecundity and social interactions 168	

 169	

G1. General behavioural function 170	

 171	

In general, the fecundity of a focal individual depends on the resources available in the local 172	

patch, denoted by µσ, on its personal quality, denoted by qρσ, and on social interactions, 173	

denoted by sρσ. Thus, the fecundity of a focal class-ρ individual in a type-σ patch is given by 174	

 175	

𝑓!" = 𝜇! 𝑞!" + 𝑠!" .                                                                                                        (G1.1) 176	

 177	

As described in the main text, I assume that the behavioural function for social interactions 178	

depends on a personal component, denoted by Ψ, and on a group component, denoted by Θ. 179	

The personal component depends on the phenotype xρσ of the focal individual, whereas the 180	

group component depends on the phenotype of all individuals in the group, which I represent 181	

by the vector of phenotypes xσ. Thus, the social interactions term take the following 182	

functional form:  183	

 184	

𝑠!" = 𝛹 𝑥!" 𝛩 𝒙! .                                                                                                         (G1.2) 185	

 186	

The fecundity cost of the behaviour is then given by the effect of the focal’s phenotype on the 187	

personal component of the social interactions. Thus  188	

 189	

𝐶!" = − !!!"
!"!"

= −𝜇!
!" !!"
!"!"

𝛩 𝒙! .                                                                                 (G1.3) 190	

 191	

The fecundity benefit of the behaviour is given by the effect of the actor’s phenotype on the 192	

group component of the social interactions. Thus  193	
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 194	

𝐵!" =
!!!"
!"!"

= 𝜇!𝛹 𝑧!"
!" 𝒙!
!"!"

.                                                                                        (G1.4) 195	

 196	

In the main text, I consider that the behavioural functions give form to a competitive effort 197	

game between group mates. Below, I explore different functional forms for the social 198	

interactions among group mates.  199	

 200	

G2. Investment in a public good 201	

 202	

Let us consider the evolution of investment in a public good. I assume that investment in a 203	

public good is costly to the actor, but increases the pool of publically available resources. The 204	

pool of available resources is assumed to be fairly distributed among all social partners, 205	

including the contributor. Investment in the public good is costly, in the sense that the actor’s 206	

ability to access the pool of publically available resources is impaired by the expression of 207	

the behaviour. Given these assumptions, the behavioural function of the social interactions 208	

takes the form 209	

 210	

𝑠!! = 1− 𝑥!!
!
!!

𝑥!!!∈{!,!} ,                                                                                       (G2.1) 211	

 212	

where: 𝛹 𝑥!" = 1− 𝑥!! ; 𝛩 𝒙! = !
!!

𝑥!!!∈{!,!} ; and 𝑛! = 2 is the number of 213	

individuals in the patch. From equations (G1.3) and (G2.1), the cost of the investment in the 214	

public good is given by  215	

 216	

𝐶!,! =
!
!!

𝑥!,!!∈{!,!} ,                                                                                                      (G2.2) 217	

 218	
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which means that the cost paid by the actor is given by the amount of public good available 219	

to the focal recipient. From equations (G1.4) and (G2.1), we find that the benefit provided by 220	

the focal individual to social partners is given by  221	

 222	

𝐵!",! = 1− 𝑥!,!
!
!!

.                                                                                                       (G2.3) 223	

 224	

In Fig. G2.1 and Fig. G2.2 I present the results for this behavioural function. We find that the 225	

results are qualitatively similar to those obtained in the main text for a different behavioural 226	

function. In particular, we find a patch productivity and inequality are negatively correlated.  227	

 228	

 229	

 230	

 231	

 232	

 233	

 234	

 235	

 236	

 237	

 238	

 239	

 240	

 241	

 242	

 243	
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 244	

Figure G2.1. Optimal investment in public good (z*) and fecundity (f) of high- (solid lines) 245	

and low-quality (dashed lines) individuals as a function of the temporal correlation (τ). [A,C] 246	

In resource-rich patches, average investment in the public good increases as the environment 247	

becomes more stable. [B,D] In resource-poor patches, average investment in the public good 248	

decreases as the environment become more stable. Environmental stability leads to higher 249	

average fecundity in resource-rich patches, while it leads to lower average fecundity in 250	

resource-poor patches. Parameter values: c = 0.9, d = 0.1, p = 0.5, qHR = qHP = 1.0, qLR = qLP 251	

= 0.1, µR = 1.0, µP = 0.1.  252	

 253	

 254	
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 255	

Figure G2.2. Relative group productivity (F), within-group inequality (Gω), and between-256	

group inequality (Gβ) as a function of the temporal correlation (τ). Group productivity is 257	

plotted relative to the baseline group productivity in each patch. Baseline group productivity 258	

is given by group productivity in a stable environment (i.e. F0 = F(τ = 1)). Thus, F = F(τ)/F0. 259	

[A] Environmental stability in resource-availability leads to higher productivity in resource-260	

rich patches, but to lower productivity in resource-poor patches. [B] In resource-rich patches, 261	

inequality decreases as the environment becomes more stable. In resource-poor patches, 262	

inequality increases as the environment becomes more stable. [C] Productivity in resource-263	

rich patches increases, relative to that of resource-poor patches, as the environment becomes 264	

more stable. Parameter values: c = 0.9, d = 0.1, p = 0.5, qHR = qHP = 1.0, qLR = qLP = 0.1, µR = 265	

1.0, µP = 0.1.  266	

  267	

 268	

 269	

 270	

 271	

 272	

 273	

 274	

 275	

A B C 

Figure 3.  
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G3. Simple competitive effort  276	

 277	

In the main text, I considered a competitive effort behavioural function. In this section, I 278	

consider a variation of this behavioural function. More specifically, I consider a case in 279	

which the fraction of resources obtained by the focal individual is not relative to the average 280	

competitive effort in the local group, as in the main text (cf Frank 1994). Thus, I assume that 281	

competitive effort, denoted by 𝑥!!, directly increases the fraction of resources obtained by 282	

the focal individual, but it reduces the focal’s contribution to the common pool of resources. 283	

The fecundity of a focal individual through social interactions is then given by  284	

 285	

𝑠!! = 𝑥!! 1− !
!!

𝑥!!!∈{!,!} .                                                                                      (G3.1) 286	

 287	

where: 𝛹 𝑥!" = 𝑥!! and 𝛩 𝒙! = 1− !
!!

𝑥!!!∈{!,!} . From equations (G1.3) and 288	

(G3.1), the cost of competitive effort becomes 289	

 290	

𝐶!! = − 1− !
!!

𝑥!!!∈Ω! .                                                                                           (G3.2) 291	

 292	

Note that the cost is negative. That is the investment in competitive effort confers a direct 293	

benefit to the recipient that is proportional to the pool of resources available to the recipient. 294	

From equations (G1.4) and (G3.1), the benefit provided by the focal actor to a group mate is 295	

given by   296	

 297	

𝐵!",! = −𝑧!,!
!
!!

.                                                                                                               (G3.3) 298	

 299	
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Note that the benefit is negative. That is an additional investment in competitive effort 300	

reduces the amount of resources publically available to each of the social partners. In Fig. 301	

G3.1 and Fig. G3.2, I present the results for this behavioural function. We find that the results 302	

are qualitatively similar to those obtained in the main text for a different behavioural 303	

function. In particular, we find a patch productivity and inequality are negatively correlated.  304	

 305	

 306	

 307	

 308	

 309	

 310	

 311	

 312	

 313	

 314	

 315	

 316	

 317	

 318	

 319	
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 320	

Figure G3.1. Competitive effort (z) and fecundity (f) of high- (solid lines) and low-quality 321	

(dashed lines) individuals as a function of the temporal correlation (τ). [A,C] In resource-rich 322	

patches, temporal stability in resource-availability decreases average investment in 323	

competitive effort. [C,D] In resource-poor patches, temporal stability in resource-availability 324	

increases average investment in competitive effort. Temporal stability leads to higher average 325	

fecundity in resource-rich patches, while it leads to lower average fecundity in resource-poor 326	

patches. Parameter values: c = 0.9, d = 0.1, p = 0.5, qHR = qHP = 1.0, qLR = qLP = 0.1, µR = 1.0, 327	

µP = 0.1.  328	

 329	

 330	

 331	

 332	

 333	

 334	

 335	

 336	
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 337	

Figure G3.2. Relative group productivity (F), within-group inequality (Gω), and between-338	

group inequality (Gβ) as a function of the temporal correlation (τ). Group productivity is 339	

plotted relative to the baseline group productivity for each patch. Baseline group productivity 340	

is given by group productivity in a stable environment (i.e. F0 = F(τ = 1)). Thus, F = F(τ)/F0. 341	

[A] Temporal stability in resource-availability leads to lower productivity in resource-rich 342	

patches, while it leads to higher productivity in resource-poor patches. [B] In resource-rich 343	

patches, inequality decreases as the environment becomes more stable. In resource-poor 344	

patches, inequality increases as the environment becomes more stable. [C] Productivity in 345	

resource-rich patches increases, relative to that of resource-poor patches, as the environment 346	

becomes more stable such that inequality between patch types increases. Parameter values: c 347	

= 0.9, d = 0.1, p = 0.5, qHR = qHP = 1.0, qLR = qLP = 0.1, µR = 1.0, µP = 0.1.  348	

 349	

 350	

 351	

 352	

 353	

 354	

 355	

 356	

 357	
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Figure 3.  
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Appendix H. Early-life acquisition of individual quality 358	

 359	

Reproductive success and reproductive value 360	

 361	

We assume that mothers produce a fraction Q of high-quality offspring, and a fraction 1 – Q 362	

of low-quality offspring, irrespective of a mother’s quality. As a result, the total proportion of 363	

high-quality offspring competing for breeding sites in any focal patch is given by Q while the 364	

proportion of low-quality offspring competing for breeding sites is given by 1 – Q. Thus, the 365	

probability that the focal patch becomes a type-𝜅𝜆 patch is given by  366	

 367	

𝑝!" =
𝑛
𝑚 𝑄! 1− 𝑄 !!!,                                                                                                 (H1) 368	

 369	

where κ and λ are the quality of each breeder, m is the number of high-quality breeders in the 370	

patch, and n is the patch size, which we set to 2.   371	

 372	

Given the state of the patch, we can now define the number of breeding spots for each type of 373	

offspring quality. Let us denote the number of quality-𝑖 breeding spots in a type-ij patch by 374	

oij. Thus,  375	

 376	

𝑜!" =

2 , 𝑖 = H, 𝑗 = H
1 , 𝑖 = H, 𝑗 = L
1 , 𝑖 = L, 𝑗 = H
2 , 𝑖 = L, 𝑗 = L

.                                                                                                      (H2) 377	

 378	

Let us define the set Ω = HH,HL, LL , which includes the set of all patch types, noting that 379	

the type-HL patch is the same as the type-LH patch. The reproductive success of a quality-𝜌 380	
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mothers with a quality-𝜇 mother as social partner in a type-𝜋 patch (where 𝜋 denotes the 381	

resources available in the patch, i.e. either ‘R’ or ‘P’) through offspring that remain 382	

philopatric is given by 383	

 384	

𝑤!",!
! 𝑥!!,𝑥!! = !!",! !!!

!!",!!!!",! !!! ! !! !!" !!",!!!!",!!"∈!!∈ !,! ! !!!
.                           (H3)  385	

 386	

The reproductive success of a quality-𝜌 mothers with a quality-𝜇 mother as social partner in a 387	

type-𝜋 patch through offspring that disperse away from the natal patch and arrive at a type-ω 388	

patch with a quality-ε and a quality-𝜚 individual is given by 389	

 390	

𝑤!",!→!!,!! 𝑥!!,𝑥!! = !!",!! !!!
!!!,!!!!!,! !!! ! !! !!" !!",!!!!",!!"∈!!∈ !,! ! !!!

.                   (H4)  391	

 392	

That is, the focal quality-ρ mother produces 𝑓!",!, a fraction d of which disperse, and where 393	

only a fraction 1 – c survive dispersal.   394	

 395	

The reproductive success of a quality-𝜌 mother with a quality-𝜇 mother as a social partner in 396	

a type-𝜋 patch through offspring that become quality-𝜅 mothers with quality-𝜆 mothers as 397	

social partners in a type-𝜓 patch is given by 398	

 399	

𝑤!",!→!",! = 𝑤!",!
! 𝑝!→!𝑝!"𝑜!"

+ 𝑝!𝑝!→! 𝑝!!𝑤!",!→!!,!!
!!∈!!∈ !,! 𝑝!"𝑜!"

.                                       (H5) 400	

 401	

That is, a quality-ρ focal mother with a quality-µ social partner in a type-π patch wins a 402	

breeding spot in the local patch with probability 𝑤!",!
! . With probability 𝑝!→! the type-π 403	
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patch becomes a type-ψ patch. The probability that the patch becomes a patch with a quality-404	

κ and a quality-λ breeder is given by 𝑝!", in which case there are 𝑜!" quality-κ breeding spots 405	

available.  406	

 407	

The focal quality-ρ breeder also derives fitness from offspring that disperse from the local 408	

patch. With probability 𝑝! the dispersed offspring arrive at a type-γ patch, which becomes a 409	

type-ψ patch with probability 𝑝!→!. With probability 𝑝!! the type-γ patch has a quality-ε 410	

breeder and a quality-𝜚 breeder, in which case the probability that the focal quality-ρ breeder 411	

wins a breeding spot through the dispersed offspring is given by 𝑤!",!→!!,!! . Finally, the type-412	

γ patches accommodate a quality-κ and a quality-λ breeder with probability 𝑝!", in which 413	

case there are 𝑜!" quality-κ breeding spots.  414	

 415	

From equations (A2-A4), we can then define the 8×8 fitness matrix, denoted by w, as  416	

 417	

𝐰 = 𝑤!",!→!",! !×!
.                                                                                                          (H6) 418	

 419	

From the fitness matrix, we find the reproductive value of each mother by calculating the left 420	

eigenvector associated with the eigenvalue one.  421	

 422	

Relatedness 423	

 424	

The relatedness coefficient depends on the previous state of the patch. The probability that a 425	

type-κ patch was a type-𝜋 patch is given by 𝑝!→!. The probability that the type-𝜋 patch was a 426	

type-𝜇𝜌 is given by 𝑝!". The probability that two random offspring are both offspring of the 427	
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quality-𝜌 breeder is given by 𝑤!",!
! !

 and the probability that two random offspring are both 428	

offspring of the quality-𝜇 breeder is given by 𝑤!",!
! !

, in both cases the relatedness 429	

coefficient is 1. The probability that both juveniles are offspring of different parents is given 430	

by 2𝑤!",!
! 𝑤!",!

! , in which case the relatedness coefficient is 𝑟!",!. The recursion equation that 431	

gives the relatedness coefficient between a quality-i and a quality-j breeder in a type-κ patch 432	

is given by 433	

 434	

𝑟!",! = 𝑝!→! 𝑝!" 𝑤!",!
! !

+ 𝑤!",!
! !

+ 2𝑤!",!
! 𝑤!",!

! 𝑟!",!!"∈!!∈ !,! .                  (H7) 435	

 436	

This gives a system of recursion equations that can be solved for the relatedness coefficients 437	

in each patch.  438	

 439	

Hamilton’s rule 440	

 441	

To define Hamilton’s rule, it is useful to define reproductive value of a breeder through 442	

offspring that remain in the local patch (i.e. the philopatric component of reproductive value). 443	

With probability 𝑝!→! the focal type-π patch becomes a type-ω patch. With probability 𝑤!",!
!  444	

an offspring of the focal breeder wins a breeding site. Finally, with probability 𝑝!" the focal 445	

patch accommodates a quality-κ and a quality-λ breeder, in which case there are oκλ quality-κ 446	

breeding sites available, and in which case the focal breeder derives a reproductive value 447	

vκλ,ω. Collecting all these terms together, we obtain 448	

 449	

𝑣!",!
! = 𝑝!→! 𝑤!",!

! 𝑝!"𝑜!"!∈ !,!!∈ !,!!∈ !,! .                                                      (H8) 450	

 451	
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It is also useful to define the probability that a single offspring remains in the local patch and 452	

wins a breeding site, which is given by  453	

 454	

𝑊!",!
! 𝑥!!,𝑥!! = !!!

!!",!!!!",! !!! ! !! !!"!"∈!!∈ !,! ! !!!
.                                              (H9)  455	

 456	

Hamilton’s rule, is then given by  457	

 458	

−𝐶!",!𝑉!",! + 𝐵!",!𝑉!",!𝑟!",! − 𝐵!",! − 𝐶!",! 𝑊!",!
! 𝑣!",!

! + 𝑣!",!
! 𝑟!",! > 0.                               (H10) 459	

 460	

Appendix I. Patch size 461	

 462	

In the main text, I assumed that each patch has exactly two breeders, one high- and one low-463	

quality breeder. Here, I consider that patch size can be greater than two, but I keep the 464	

proportion of high- and low-quality breeders in each patch constant, such that the number of 465	

high-quality and low-quality breeders is given by a, with a = n/2. This extension of the model 466	

does not change the calculation of reproductive values, as the increase in competition for 467	

breeder sites, owing to the increase in the number of breeders, is exactly compensated by the 468	

increase in the number of breeding sites available. However, this extension of the model does 469	

change the calculation of relatedness.  470	

 471	

The probability that a type-κ patch was a type-𝜋 patch is given by 𝑝!→!. The probability that 472	

two random offspring are both philopatric offspring is given by φπ. The probability that two 473	

random offspring are both offspring of a focal quality-ρ breeder is given by 474	

𝑓!" 𝑎𝑓!! + 1− 𝑎 𝑓!! . If the two random philopatric offspring do not share the same 475	

mother, then the coefficient of relatedness is given by 𝑟!. The recursion equation that gives 476	

the relatedness coefficient in a type-κ patch is then given by 477	
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 478	

𝑟!! = 𝑝!→!𝜑! 𝑎 !!"
!!!!!!!!!

!
!∈{!,!} + 1− 𝑎 !!"

!!!!!!!!!

!
!∈{!,!} 𝑟!!∈ !,! .      (I1) 479	

 480	

This gives a system of recursion equations that can be solved for the relatedness coefficients 481	

in each patch.  482	

 483	

 484	

Figure I1. A. Competitive effort of high-quality and low-quality individuals as a function of 485	

the temporal correlation in resource-rich patches. B. Competitive effort of high-quality and 486	

low-quality individuals as a function of the temporal correlation in resource-poor patches. C. 487	

Coefficient of within-group inequality in resource-rich and resource-poor patches as a 488	

function of the temporal correlation. Parameter values: n = 4, d = 0.1, c = 0.5, p = 0.5, qHR = 489	

qHP = 1.0, qLR = qLP = 0.1, µR = 1.0, µP = 0.1.  490	

 491	

 492	

 493	

 494	

 495	

 496	

 497	
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