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S1 Derivation of Algorithm 1

We assume that a hypothesis test is performed for each ¢, summarized by a p-value ;. Our approach is based on
thresholding the p-values at a given A € (0, 1), resulting in binary indicators Y; = 1(P; > \). These are then treated as
outcomes in a regression model.

Since Y] is a dichotomous random variable that is 1 when the null hypothesis Hy; is not rejected at a significance level
of A and 0 when it is rejected, m — R = >, Y; for a fixed, given A. The null p-values will come from a Uniform(0,1)

distribution, while the p-values for the features from the alternative distributions Gy, defined as:

The major assumption we make moving forward is that conditional on the null, the p-values do not depend on the

covariates.

Theorem S1 Suppose that m hypotheses tests are performed and that conditional on the null, the p-values do not depend
on the covariates. Furthermore, the null p-values have a Uniform(0, 1) distribution, whereas the alternative p-values have

a distribution with cdf Gx,, as defined above. Then:
E(Yi|Xi=x;) = (L= XNmo(x) +{1 = Gx,(A) H1 — mo(x)}-

We first review the algorithm which yields an estimator of 7 for the no-covariate case, which is used by Storey

(2002), then develop a procedure based on Theorem S1 to obtain an estimator of 7y(x;). Both of them are based on



assuming reasonably powered tests and a large enough A, so that

Gx;(\) = 1.

Theorem S1 can then be applied assuming no covariates, leading to:

E(Y;)
T TN
resulting in:
iz B(Yi)
~ m
O TN

Using a method-of-moments approach, one may consider the estimator:

m
721_1 m— R

b m

7'['0 = =

1-Xx  (1=Xm’

which is used by Storey (2002).
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For the GWAS meta-analysis dataset, using this approach with A = 0.8 leads to an 79 = 0.951 and A = 0.9 to

7o = 0.949. Note that in practice one may smooth over a series of thresholds, as described below; otherwise, fixed

thresholds between 0.8 and 0.95 are often used. This means that G, (\) will be very close to 1, but A will not be large

enough to lead to numerical instability issues when dividing by 1 — A.

For the covariate case, applying the same steps with Theorem S1, we get:

mo(xi) ~

1—A

We can use a regression framework to estimate F(Y;|X; = x;), then estimate 7y(x) by:

wo(xi) = Y

obtaining Step (c) in the algorithm.

E(Y;|X; = x;)

I
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Note that thus far we have considered the estimate of m(x;) at a single threshold ), so that 7o (x;) is in fact 77 (x;).

We generally prefer to smooth over a series of thresholds to obtain the final estimate, as done by Storey and Tibshirani



(2003). The estimates should generally be thresholded at 1, as Eq. (3) may otherwise lead to values greater than 1. It is
also possible but less likely that the smoothed estimate would be below 0, hence we also threshold it at 0. If we assume
that the p-values are independent, we can also use bootstrap samples of them to obtain a confidence interval for 7o(x;) -
Steps (e) and (f) in Algorithm 1.

In order to obtain Step (g) in the algorithm and estimate FDR(x;), we multiply the BH adjusted p-values by 7 (x;),
thus leading to a simple plug-in estimator, denoted F/D\R(Xz) This is done in the spirit of Storey (2002), whose approach

uses an estimate which is not conditional on covariates.

S2 Special cases

S2.1 No covariates

If we do not consider any covariates, the usual estimator 7y from Eq. (2) can be deduced from applying Algorithm 1 by

fitting a linear regression with just an intercept.

S2.2 Partioning the features

Now assume that the set of m features is partitioned into .S sets, namely that a collection of sets S = {A;: 1 < s < S}
is considered such that all sets are non-empty, pairwise disjoint, and have the set of all the features as their union. This
idea has been proposed before, for example in Hu et al. (2010), but we propose it here as a natural subcase of our
approach. We consider the sets ordered for the sake of convenience, for example, the first set in S is A; et cetera, but
note that this ordering does not necessarily have scientific relevance. In the GWAS meta-analysis dataset, the SNPs
are partitioned according to their MAFs. Other examples of such partionings include all possible atoms resulting from
gene-set annotations or brain regions of interest in a functional imaging analysis, when considering only the genes or
voxels that are annotated (Boca et al., 2013). We then consider vectors x; of length .S, 1 < ¢ < m, such that element s

of x; is defined, using the indicator notation, as:

lifi e A,

0ifi ¢ A,.

For example, if S = 3 and feature 1 was in set A, then x; = (1,0,0)’. Since all features 7 in a set A, have the same

vector x;, we denote it by e 4, to emphasize this. Taking into account the partition, a natural way of estimating my(e 4, )



is to just apply the estimator 7y from Eq. (2) to each of the S sets:

DieaYi
molea,) = %forl <s<S-1,

where the numerator Z‘lifsl represents the fraction of features in A, that are not discoveries at the ) threshold.

A related idea has been proposed for partitioning hypotheses into sets to improve power (Efron, 2008). These results
would be obtained directly from our approach if we considered linear instead of logistic regression and fit a linear
regression with no intercept and the covariates x; in Algorithm 1, or instead, set one of the sets as the baseline and also

considered an intercept. As we are considering a logistic regression approach, our results will be slightly different.

S3 Theoretical results

We now proceed to explore some theoretical properties of the estimator fra‘(xi). Applying Theorem S1 to Eq. (3), we

get that:

Ao . 1_GX1(A)
1—A

b(x;)
1-—X

{1 —mo(xi)} + 6)

where b(x;) = E(Y;|X; = x;) — E(Y;|X; = x;), so that E{b(x;)} is the bias of F(Y;|X; = x;) when estimating

E(Yi|X; = x;). Note that 1—%3\&) {1—=mo(x;)} > 0,since A < 1,Gx; (A) < 1, and mp(x;) < 1. Thus, if the bias when
estimating E(Y;|X; = x;) is positive or negative and small in absolute value, then 7} (x;) is a conservative estimator of
mo(%;). For example, if we had considered a correctly specified linear regression model, this would always hold; indeed
the case where 7 is shared by all the features, i.e. in the case of no dependence on covariates, this is shown in Storey
(2002). Given that here we are taking E(Yg\Xz = X;) to be the MLE from the logistic regression model, we know that
it represents a consistent estimator of F(Y;|X; = x;) if the model is correctly specified for m — oo, given certain

technical conditions, for instance those specified in Gourieroux and Monfort (1981). Thus, we can show that fr()\ (x;)isa
1-Gyx, (\)

consistent estimator of o (x;) + ——%

{1 — mo(x;)} under these same conditions:

Theorem S2 Under a correctly specified model and technical regularity conditions,

1— Gxi()\>

-\ {1 —mo(xi)} = mo(xi).

5 (xi) —p mo(x5) +

as m — oQ.



Eq. (5) also leads to Var{#}(x;)} = w Once again, using the properties of the MLE, under appropriate

conditions:

mb(xl) —D N(O, 02)

for some o2, leading to Var{fr()\ (x;)} being approximately inversely proportional to m for large values of m.

We note that our approach to estimating 7o (x;) does not place any restrictions on its range. In practice, the values
will also be thresholded to be between 0 and 1, as detailed in Algorithm 1. In Result S3, we show that implementing this
thresholding decreases the mean squared error of the estimator. The approach is similar to that taken in Theorem 2 in the

work of Storey (2002).

Result S3 Let

0 7o(xi) <0
C
o (Xl) = ﬁ'o(xi) 0< WO(XZ) <1
1 1 < Fo(xi)

Then.:

E[{#o(xi) — mo(x:)}?] > E[{#( (x:) — mo(xi)}’]-

S4 Proofs of analytical results

Proof of Theorem S1

EYiX; =x;) = Pr(P>\X;=x;)
= PT‘(PZ' > )\|91 = O,Xi = Xl)P(Ql = O|Xi = Xi)



Then, using the assumption that conditional on the null, the p-values do not depend on the covariates:

= (1= Mmo(xi) + {1 = Gx; (M) H1 = 7mo(xi)}-

Proof of Result S3

We prove this result by showing that:

El{#o(xi) — mo(x:) } R0 (xi) > 1] > E[{#o(x:) — mo(x:) Y [fo(xi) > 1] (6)

and:

El{o(xi) — mo(x:)}[Fo(x:) < 0] > E[{#§ (x;) — 70 (%) }*|70(xi) < 0] @

Then, we can combine them as follows:

E[{#o(xi) — mo(x:)}?] = E[{#§ (x;) — mo(x:)}?] =
= E[{#o(x:) — mo(x)}*|o(x:) > 1] — E[{#o(x:) — mo(x)}*|0(x) > 1] P{o(x;) > 1}

+ El{fo(x:) — mo(x4)}*|70(x;) < 0] — E[{{ (xi) — mo(x:)} |0 (x:) < 0] P{#o(xi) < 0}

v

0.

In Eq. (6):

E[{#o(xi) — mo(xi)}|#o(xi) > 1] = E[{#§ (xi) — mo(x:) [0 (x;) > 1] =

= E[{f(o(xz) — 1}{7?0(x1) +1- 27T0<X2‘)}‘7AT0<X2‘) > 1] > 0,

because in this region 7o (x;) + 1 > 2 > 2mo(x;).



In Eq. (7):

E{#0(x;) — mo(x4)}*|#0(x;) < 0] — E[{§ (xi) — mo(x:)}? |0 (x:) < 0] =

= E[{a — ﬁ'o(Xi)}{2ﬂ'0(Xi) — ﬁ'o(XZ‘) — O}Iﬁo(xz) < 0] > 0,

because in this region 27 (x;) > 0 > 7o(x;).

S5 Functions 7((x;) used in simulation scenarios

Below, we refer to scenarios I-1V, as in Figure 3:
In scenarios I-1V, the values of x; are equally spaced between 0 and 1, with the number of points being equal to m, the

number of features considered.
e Scenario I: mo(z1) = 0.9

e Scenario IL: 7o(x1) = mo1 (1) + mo2(21) + 0.12703(1 ), Where:

1if0 <21 <05

mo1(21) = § —4/1.96(z1 + 0.2)(z1 — 1.2) if 0.5 < 2, < 0.7

4/1.96 x 0.45if 0.7 < 1 < 1,

\

0if0 <z <0.7

mo2(r1) =
—2.5(x —0.7)2if 0.7 <2 < 1
)

m03(21) = § —(z — 0.1)2if 0.1 < =y < 0.7

—-0.36if 0.7 <z < 1.

e Scenario III:

7T01(.%'1> + 7T02($1) + 0.127T03(1‘1) ifxg =1

Wo(l‘l,xg) = 7T01(33‘1) + 0.571‘02(33‘1) + 0.067‘(‘03(.7}1) ifzo =2

7T01(:E1) + O.37T02(.’E1) if zo = 3,

\



where x3 is defined by first randomly generating m points from Unif(0, 0.5), then creating discrete categories by

using the thresholds 0.127 and 0.302 and g1, mg2, T3 are defined as in Scenario II.

e Scenario IV: my(z1, z2) is the same function as in scenario III multiplied by 0.6.

e Scenario V: mp(x1) = 21
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S6 Supplementary tables

Table S1: Results for BMI GWAS meta-analysis giving the number of SNPs with an estimated FDR < 5% for various
approaches. BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg.

Table S2: Simulation results for m = 1,000 features, 200 runs for each scenario, independent test statistics. “Reg.
model” = specific logistic regression model considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott
empirical null, BH = Benjamini-Hochberg. A nominal FDR = 5% was considered. Results for the Scott approaches are

BL ScottT ScottE Storey BH
Number
with
DR < 13384 16697 7636 12771 12500
5%

only presented for scenarios which generate z-statistics or t-statistics.

FDR % TPR %
mo(x) Dist. under Hy ii%el BL :icott ECOH Storey BH | BL ,?,CO“ ;COtt Storey BH
I Beta(1,20) Spline | 5.0 5.2 39 | 02 0.2 0.1
\" Beta(1,20) Spline | 3.5 4.9 3.1 | 66.6 20.6 0.4
I Norm Spline | 5.1 55 6.7 49 44 | 51.2 51.1 50.0 50.8 49.7
\" Norm Spline | 4.7 49 249 47 24 | 80.5 834 741 74.1 67.1
I T Spline | 6.0 22.8 243 5.5 48 | 16.1 487 50.0 152 13.6
A" T Spline | 45 7.6 94 4.7 2.5 |1 683 80.5 50.7 57.1 43.3
I Chisq 1 df Spline | 5.0 4.8 44 | 51.2 50.9 49.7
\" Chisq 1 df Spline | 4.4 4.8 2.5 | 789 73.9 66.8
I Chisq 4 df Spline | 5.3 5.4 4.8 | 30.8 30.6 29.6
\" Chisq 4 df Spline | 4.0 4.6 24 | 62.8 55.3 46.2

10



Table S3: Simulation results for m = 1, 000 features, 200 runs per scenario, dependent test statistics from a multivariate
normal distribution with a block-diagonal variance-covariance matrix. B = block size, p = within-block correlation.
“Reg. model” = specific logistic regression model considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E
= Scott empirical null, BH = Benjamini-Hochberg. Nominal FDR = 5%.

FDR % TPR %
. Reg. Scott Scott Scott Scott
mo(z) Dist. under H; model BL T E Storey BH | BL T B Storey BH
I N, B=20, p=0.2 Linear | 53 62 68 5.0 44 | 515 514 484 513 50.1

II N, B=20, p=0.2 Linear | 52 69 80 5.1 46 | 48.6 634 593 47.6 46.5
II N, B=20, p=0.2 Spline | 5.7 83 92 5.1 4.6 | 49.2 633 59.6 47.6 46.5
III N, B=20, p=0.2 Linear | 55 7.6 93 5.2 48 | 45.1 60.0 56.0 44.0 43.2
I N, B=20, p=0.2 Spline | 5.7 9.6 10.6 5.2 48 | 459 602 563 44.0 43.2
v N, B=20, p=0.2 Linear | 53 53 25 49 29 | 71.8 719 610 714 65.6
v N, B=20, p=0.2 Spline | 5.6 55 25 49 29 1720 719 61.1 714 65.6

\Y% N, B=20, p=0.2 Linear | 45 52 232 48 25 179.0 83.0 746 74.1 66.9
I N, B=20, p=0.5 Linear | 6.4 10.0 10.7 6.0 52 520 51.7 476 51.6 50.3
II N, B=20, p=0.5 Linear | 6.1 124 135 5.7 5.1 484 628 576 473 46.2
II N, B=20, p=0.5 Spline | 7.1  18.7 204 5.7 5.1 | 495 626 58.0 473 46.2

I N, B=20, p=0.5 Linear | 5.6 11.5 159 5.2 46 | 454 59.6 56.6 44.0 43.2
I N, B=20, p=0.5 Spline | 6.6 199 236 5.2 4.6 | 46.2 59.0 569 44.0 43.2
v N, B=20, p=0.5 Linear | 58 6.1 28 53 3.1 1721 723 594 71.6 65.7
v N, B=20, p=0.5 Spline | 65 64 30 53 3.1 | 724 722 596 71.6 65.7

\Y% N, B=20, p=0.5 Linear | 46 6.0 224 409 24 1792 832 721 743 66.9
I N, B=20, p=0.9 Linear | 9.0 17.6 362 6.9 53 | 538 533 579 526 50.4
II N, B=20, p=0.9 Linear | 7.8 20.0 47.5 64 49 | 49.6 638 68.0 48.0 46.2
II N, B=20, p=0.9 Spline | 18.2 345 536 64 49 | 522 644 69.8 48.0 46.2

I N, B=20, p=0.9 Linear | 6.4 23.1 48.8 5.1 40 | 473 605 679 46.1 44.0
I N, B=20, p=0.9 Spline | 21.5 384 60.5 5.1 4.0 | 51.0 609 69.7 46.1 44.0
v N, B=20, p=0.9 Linear | 7.7 84 69 6.1 3.1 | 73.1 732 574 722 65.9
v N, B=20, p=0.9 Spline | 11.8 10.0 8.0 6.1 3.1 | 744 728 578 722 65.9

\Y% N, B=20, p=0.9 Linear | 55 7.9 221 53 22 | 79.1 837 699 745 66.8
I N, B=10, p=0.2 Linear | 54 7.8 6.1 5.1 44 | 51.6 516 473 512 49.9
II N, B=10, p=0.2 Linear | 5.0 93 8.8 4.8 43 | 482 63.0 59.8 472 46.1
II N, B=10, p=0.2 Spline | 5.5 133 11.1 4.8 43 | 49.1 628 59.8 472 46.1

I N, B=10, p=0.2 Linear | 5.2 86 98 5.0 45 | 446 595 564 434 427
I N, B=10, p=0.2 Spline | 5.8 143 132 5.0 45 | 452 592 56.6 434 427
v N, B=10, p=0.2 Linear | 53 57 24 5.0 29 | 71.8 71.8 604 714 65.5
v N, B=10, p=0.2 Spline | 57 59 25 5.0 29 | 721 71.8 605 714 65.5

v N, B=10, p=0.2 Linear | 44 53 21.6 4.8 25 | 785 828 73.0 73.8 66.7
I N, B=10, p=0.5 Linear | 7.3 17.1 159 6.5 54 | 519 518 48.8 51.7 50.0
II N, B=10, p=0.5 Linear | 59 203 199 53 45 | 483 62.6 61.0 46.8 45.6
II N, B=10, p=0.5 Spline | 8.6 325 27.7 53 45 1492 633 614 46.8 45.6

I N, B=10, p=0.5 Linear | 5.8 174 17.7 49 4.2 | 442 58.1 543 43.0 42.0
III N, B=10, p=0.5 Spline | 8.6  32.7 30.2 4.9 42 | 45.0 58.1 55.6 43.0 42.0
v N, B=10, p=0.5 Linear | 63 75 33 55 32 1724 724 590 719 65.8
v N, B=10, p=0.5 Spline | 76 83 3.8 5.5 32 | 727 721 593 719 65.8
v N, B=10, p=0.5 Linear | 47 6.5 204 4.9 23 | 78.6 832 692 738 66.5

I N, B=10, p=0.9 Linear | 14.1 30.6 45.6 6.6 4.1 | 555 547 65.6 533 50.2
II N, B=10, p=0.9 Linear | 13.3 355 559 5.9 33 | 51.1 665 758 49.0 46.1
II N, B=10, p=0.9 Spline | 35.1 499 67.5 5.9 33 1561 674 776 49.0 46.1

I N, B=10, p=0.9 Linear | 13.3 33.7 664 5.4 33 | 456 58.1 757 434 40.7
III N, B=10, p=0.9 Spline | 40.7 51.5 73.0 54 33 1520 61.6 774 434 40.7
v N, B=10, p=0.9 Linear | 11.2 124 120 7.0 3.1 | 740 735 639 725 65.8
v N, B=10, p=0.9 Spline | 19.2 156 13.8 7.0 3.1 1762 733 643 725 65.8
v N, B=10, p=0.9 Linear | 7.1  10.3 219 6.0 2.1 | 79.6 842 675 74.7 66.3
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Table S4: Simulation results for m = 1, 000 features, 200 runs per scenario, dependent test statistics from a multivariate
t distribution with a block-diagonal variance-covariance matrix. B = block size, p = within-block correlation. “Reg.
model” = specific logistic regression model considered, BL = Boca-Leek, Scott T = Scott theoretical null, Scott E = Scott
empirical null, BH = Benjamini-Hochberg. Nominal FDR = 5%.

FDR % TPR %
. Reg. Scott Scott Scott Scott
mo(z) Dist. under H; model BL T . Storey BH | BL T E Storey BH
I T, B=20, p=0.2 Linear | 1.7 9.1 74 15 09 | 80 51.6 57.8 7.6 5.7
II T, B=20, p=0.2 Linear | 3.2 139 73 3.2 1.8 | 8.0 638 61.0 6.8 4.5

II T, B=20, p=0.2 Spline | 3.7 147 85 3.2 1.8 192 639 613 6.8 4.5
III T, B=20, p=0.2 Linear | 26 13.8 9.6 2.1 1.3 143 594 60.1 34 23
I T, B=20, p=0.2 Spline | 3.6 15.1 11.0 2.1 13 152 597 603 34 23
v T, B=20, p=0.2 Linear | 2.7 54 29 24 1.0 | 554 71.8 65.1 544 44.3
v T, B=20, p=0.2 Spline | 3.0 54 28 24 1.0 | 56.0 719 65.1 544 443

\Y% T, B=20, p=0.2 Linear | 29 5.6 239 3.1 1.2 | 703 82.8 71.3 60.8 48.1
I T, B=20, p=0.5 Linear | 1.7 103 11.0 1.5 1.0 | 86 51.6 574 82 5.9
II T, B=20, p=0.5 Linear | 3.5 163 119 33 21 |77 642 617 6.6 4.5

II T, B=20, p=0.5 Spline | 47 195 16.6 3.3 21 191 639 62.1 6.6 4.5
I T, B=20, p=0.5 Linear | 3.2 17.6 13.0 2.3 1.5 |50 593 59.0 3.6 2.6
I T, B=20, p=0.5 Spline | 44 234 205 23 1556 596 595 3.6 2.6
v T, B=20, p=0.5 Linear | 2.7 55 3.0 23 1.0 | 553 719 647 543 44 .4
v T, B=20, p=0.5 Spline | 3.2 58 3.1 23 1.0 | 55.8 719 64.8 543 44.4

\Y% T, B=20, p=0.5 Linear | 3.1 6.2 23.0 3.1 1.2 | 694 826 694 599 472
I T, B=20, p=0.9 Linear | 3.0 145 290 1.5 09 | 11.5 51.7 641 99 6.2
II T, B=20, p=0.9 Linear | 3.8 209 45.7 23 19 | 102 649 70.6 7.7 5.0
II T, B=20, p=0.9 Spline | 15.8 32.1 54.6 2.3 19 | 142 647 705 7.7 5.0

I T, B=20, p=0.9 Linear | 5.2 239 49.7 3.2 14 |73 607 635 5.6 3.1
I T, B=20, p=0.9 Spline | 19.0 35.1 60.6 3.2 14 | 10.6 61.7 655 5.6 3.1
v T, B=20, p=0.9 Linear | 3.6 6.6 75 24 1.0 | 56.1 722 67.5 54.6 44.3
v T, B=20, p=0.9 Spline | 86 75 80 24 1.0 | 584 72.0 67.2 54.6 44.3

v T, B=20, p=0.9 Linear | 3.7 79 22.0 35 1.1 | 68.7 827 65.5 59.6 46.3
I T, B=10, p=0.2 Linear | 1.8 99 7.8 1.6 0.8 | 83 513 572 8.0 5.9
II T, B=10, p=0.2 Linear | 3.4 150 8.1 34 1573 631 613 64 43
II T, B=10, p=0.2 Spline | 40 167 99 34 1.5 |86 632 615 64 43

I T, B=10, p=0.2 Linear | 22 152 95 1.6 12 |37 587 594 3.0 1.9
I T, B=10, p=0.2 Spline | 2.7 18.0 12.7 1.6 12 |42 585 59.7 3.0 1.9
v T, B=10, p=0.2 Linear | 26 55 28 24 1.0 | 548 715 64.6 539 43.9
v T, B=10, p=0.2 Spline | 3.0 5.6 28 24 1.0 | 554 715 64.7 539 439

v T, B=10, p=0.2 Linear | 2.7 59 227 3.0 1.2 | 69.7 828 68.8 60.3 48.0
I T, B=10, p=0.5 Linear | 22 135 142 1.6 09 193 508 574 85 6.1
II T, B=10, p=0.5 Linear | 3.3 192 13.6 34 1.7 |79 6311 612 7.0 4.4
II T, B=10, p=0.5 Spline | 6.2 27.6 21.3 34 1.7 199 635 613 70 4.4

I T, B=10, p=0.5 Linear | 23 234 215 13 07 144 580 595 3.0 2.1
III T, B=10, p=0.5 Spline | 3.8 359 314 13 0.7 |56 58.1 60.1 3.0 2.1
v T, B=10, p=0.5 Linear | 3.1 6.1 34 25 10 | 544 714 635 534 43.2
v T, B=10, p=0.5 Spline | 43 6.6 3.8 25 1.0 | 553 71.2 64.0 534 43.2
v T, B=10, p=0.5 Linear | 3.2 69 24.6 3.2 1.3 1695 824 69.0 60.0 47.5

I T, B=10, p=0.9 Linear | 7.7 23.0 38.0 1.6 1.0 | 149 515 709 114 6.7
II T, B=10, p=0.9 Linear | 10.1 31.5 50.0 4.1 1.7 | 124 654 762 11.1 6.0
II T, B=10, p=0.9 Spline | 41.7 43.6 60.7 4.1 1.7 | 224 682 789 11.1 6.0

I T, B=10, p=0.9 Linear | 12.7 36.2 629 2.2 1.3 | 11.0 605 77.2 5.8 2.6
III T, B=10, p=0.9 Spline | 43.0 484 71.0 2.2 1.3 1193 629 787 5.8 2.6
v T, B=10, p=0.9 Linear | 6.2 92 11.1 3.2 1.0 | 563 72.1 68.3 54.2 424
v T, B=10, p=0.9 Spline | 15.1 10.8 11.8 3.2 1.0 | 59.3 71.8 68.3 542 424
v T, B=10, p=0.9 Linear | 6.6 10.3 22.5 4.6 12 | 69.6 830 67.2 60.3 45.9
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Figure S1: Simulation results for m=1,000 features and t-distributed independent test statistics showing the true function
mo(%;) in black and the empirical means of 7 (x; ), assuming different modelling approaches in orange (for our approach,
Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown (for the Storey approach.)

The scenarios considered are those in Figure 3.
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Figure S2: Simulation results for m=10,000 features and t-distributed independent test statistics showing the true function
mo(%;) in black and the empirical means of 7 (x; ), assuming different modelling approaches in orange (for our approach,
Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown (for the Storey approach.)
The scenarios considered are those in Figure 3.
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Figure S3: Diagnostic plots for assessing whether, in the BMI GWAS meta-analysis, the p-values and the covariates are

conditionally independent under the null. Panel a) stratifies according to N, splitting up the dataset into 8 approximately
equal datasets, panel b) uses the MAF stratification.
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