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Supplementary Material S2 

 

Two coupled harmonic oscillators 

 

This section derives the impulse response of two elastically coupled oscillators. The impulse 

response is shown to exhibit a waveform which waxes and wanes. It is shown that the 

waveform can be closely fitted with two component gammatones. That is, the waxing and 

waning can be interpreted as the beating of two underlying gammatones.  

 

Consider two harmonic oscillators with the same natural frequency ω0 and the same damping 

factor γ. The strength of the coupling force between the oscillators is proportional to the 

difference between the instantaneous displacements x1(t) and x2(t) – that is, the coupling is 

taken to be reactive with proportionality constant κ.  

 

The set of equations to be solved is:  

 

x1′′ + 2γx1′ + ω0
2x1 = κ(x2 – x1) 

x2′′ + 2γx2′ + ω0
2x2 = κ(x1 – x2),  

 

where x1 is the oscillator receiving the impulse and x2 is the oscillator elastically connected to 

it.  

 

The initial conditions are chosen as x1(0) = x2(0) = 0 and x1′(0) = v0, x2′(0) = 0.  

 

By adding the two equations above, and with y = x1 + x2 we get:  

 

y′′ +2γy′ + ω0
2y = 0, with y(0)=0 and y′(0) = v0.  

 

Because this is the differential equation for a damped harmonic oscillator, we try as a 

solution: αe−βt sin(ωt + φ). The initial conditions y(0)=0 and y′(0) = v0 give φ = 0 and α = 

v0/ω.  
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Substituting y = αe–βt sinωt in the differential equation for y and combining sine and cosine 

terms gives β = γ and ω = (ω0
2 − γ2)1/2.  

 

So x1 + x2 = αe−γt sin ωt, with α = v0/ω and ω = (ω0
2 − γ2)1/2.  

 

The consequence of this is that 

 

x1 = δ(v0/ω)e–γt sinωt + f(t) and 

x2 = (1– δ) (v0/ω) e–γt sinωt – f(t) 

 

where we suppose that f(t) = ξe–γt sin(χt + ϕ). 

 

The initial conditions for x1 and x2 then yield ϕ = 0 and ξ = (1–δ)v0/χ. 

 

As the next step, substitute 

 

x1 = δ(v0/ω)e–γt sinωt + (1–δ) (v0/χ)e–γt sinχt  and 

x2 = (1–δ) (v0/ω)e–γt sinωt – (1–δ) (v0/χ) e–γt sinχt   

 

in the starting equations,  

 

x1′′ + 2γx1′ + ω0
2x1 = κ(x2–x1) 

x2′′ + 2γx2′ + ω0
2x2 = κ(x1–x2). 

 

After combining sine and cosine terms and simplifying, the result is δ = 0.5 and  

χ = (ω2 +2κ)1/2, giving the solutions for x1(t) and x2(t) as:  

 

x1(t) = (v0/2) (
sinωt

ω
 + 

sinχt

χ
) e–γt 

x2(t) = (v0/2) (
sinωt

ω
  – 

sinχt

χ
) e–γt. 

 

As a check, if, as before, ω = (ω0
2 – γ2)1/2 and χ = (ω2 + 2κ)1/2, then for κ = 0 (no coupling),  

χ = ω, giving x1(t) = (v0/ω)e−γt sinωt and x2(t) = 0.  
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x1(t) and x2(t) are the sum and the difference of the equations for a damped harmonic 

oscillator (or a gammatone of order 1), with angular frequencies ω and χ respectively. 

 

Figure 16 of the main text shows the displacements x1 and x2 of two elastically coupled 

masses, m1 and m2, after m1 receives an impulsive force giving it a velocity v0. As pointed out 

in the main text, the motion of the two masses resembles beating, with the motion of m2 

similar to the impulse responses of the basilar membrane. This latter waveform can be 

approximated by the sum of two second-order gammatones (the theory above shows that the 

sum of two first-order gammatones – decaying sines – would provide an exact fit). 

 

Tucker 

 

Impulse responses of the BM appear to rise and then decay with a roughly exponential 

time-constant. An exponentially decaying sine wave is a gammatone of order 1. An 

exponentially decaying sine wave with sudden onset is the transient response of a single 

oscillator (see for example section 1.8 of Rossing & Fletcher (1995)).  

The basic resonator, a single pole, generates the simplest possible gammatone of order 

1 – an exponential decay – when stimulated by an impulse. Gammatones of order 3 to 5 are 

typically used in modelling. As described by Lyon, the poles do not have to be exactly 

coincident, but even if the poles do not coincide, the waveforms produced are still gammatone-

like (p.173 of Lyon (2017)). As discussed by Lyon, the symmetry of a real gammatone filter 

depends on its associated zeros, which affect the shape of the low-frequency tail, and these can 

be judiciously added or removed (Lyon 2017, p.166). In cochlear terms, the zeros affect only 

the frequencies below CF. It is of interest that coincident-pole filters are well known in other 

fields (Lyon 2017, p.177), and it is known that fitting the impulse response of any system with 

a discrete number of gammatones gives an excellent approximation (Papoulis 1962), 

effectively representing the system as a cascade of identical one-pole filters. 

One of the first to realise the connection between filter cascades and the Gamma 

function was Tucker (1946), who analysed the result of cascading parallel RLC resonators. He 

connected buffer amplifiers between the resonating stages and examined the result 

experimentally and theoretically. The result is elegant: if one drives a second-order filter (or 
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harmonic oscillator) with a gammatone of order n, the output will be almost identical to a 

gammatone of order n + 1. 

The result can be confirmed using numerical methods. For example, if a gammatone of 

order 3 is used to drive a harmonic oscillator, the result is a waveform that can be accurately 

fitted with a gammatone of order 4. 
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