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S1 Compositional algebra6

Ecologists make frequent use of some aspects of vector algebra in Rn, a mathematical sys-7

tem which emerged gradually in the late 19th century, primarily driven by the need to solve8

three-dimensional physical problems in fields such as electricity (Crowe, 1994). In community9

ecology, the main application of vectors is the representation and manipulation of the abun-10

dances of more than one species simultaneously. For such vectors, the operations of addition11

and scalar multiplication have obvious biological meanings. However, ecologists make little12

explicit use of the more abstract concept of a real vector space, defined only by the axioms it13

satisfies, rather than the types of objects involved. This concept, now important in many areas14

of mathematics, emerged around the same time as vector algebra (Dorier, 1995). A real vector15

space is a set of objects (vectors) with a binary operation (‘addition’), and a scalar operation16

(‘scalar multiplication’) by which real numbers act on the objects (Fraleigh and Beauregard,17
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1995, section 3.1). The addition operation satisfies the familiar algebraic axioms of closure,18

associativity, commutativity, and the existence of an identity element and of inverse elements.19

The scalar multiplication operation satisfies the familiar algebraic axioms of closure, distribu-20

tivity, associativity, and has 1 as the multiplicative identity. This more general concept might21

be useful in ecology because the ordinary definitions of addition and scalar multiplication for22

Euclidean vectors do not satisfy the vector space axioms when applied to relative abundances.23

For example, let a = (1/3, 1/3, 1/3)T be a relative abundance vector (throughout, we work with24

column vectors, so T denotes transpose). Then neither a + a nor 2a is a relative abundance25

vector, so the axiom of closure is not satisfied.26

There are in fact operations corresponding to addition and scalar multiplication that make27

sense for compositions. For a vector of s positive numbers x, let the closure C(x) of x be defined28

by29

C(x) =
1∑s

i=1 xi
x30

(Aitchison, 1986, p. 31). Now if a, b are s-part compositions, then let the perturbation ⊕ of b31

by a be defined by32

a ⊕ b = C(a1b1, a2b2, . . . , asbs)33

(Aitchison, 1986, p. 42). Also, if a ∈ R, then the powering � of b by a is defined by34

a � b = C(ba
1, b

a
2, . . . , b

a
s )35

(Aitchison, 1986, p. 120). The set of s-part compositions with the binary operation of per-36

turbation (corresponding to ‘addition’) and the scalar operation of powering (corresponding to37

‘scalar multiplication’) satisfies the vector space axioms (Billheimer et al., 2001). Now for any38

2



two compositions a and b, we can transform a into b by the closure of the unequal scaling39

b = C
(

b1
a1

a1,
b2
a2

a2, . . . ,
bs

as
as

)
= b ⊕ ((−1) � a) ⊕ a.

40

We can thus define the compositional difference b 	 a as41

b 	 a = b ⊕ ((−1) � a) = C
(

b1
a1
,

b1
a1
, . . . ,

bs

as

)
. (S1)42

This is the only way to define the difference between two compositions, under either one of43

two additional conditions (Aitchison, 1992): that the difference must not depend on changes44

of units for individual components, or that the ith component of the transformation from one45

composition to another must depend only on the ith component of the compositions.46

S2 The measurement of dissimilarity between relative abun-47

dance vectors48

Analyses of community dissimilarity matrices can be misleading if the measure of dissimilarity49

is not perturbation invariant. Consider a series of J communities along an environmental50

gradient, with compositions ρ1,ρ2, . . . ,ρJ . Suppose that the communities are spaced so that the51

ratios of relative abundances for each species in successive communities are constant, in other52

words ρi, j/ρi, j+1 = ai, where ai is a constant, for each species i ∈ {1, 2, . . . , s} and for each53

community j ∈ {1, 2, . . . , J−1}. Since relative abundances, by definition, aremeaningful only in54

relative terms, there has been the same amount of change in the relative abundance of each species55

between each pair of communities j, j+1. This implies that ameaningfulmeasure of dissimilarity56
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between adjacent pairs of communities must be constant. From the definition of compositional57

difference (Equation S1), ρ j+1 	 ρ j = a, where a = (a1, a2, . . . , as) is a constant perturbation.58

Then we can write ρ j+1 = a ⊕ ρ j , and ρ j+2 = a ⊕ ρ j+1, and we require that d(ρ j,ρ j+1) = d(a ⊕59

ρ j, a ⊕ ρ j+1). In general, any meaningful dissimilarity measure d for compositions must satisfy60

the perturbation invariance property d(ρ1,ρ2) = d(a⊕ ρ1, a⊕ ρ2) for all compositions ρ1,ρ2, a.61

Most of the popular measures of community dissimilarity are not perturbation invariant, and are62

therefore misleading. For example, let ρ1 = (
1
6,

1
3,

1
2 )

T,ρ2 = (
1
2,

1
3,

1
6 )

T, a = (13,
1
6,

1
2 )

T . Then using63

vegdist(method = ‘‘bray’’) in the R package vegan 2.4-3 (Oksanen et al., 2017), the64

Bray-Curtis dissimilarity between ρ1 and ρ2 is 0.333 to three decimal places, but the Bray-Curtis65

dissimilarity between a⊕ρ1 and a⊕ρ2 is 0.420 to three decimal places. Other popular measures66

of community dissimilarity are shown not to be perturbation invariant (in the context of temporal67

change) in Spencer (2015, Appendix B). In contrast, the Aitchison distance (Aitchison, 1992) is68

a well-established perturbation-invariant measure of dissimilarity between composition. Thus,69

analyses of dissimilarity between relative abundances should be based on Aitchison distance,70

rather than the currently-popular measures of community dissimilarity.71
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Figure S1: Map of the study site, Salthouse Dock, and its connections to the River Mersey.
The floating pontoons allow access to the section of dock wall covered by the transects, which
is indicated by the arrows on the inset. Figure drawn based on data from OpenStreetMap
(OpenStreetMap contributors, 2018).
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S3 Estimation methods72

Wefitted themodel described in themain text usingBayesian estimation, via theNUTS algorithm73

(Hoffman and Gelman, 2014) in Stan 2.16.0, with the rstan package (version 2.15.1) and R74

version 3.4.1 (R Core Team, 2017). In order to speed up convergence by reducing posterior75

correlations, we actually used the orthogonal polynomial of order 2 for depth as the explanatory76

variable, and then obtained the coefficients for depth and squared depth by transformation,77

as described in Kennedy and Gentle (1980, pp. 342-345). We specified weak independent78

Cauchy(0, 2.5) priors on β0 and the coefficients of the orthogonal polynomial of depth, and79

weak independent half-Cauchy(0, 2.5) priors on the standard deviations of ε. We chose an LKJ80

prior with scale parameter η = 2 on the correlation matrix Ω of ε (Lewandowski et al., 2009),81

for which the prior density is proportional to detΩ. This means that in the prior, the modal82

correlation matrix is the identity matrix, but the density is not very concentrated around this83

mode (Stan Development Team, 2017, section 60.1). We parameterized the correlation matrix84

using its Cholesky factor. We ran four independent chains, with 5000warmup and 5000 sampling85

iterations. We checked that the chains had approximately converged by inspection of trace plots86

and potential scale reduction statistics (which were less than 1.0015 for all parameters). Effective87

sample size was at least 1950 for all parameters.88

S4 Simulation study89

We checked the performance of the estimation method on 100 simulated data sets, generated90

under the model using the posterior mean estimates from the real data (Tables S1 and S2). We91

fitted the model to each data set as described above. For almost all parameters (Tables S3 and92

S4), nominal 95% credible intervals contained the true parameter values 90 to 100 times out of93

100. The exceptions were element 3 of the coefficient for squared depth effect, and elements94
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(6, 6), (7, 7), (8, 1), (8, 6) and (8, 8) of the Cholesky factor of the covariance matrix, where the95

nominal 95% credible intervals contained the true parameters less often than required.96

Table S1: Coefficients β0 (intercept), β1 (depth), β2 (squared depth) from the regression model
described in themain text. Values are posteriormeans and 95%highest posterior density credible
intervals in the 8 isometric logratio coordinates corresponding to 9 taxa, with the default basis
from the R package compositions. Note that these coordinates have no simple interpretation in
terms of the 9 taxa.

β0 β1 β2
-1.11 (-1.30, -0.94) -0.01 (-0.14, 0.11) -0.62 (-0.79, -0.45)
0.50 (0.35, 0.65) -0.10 (-0.20, 0.01) -0.39 (-0.52, -0.24)
-3.00 (-3.45, -2.56) -2.69 (-3.17, -2.24) 0.72 (0.29, 1.11)
1.04 (0.86, 1.23) 0.15 (-0.00, 0.31) -0.24 (-0.40, -0.08)
-3.06 (-3.52, -2.64) 0.59 (0.30, 0.89) 0.39 (0.06, 0.71)
-2.14 (-2.64, -1.66) 1.11 (0.71, 1.50) -0.17 (-0.56, 0.19)
-7.91 (-11.56, -5.17) 2.46 (0.05, 4.94) 0.56 (-0.56, 2.14)
-3.16 (-4.54, -1.90) 0.07 (-0.38, 0.58) -0.04 (-0.60, 0.49)
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Table S3: Percentage of simulated data sets for which nominal 95% credible intervals contained
true parameter values for coefficients β0 (intercept), β′1 (linear term in orthogonal polynomial
for depth) and β′2 (quadratic term in orthogonal polynomial for depth). Rows are the 8 ilr
components corresponding to 9 taxa, with the default basis from the R package compositions.
Note that these coordinates have no simple interpretation in terms of the 9 taxa.

β0 β′1 β′2
98 96 94
94 99 94
98 94 83
97 98 94
94 93 93
95 97 97
98 90 100
96 100 100

Table S4: Percentage of simulated data sets for which nominal 95% credible intervals contained
true parameter values for Cholesky factor of error covariance matrix Σ. Rows and columns
are the 8 ilr components corresponding to 9 taxa, with the default basis from the R package
compositions. Note that these coordinates have no simple interpretation in terms of the 9 taxa.

1 2 3 4 5 6 7 8
1 98 0 0 0 0 0 0 0
2 95 94 0 0 0 0 0 0
3 96 93 99 0 0 0 0 0
4 97 96 99 93 0 0 0 0
5 100 100 100 100 99 0 0 0
6 97 91 99 99 100 86 0 0
7 92 100 100 92 100 100 84 0
8 80 100 99 100 100 89 100 78

Posterior distributions of parameters from simulated data were generally centred not too97

far from the true values, although there was more variation in location for intercept and depth98

coefficients (Figure S2) than for elements of the Cholesky factor of the error covariance matrix99

(Figure S3). However, the posterior distributions of parameters for ilr components 7 and 8 had100

very long tails (Figures S2 and S3, bottom two rows).101
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Figure S2: Posterior distributions (black lines) from 100 simulated data sets of estimated
coefficients β0 (intercept, first column), β′1 (linear term in orthogonal polynomial for depth,
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Figure S3: Posterior distributions (black lines) from 100 simulated data sets of estimated
elements of the Cholesky factor of the error covariance matrix Σ. Vertical green lines: true
parameter values. Rows and columns are ilr components. Note that these coordinates have no
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The long-tailed distributions and poorer performance of credible intervals for parameters102

associated with components 7 and 8 is probably a consequence of the number of observations103

for the taxa whose distributions they reflect. Component 7 is proportional to the log of the104

ratio of Aurelia aurita to the geometric mean of all taxa other than Aurelia aurita and colonial105

ascidians, and component 8 to the log of the ratio of colonial ascidians to all other taxa. Since106

Aurelia aurita and colonial ascidians were the least abundant taxa, with non-zero point counts107

in only 7 and 15 out of 125 stills respectively, it is not surprising that estimation of parameters108

describing their distributions is more difficult than for other taxa.109

S5 Comparison with linear and cubic depth effects110

We compared the performance of the model with quadratic depth effect described in the main111

text against that of models with linear and cubic depth effects. We fitted the linear and cubic112

models exactly as described for the quadratic model in the main text, with extra coefficient113

vector β3 describing the cubed depth effect in the cubic model, and with higher-order coefficient114

vectors set to 0 where necessary (e.g. in the quadratic model, β3 = 0).115

We evaluated the ability of each model to predict new stills, rather than new points from

existing stills. Since each still has its own intercept, it corresponds to a cluster in the language

of hierarchical models. We therefore used a leave-one-out cross-validation procedure (e.g.

Garthwaite et al., 2002, section 9.4) in which each still was omitted in turn, with loss function

the Bayesian leave-one-cluster-out estimate of out-of-sample prediction error (expected log

predictive density) elpdloco:

elpdloco =
m∑

i=1
log f (yi |y−i),

where m is the number of stills and f (yi |y−i) is the posterior density of the ith still yi, given116

the data set y−i in which the ith still is excluded (Vehtari et al., 2017). The required posterior117
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density is given by118

f (yi |y−i) =

∫
f (yi |θ) f (θ |y−i) dθ, (S2)

where θ = {β0,β1,β2,β3,Σ} is set of regression coefficients and the covariance matrix Σ,119

f (yi |θ) is the density of the ith still given parameters θ, and f (θ |y−i) is the posterior density of120

θ given the dataset y−i. Because we want to predict a new still, we need to integrate over the121

distribution of still-specific intercepts εi. Thus122

f (yi |θ) =

∫
f (yi |β0,β1,β2,β3, εi) f (εi |θ) dεi, (S3)

where εi ∼ N(0,Σ). Equation S3 is described as the marginal likelihood in Merkle et al. (2018),123

because it involves integrating out the still-specific parameters. Note that this is not the same as124

the full marginal likelihood that appears in the denominator of a posterior density.125

We estimated the integral in Equation S3 using a classical Monte Carlo integration method126

(Robert and Casella, 2004, p.83), with 1000 draws from N(0,Σ) for each Stan iteration. We127

experimented with the quadrature method described in Merkle et al. (2018), but found that in 8128

dimensions this required too many quadrature points to be feasible. We estimated the integral in129

Equation S2 using the mean from the values of θ over 1000 Stan iterations for each data set y−i.130

We experimented with the Pareto-smoothed importance sampling method described in Vehtari131

et al. (2017), which often allows the expected log predictive density to be computed from a132

single fitted model, without separate fitting of the model to each leave-one-cluster-out data set.133

However, diagnostics suggested that the Pareto smoothing was not performing well enough to134

be reliable.135

We computed standard errors of differences in elpdloco among models using the compare()136

function in the R package loo. These standard errors are approximate (Vehtari et al., 2017),137

suggesting that a fairly conservative interpretation of differences among models is sensible.138
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Plots of the expected relative abundances from each model suggest that the linear model is139

much worse than the quadratic (Figure S4, green vs black lines), but that the quadratic model140

is about as good as the cubic model (Figure S4, orange vs black lines). Differences in elpdloco141

confirm this: −1004 with standard error 64 between quadratic and linear, −49 with standard142

error 17 between cubic and quadratic.143
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Figure S4: Estimated relationships between relative abundance and depth for bare wall and
eight taxa, fitted using a quadratic model as described in the main text (black lines with grey
95% credible bands), a linear model (green lines) and a cubic model (orange lines). Circles are
sample estimates of relative abundance from point counts.

15



S6 Construction of a meaningful ilr basis144

Constructing a meaningful ilr basis is not too difficult for a fairly small number of taxa whose145

biology is well understood. In our case, the obvious choice for a first coordinate is to contrast146

bare wall with macroscopic organisms, since bare wall is likely to behave as a passive component147

in this system. A natural second coordinate is to contrast algae with animals. Algae are the148

only photosynthetic organisms in our study, and are thus expected to depend very strongly149

on light availability, which is likely to decrease rapidly with increasing depth. For the third150

coordinate, we contrasted predators (Aurelia aurita and Diadumene cincta) with filter-feeding151

animals. The filter-feeders are likely to rely heavily on phytoplankton, whose abundance is152

expected to decrease with depth. In contrast, the predators use tentacles to catch relatively large153

and highly motile zooplankton. For the fourth coordinate, we contrasted the two predators. For154

the fifth coordinate, we contrasted Mytilus edulis, which is the only mollusc and has a very high155

filtration rate, with the other filter feeders. For the sixth coordinate, we contrasted sponges with156

bryozoans and ascidians, and for the seventh coordinate, we contrasted bryozoans with ascidians.157

These two coordinates were chosen taxonomically, because taxonomic differences are likely to158

be associated with differences in responses to depth. Finally, we chose the eighth coordinate159

as the contrast between solitary and colonial ascidians, which have very different morphologies160

and are thus likely to respond differently to depth.161

For each coordinate, we code the taxa on one side of the contrast as+1, those on the other side162

as −1, and those not involved in the contrast as 0. Rescaling the positive and negative elements163

to give a vector with zero sum, and then rescaling the entire vector to unit length, gives one164

column of the required basis matrix (Table S5). The columns are orthogonal by construction,165

because each contrast after the first is among taxa on only one side of the preceding contrasts.166
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Table S5: Biologically meaningful ilr basis, constructed as described in Section S6. Rows are
taxa, and columns are basis vectors.

1 2 3 4 5 6 7 8©­­­­­­­­­­­­­­­­­­­«

ª®®®®®®®®®®®®®®®®®®®¬

Bare wall 2
√

2
3 0 0 0 0 0 0 0

Bugula − 1
3
√

8
− 1

2
√

14
− 2√

70
0 − 1

2
√

5
−
√

3
6

√
2
√

3
0

Solitary ascidians − 1
3
√

8
− 1

2
√

14
− 2√

70
0 − 1

2
√

5
−
√

3
6 − 1√

6
1√
2

Algae − 1
3
√

8

√
7

2
√

2
0 0 0 0 0 0

Sponges − 1
3
√

8
− 1

2
√

14
− 2√

70
0 − 1

2
√

5

√
3

2 0 0

Diadumene cincta − 1
3
√

8
− 1

2
√

14

√
5
√

14
− 1√

2
0 0 0 0

Mytilus edulis − 1
3
√

8
− 1

2
√

14
− 2√

70
0 2√

5
0 0 0

Aurelia aurita − 1
3
√

8
− 1

2
√

14

√
5
√

14
1√
2

0 0 0 0

Colonial ascidians − 1
3
√

8
− 1

2
√

14
− 2√

70
0 − 1

2
√

5
−
√

3
6 − 1√

6
− 1√

2

S7 Comparison with other approaches167

We compared the results from our approach with those obtained by fitting overdispersed Poisson168

regressions with depth and depth squared as explanatory variables, using the HMSC package169

(Ovaskainen et al., 2017). We used the overdispersed Poisson response distribution, the default170

priors from the HMSC package, and a burnin period of 1000 iterations followed by 10000 sampling171

iterations, thinned to every 10th iteration. We then used the predict() method from HMSC to172

generate predicted counts, and transformed these into compositions using the acomp() method173

from the compositions package.174

We also explored the use of multivariate linear models fitted to ilr-transformed count data175

with pseudocounts, with depth and depth squared as explanatory variables. Pseudocounts are176

necessary because the ilr transformation cannot be applied to data containing zero counts.177

We tested three different pseudocount values (Martín-Fernandez et al., 2011, Table 4.2): 1178

(Laplace), 1/2 (Jeffreys) and 1/9 (Perks, with 9 components). These are well-known and widely-179
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used approaches, although other methods specifically designed for compositional data may be180

superior (Martín-Fernandez et al., 2011).181

We also fitted a multivariate regression model by penalized likelihood, using the R package182

glmnet (Friedman et al., 2010). We chose the value of the regularization parameter λ by cross-183

validation, and used the type.multinomial = "grouped" option in order to ensure that all184

elements of a coefficient vector were either included or excluded together.185

All approaches had similar behaviour for taxa with high relative abundance (Figure S5a-e).186

For taxa with low relative abundance (Figure S5f-i), predicted values from Laplace (orange187

lines) and Jeffreys (purple lines) pseudocounts and HMSC (cyan lines) were usually above the top188

of the 95% credible bands from our approach. Perks pseudocounts (pink lines) were generally189

closer to our approach. We would expect Laplace pseudocounts to result in overestimates of190

relative abundance for rare taxa. Although Laplace pseudocounts can be justified as a Bayesian191

estimator with equal prior probability for each taxon, such an approach gives a lot of weight192

to unseen taxa, and will become more problematic when the number of taxa is large (Manning193

and Schütze, 1999, p. 202). For these data, smaller pseudocounts appear better. The naive194

overdispersed Poisson regression approach taken here does not preserve the multinomial sums,195

so transformation of predicted values into compositions was needed afterwards. It is possible196

to transform the likelihood for a multinomial model into a product of independent Poisson197

likelihoods, and thus to fit a multinomial regression model using Poisson regression (Baker,198

1994). Details for some models with random effects are discussed in Lee et al. (2017). It is199

therefore possible that the performance of HMSC on these data could be improved by coding200

new explanatory variables to properly represent a multinomial model. Both HMSC and glmnet201

gave predictions that responded more strongly than our approach to a small number of higher202

observed counts in the deeper images for Mytilus edulis and Aurelia aurita (Figure S5g, h: cyan203

and green lines respectively).204
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Figure S5: Estimated relationships between relative abundance and depth for bare wall and
eight taxa, fitted using Stan as described in this paper (black lines with grey 95% credible
bands), overdispersed Poisson regression in HMSC (Ovaskainen et al., 2017) transformed into
compositions (cyan), multivariate linear models fitted to ilr-transformed count data with Laplace
(orange), Jeffreys (purple) and Perks (pink) pseudocounts, and a multinomial regularized gen-
eralized linear model fitted using glmnet (green). Circles are sample estimates of relative
abundance from point counts. Note that y-axis scales differ between panels in order to show
detail for taxa with low relative abundances.
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Figure S6: Estimated relationships between relative abundances in ilr coordinates (with the basis
in Table S5) and depth. Grey bands are 95% HPD credible bands, and black lines are posterior
means. Note the difference in y-axis scales among panels.
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Figure S7: (a) Non-metric multidimensional scaling on raw counts (top), using metaMDS()
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specific posterior mean predictions in ilr coordinates (cumulative 90% of variance explained).
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S8 Rate of change measured by Bray-Curtis dissimilarity205

In order to show how the compositional data analysis approach changes the interpretation of206

environmental gradients for the marine community data, compared to the standard approach,207

we plotted Bray-Curtis dissimilarities between adjacent predicted relative abundances on a grid208

of 100 equally-spaced values of depth (Figure S8). These plots give rough estimates of the209

rate of change in relative abundance, as measured by Bray-Curtis dissimilarity. Under this210

approach, there appeared to be local maxima in the rate of change with respect to depth at211

approximately 0.5 m and at 3 m, separated by a local minimum and with lower rates of change212

shallower than 0.5 m and deeper than 3 m. The pattern is very different from that obtained using213

the compositional approach (Figure 5 in the main text), where there was a single local minimum214

in rate of change at approximately 2 m, and no local maxima.215

22



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
01

0.
02

0.
03

0.
04

depth/m

B
ra

y−
C

ur
tis

 d
is

si
m

ila
rit

y

Figure S8: Bray-Curtis dissimilarity between adjacent predicted relative abundances on a grid
of 100 equally-spaced values of depth (m). White line: posterior mean. Grey band: 95% HPD
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S9 Application to mite data216

We fitted essentially the same model as that used in the main text to the mite data set in the217

R package vegan, described in Borcard et al. (1992). The data consist of counts of 35 taxa of218

mites in 70 Sphagnum moss cores. There are two quantitative non-spatial explanatory variables,219

substrate density (g l−1) and substrate water content (g l−1). Additional categorical explanatory220

variables and spatial coordinates are also available, but for simplicity, we did not use these221

in the model. For the same reason, we included only linear effects of substrate density and222

water content. We fitted the model using the same approach as for the marine community data223

described in the main text (although for speed, we ran only 1000 warmup and 1000 sampling224

iterations of each chain). We conditioned on the observed total counts, in order to study patterns225

in relative abundance, and used the same multinomial observation model as for the marine226

community data.227

We would expect this to be a challenging data set to model, because it is high-dimensional228

and contains many rare taxa. For serious applications, it might be appropriate to use a more229

constrained covariance structure, and to use a hierarchical model for the regression coefficients.230

Nevertheless, the fitted model appeared plausible. For those taxa that were not rare, relationships231

with substrate density generally appeared fairly weak (Figure S9), compared to those for water232

content (Figure S10). In these figures, predictions were made with the explanatory variable that233

is not on the x-axis set to its mean value. In order to give a better impression of the fit of the234

model to data, Figure S11 shows posterior mean predicted relative abundances against observed235

relative abundances, with the values of explanatory variables that were actually observed. For236

most taxa, the points fall close to the line with slope 1 and y-intercept 0, indicating that the237

posterior mean predictions are plausible. However, there are a few taxa with many very low238

observed relative abundances and a few higher values (e.g. MPRO, Ceratoz1, HRUF, PPEL,239
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Lepidzts, Eupelops, Miniglmn: Figure S11h, r, v, x, ab, ac, ad respectively) for which the higher240

values were generally underpredicted.241
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Figure S9: Relationships between relative abundance and substrate density (g l−1) for 35 mite
taxa in 70 Sphagnum moss cores. Data from the mite data set in R package vegan, originally
described in Borcard et al. (1992). Dots: observed relative abundances. Black lines: posterior
mean predictions, with water content set to its mean value. Grey bands: 95% HPD credible
band.
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Figure S10: Relationships between relative abundance and substrate water content (g l−1) for
35 mite taxa in 70 Sphagnum moss cores. Data from the mite data set in R package vegan,
originally described in Borcard et al. (1992). Dots: observed relative abundances. Black lines:
posterior mean predictions, with substrate density set to its mean value. Grey bands: 95% HPD
credible band.
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Figure S11: Posterior mean against observed relative abundances for 35 mite taxa in 70 Sphag-
num moss cores. Data from the mite data set in R package vegan, originally described in
Borcard et al. (1992). Each dot represents one core. Lines have slope 1, y-intercept 0.
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As above (Section S8), we plotted Bray-Curtis dissimilarities between adjacent predicted242

relative abundances on a grid of 100 equally-spaced values of each of substrate water content243

(Figure S12a) and substrate density (Figure S12b). These plots give rough estimates of the244

rate of change in relative abundance, as measured by Bray-Curtis dissimilarity. Under a model245

with linear effects of each explanatory variable, the true rate of change of composition with246

respect to each explanatory variable, as measured using a perturbation-invariant distance, is a247

constant. However, the Bray-Curtis dissimilarity, which is not perturbation-invariant, changed248

in complicated ways with both water content (Figure S12a) and substrate density (Figure S12b).249

In particular, the apparent local maximum in rate of change at a water content of about 500 g l−1,250

and the apparent local minimum in rate of change at a substrate density of about 45 g l−1 are the251

kind of features that ecologists are likely to expend effort on explaining. Nevertheless, they are252

simply artefacts.253
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Figure S12: Bray-Curtis dissimilarities between adjacent predicted relative abundances on a
grid of 100 equally-spaced values of (a) substrate water content (g l−1) and (b) substrate density
(g l−1). In each case, the explanatory variable not on the x-axis was set to its mean value. White
lines: posterior means. Grey envelopes: 95% HPD credible bands.
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