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Supplementary Material S1 

 

 

Properties of beating 

 

Beating describes the fluctuations in amplitude which occur when two tones of closely 

spaced frequency combine, but behind this basic circumstance there are subtleties. This text 

summarises some distinctive properties which can also be found in basilar membrane click 

responses.  

As described by Hartmann, beating is a phenomenon involving the linear combination 

of two tones of slightly different frequency (Ch. 17 of Hartmann (1998)). This linear beating 

needs to be distinguished from amplitude modulation (AM), which produces a similar 

waveform. Crucially, AM involves the nonlinear mixing of a carrier frequency and a 

modulating frequency, so a key difference is that the spectrum of a beating waveform shows 

only two frequencies, whereas AM shows three (a single carrier frequency plus two sidebands). 

Another important property of beating concerns the variations in instantaneous frequency 

which occur.  

Consider two closely matched frequencies which interfere. If the component 

frequencies f1 and f2 have amplitudes a and b and angular frequencies ω1 and ω2, then the linear 

combination x(t) is given by 

x(t) = a sin(ω1t) + b sin(ω2t + φ) ,      (A1) 

where t is time and φ is the relative phase. Two examples are shown in Figure A1 for 

frequencies of 1000 and 1100 Hz. At top, the amplitudes are equal; below, the amplitudes are 

in the ratio 2:1. 
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FIG. A1. Beating of two tones of frequencies 1000 and 1100 Hz, together with their envelopes. 

At top, the amplitudes of the two components, a and b, are equal (a = b = 1); below, a = 1 and 

b = 0.5 (ratio of 2:1).  

 

From a spectral perspective, there are only two components, ω1 and ω2. However, 

listening to the waveform, the ear does not receive the impression of two distinct frequencies 

but instead that there is a single pure tone with a frequency half-way between the components 

and whose amplitude waxes and wanes (“beats”) at the difference frequency ω2 – ω1. As 

Hartmann emphasises, although the difference frequency is heard, it does not – despite 

impressions – appear in the spectrum. This can be brought out by using a trigonometric identity 

and expressing Eq. (A1) as 

x(t) = 2cos [(ω1t – ω2t – φ)/2]·sin [(ω1t+ω2t + φ)/2].    (A2) 

Defining the difference between ω1 and ω2 as Δω, and the average frequency (ω1 + ω2)/2 as 𝜔, 

Eq. A2 becomes 

x(t) = 2 cos ((Δω/2) t – φ/2) · sin(𝜔 t +φ/2)      (A3) 
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in which the sine term represents rapid oscillation at the average frequency and the slowly 

oscillating cosine term represents the waxing and waning of amplitude. Although the cosine 

term oscillates at (f2 – f1)/2, there are f2 – f1 maxima per second (which is what is heard), half 

when the cosine term is +1 and half when it is –1. When the cosine wave crosses the time axis, 

the multiplier of the sine wave changes sign; in other words, the phase of the sine wave changes 

by 180°. This shows another important feature which distinguishes beats from amplitude 

modulation: the oscillating component rapidly changes phase by 180° between one burst and 

the next.  

Consider Figure A2, which illustrates the beating of a pair of tones of 1000 and 

1100 Hz, producing a waveform (orange) of periodicity 1050 Hz. For comparison, a sine wave 

of 1050 Hz is superimposed (blue), and it is evident that there is a sudden phase inversion from 

one beat to the next, meaning that each burst is a time-reversed copy of the preceding one and 

the waveform only repeats every two “bursts”. 
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FIG. A2. (top) Waveform produced by the beating of two equal-amplitude tones of 1000 and 

1100 Hz (orange) and a sine wave of frequency 1050 Hz (blue). Both have the same periodicity, 

but the phase changes suddenly by 180° at the cross-over. The rapid change in phase per unit 

time represents a high instantaneous frequency or frequency glide. Below is a portion of the 

impulse response from Case 2 (Shera and Cooper 2013), where a similar comparison with a 

7.48 kHz decaying sine wave indicates that the signal also shows an alternating phase.  

 

 

Hartmann proceeds to show another unexpected effect of this phase change: a periodic 

change in the instantaneous frequency (IF) of the beating tones. That is, the rate of change of 

phase varies over the beating cycle, and this produces a series of frequency glides. In the 

context of BM click responses, this is an important result.  

Following Hartmann, one can derive the IF of two beating sines as: 

ω(t) = 𝜔 + (Δω/2)(b2 – a2) / [a2 + b2 + 2ab cos (Δωt + ϕ)],   (A4) 

which shows the regular variation of the average frequency. When the beating waveform 

shown at the bottom of Figure A1 is considered, its IF is shown as the blue curve in Figure A3.  
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FIG. A3. Instantaneous frequencies (coloured lines) of two beating sines of 1000 and 1100 Hz 

(grey lines) for cases of different relative amplitude. The IFs of the beating waveforms go 

through surges in frequency at times of destructive interference, and it is the ratio of the 

amplitudes which determines the extent and direction of the surges. If the amplitude of the 

1000 Hz tone is a and that of the 1100 Hz tone is b, then the blue curves illustrate the downward 

surges that occur when a > b (a = 1.25 b, solid blue curve; a = 2 b, dashed blue curve). 

Conversely, if b > a, the IF surges are upward (orange curves, solid for b = 1.25 a; dashed for 

b = 2a). In general, the closer the amplitudes, the narrower and more far-ranging are the surges. 

  

The periodic changes in IF take the form of a rollercoaster of frequency surges. 

Moreover, the surge can be upwards or downwards depending on which component has the 

larger amplitude (as interchanging a and b in Eq. A4 makes clear). Figure A3 shows both 

downwardly and upwardly directed surges, with the IF dipping down when a > b (blue curves), 

but rising upwards when b > a (orange curves). If the amplitudes are nearly equal, the change 

in phase is almost instantaneous, and the frequency can rise from zero or descend from infinity 

depending on which component is larger. Interestingly, these changes in IF are audible, so that 

if certain parts of the waveform are edited out and the residual played to a listener, they will 
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report a frequency matching the weighted frequency of the residual (see Hartmann and its 

references).  

The instantaneous frequency of any waveform, theoretical or measured, can be derived 

from the Hilbert transform of its ‘analytic signal’ (see Appendix C of de Boer & Nuttall 

(1997)). The other way of deriving the instantaneous frequency of a waveform is to calculate 

the inverse of the period between its zero crossings; both procedures usually give the same 

result (see footnote 14 of Shera (2001)). 

There is also a useful relationship between the number of oscillations within a burst and 

the frequency ratio of the component tones. Equation 3 shows that the period of the fast 

oscillation is 2/(f1 + f2) seconds, and that there are n such periods within a beat envelope of 1/(f2 

– f1) seconds. Therefore, 

n × [2/(f1 + f2)] = 1/(f2 – f1) ,      

so that   n = (f1 + f2)/[2(f2 – f1)] .     (A5) 

Define r as the ratio of f2 and f1, so that f2 = r f1. Substitution in Eq. A5 then implies that 

 n = (r +1) / [2(r – 1)]  or 

r = (2n +1) / (2n – 1).      (A6) 

Equation A6 expresses the fact that the number of waves observable within a single beat reveals 

the ratio of the two component frequencies, and this simple relationship proves useful when 

inspecting cochlear waveforms. Thus, because the most common ratio between two 

gammatones is about 1.1, Eq. A6 explains why the number of cycles observed in later lobes of 

cochlear impulse responses tends to be roughly 10. 
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