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1. Review of other bias removal methods 
Several methods and software releases have been published which attempt to cater for different sources 
of bias that can occur when assessing expression levels using RNA-seq data. None of these consider 
the global bias that is corrected for using LiBiNorm but instead they mostly assume an overall linear 
scaling between read numbers and RNA lengths and focus on local deviations from uniform coverage.  

One form of such local bias is associated with the relationship between DNA sequence and the 
likelihood of reads at any given position within a transcript. Cufflinks and Callisto include an algorithm 
that compensates for this bias  [1], as does mSeq [2]. Similarly, Alpine [3] corrects for systematic errors 
due to GC bias. Mix2  [4] uses global bias correction in order to improve the quantification of isoform 
expression and differential gene expression. It makes no association between the bias and the parameters 
of the associated protocol so is not able to correct for errors in absolute expression levels that are 
introduced by such global bias. 

Biases can also be an issue when quantifying isoform expression. Approaches for reducing the effects 
of such bias include RSEM [5] and the algorithm developed by BE Howard and S Heber [6] which 
make use of the read distributions within genes with multiple isoforms. rQuant [7, 8] uses a similar 
approach but does not allow for length dependent read distributions. The same is true for the algorithm 
proposed by W Li and T Jiang [9],  Multisplice[10], and PennSeq [11]. The approach described by Z 
Wu, X Wang and X Zhang [12] for improving isoform quantification uses a single length independent 
bias in the distribution of reads in a gene, and so does not correct for the effect of global bias on relative 
expression of genes of different length. L Wan, X Yan, T Chen and F Sun [13] considers one specific 
contributing mechanism to global bias, that of RNA degradation, and use a single exponential 
distribution model again to improve isoform quantification.   

There are a small number of bias corrections that do recognise that there may be a length related global 
bias in RNA-seq data. Sailfish [14, 15] and its successor Salmon [16], include a single length parameter 
in its multi-bias correction model, assuming a simple linear length associated bias. This therefore fails 
to recognise the multi-parameter complexity of the global bias described by N Archer, MD Walsh, V 
Shahrezaei and D Hebenstreit [17]. The flux simulator [18] recognises the significance of global bias 
but only allows the effects of this to be simulated and does not provide a method for inferring parameters 
from a dataset or correcting for the bias in the dataset, aside from some shortcomings of its bias models 
[17]. Maxcounts [19] recognises the errors introduced by global bias but then uses the maximum 
number of overlapping reads in a transcript as a bias-independent means of measuring expression levels. 
The resulting values are thus a function of a very small proportion of the reads, increasing the 
uncertainty associated with the expression levels and making them vulnerable to local sequence related 
bias. 

2. Bias models 
Bias correction in LiBiNorm is based on fitting functions to the coverage by sequencing reads along 
transcripts. Different functions are available that correspond to different models of how the coverages 
arise. The functions/models in general depend on transcript length and describe how the coverage 
shapes change with length, which we call the ‘global bias’ (in contrast to local coverage variation within 
transcripts).  

This global bias is mainly introduced by cDNA conversion, which can be done in different ways and 
which is the main feature that discriminates different experimental protocols for RNA-seq library 
preparation. Our various models are designed to cater to those differences. Note that the main target of 
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LiBiNorm is bias correction for Smart-seq2 datasets, requiring model BD (see below). The others are 
included for completeness and can be useful for testing purposes. 

Common variations of cDNA production include the starting points of reverse transcription/1st strand 
synthesis (e.g. at the 3’ ends of transcripts by primers targeting the poly-A tail or internally by random 
priming etc) or 2nd strand synthesis (e.g. at the end of 1st strands by poly-A tagging etc). A central feature 
of our models is the description of the cDNA conversion as a stochastic process, where synthesis 
endpoints are probability distributions that depend on the enzymes’ processivities.  

Our different models predict characteristic overall shapes of the length dependent coverages, but 
specific aspects, such as the slopes of the coverage curves, are subject to parameters. It is the estimation 
of these parameters through fitting of our models that allows the global bias to be corrected; this is 
because the two main parameters, t1 and t2, correspond to the 1st and 2nd strand processivities, a major 
determinant for the varying effectiveness to produce cDNA along transcripts, thus introducing global 
bias. 

A summary of the models LiBiNorm includes, and the coverage functions, library preparation 
characteristics and typical coverage curves associated with these, are shown below. Derivation of the 
models and more detailed descriptions can be found in our previous work [17]. Models A and C are 
included for completeness only and are based on unrealistic assumptions (perfect enzymatic 
conversions, i.e. infinite processivities), while model E applies to random-priming based datasets, 
which is hardly in use anymore. Most relevant is model BD, which builds on the models B and D (see 
below). 

For simplicity, we did not include here the additional parameters of d and h, which describe a reduced 
coverage (by factor d+1) at the ends of transcripts (over h bases) due to reduced fragmentation 
efficiency. l corresponds to the transcript length, x is the position within the transcript, t1 and t2 
correspond to the 1st and 2nd strand processivities, respectively. a corresponds to the proportion of PCR 
enrichment of full-length 2nd strands for SMART protocols. Processivity parameters for model E (t1’, 
t2’) have slightly different interpretations and include further scaling factors a1 and a2, please see [17] 
for details. 

 

Model  Coverage function 
 (excluding d, h) 

	𝒇(𝒙, 𝒍,… ) = 

Characteristics of 
cDNA conversion 

Typical library 
preparation 

protocol 

Expected coverage 
along ~3kb mRNA 
5’                          3’ 

A 𝑒+,(-./-0) Terminally primed 
1st and 2nd strands; 
both full-length 
conversion   

None. 
(infinite enzyme 
processivities) 

 

B 1
(𝑡3 + 𝑡5)

[𝑡3𝑒(7+,)(-./-0)

+ 𝑡5𝑒+	,(-./-0)] 

Terminally primed 
1st and 2nd strands; 
partial 1st strand 
conversion, full-
length 2nd strand 

None. 
(infinite 2nd strand 

processivity) 

 

C 𝑒+-.,+	-07 Terminally primed 
1st and 2nd strands; 
full-length 1st strand, 
partial 2nd strand 
conversion 

None. 
(infinite 1st strand 

processivity) 
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D 1
(𝑡3 + 𝑡5)

[𝑡3𝑒+-.(,+7)

+ 𝑡5𝑒+-.,+	-07] 

Terminally primed 
1st and 2nd strands; 
both partial 
conversion   

Poly-A tagging 

 

BD 𝑎 B +	(1 − 	𝑎) D Combination of B 
and D (PCR-based 
enrichment of full-
length 2nd strands) 

Smart-seq 

 

E 𝛼3𝛼5
𝑡3<(𝑡3< + 𝑡5< )

[𝑙 −	
1

𝑡3< + 𝑡5<
−
1
𝑡3<

−
𝑡3<𝑒+,>-.

?/-0?@

𝑡5< (𝑡3< + 𝑡5< )

+
(𝑡3< + 𝑡5< )	𝑒+,-.

?

𝑡3< 𝑡5<
] 

Internally primed 1st 
and 2nd strands 
(random primers and 
RNaseH nicking, 
respectively); both 
partial conversion 

Random priming 
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3. Evaluation of bias Removal - Methods 
The evaluation of bias removal was done using the Drosophila RNA-seq data generated using the 
Smart-seq2 and TruSeq protocols as part of an investigation into low cost RNA-seq protocols [20]. As 
part of this study, the authors introduced up to 20% D. virilise RNA in the D. Melanogaster RNA as a 
natural RNA spike-in in order to assess expression quantification accuracy. They also performed the 
Smart-seq2 protocol with 2.5-fold and 5-fold dilution of the Nextera reagents as well as at the 
recommended concentration in order to gauge potential cost savings. These dilutions provide variation 
in the associated conditions for both the TruSeq and the Smart-seq2 protocol and allow the global bias 
normalisation to be tested across this range of conditions. 

A simple R2 measure of correlation was used to evaluate the reduction in global bias associated with 
Smart-seq2 data using LiBiNorm and this same measure was used to evaluate the performance of other 
expression quantification packages which contain some degree of bias removal. 

The reference expression levels were the expression levels in Transcripts per Kilobase Million (TPM)  
[5] for the four TruSeq samples (SRR1743167 to SRR1743170). The R2 statistic was then used to 
quantify the correlation between the log2 of these reference expression levels and those of the 14 Smart-
seq2 samples (SRR1743153 to SRR1743166). There will be a number of factors that result in the 
correlation being less than perfect. As well as the biological and technical noise associated with such 
measurements, the effect of global bias, which is particularly pronounced in the Smart-seq data, will 
decrease the correlation. Any reduction in the global bias upon correction efforts will improve the 
correlation, which would be seen as an increase in the R2 statistic towards 1.0, indicating a perfect 
correlation. 

These R2 statistics were calculated before and after LiBiNorm was used to reduce the global bias present 
in the Smart-seq2 data. The improvement was expressed as a percentage where an R2  value of 1.0 would 
be a 100% improvement using the following formula: 

, 

where I(%) is the percentage improvement, is the R2 value for the reference linear TPM expression 
levels and R2 is the R2 value with the global bias reduced Smart-seq2 data.  

We repeated this with four other expression quantification packages; Cufflinks [1], Salmon [16], Mix2 
[4] and MaxCount [19]. In the case of Cufflinks and Salmon, the performance was assessed with and 
without the optional additional bias compensation that is available within the packages. 

In all cases, the same gene definitions were used as defined in Drosophila_melanogaster. BDGP6.91.gtf, 
release 91 of the Ensemble Drosophila melanogaster gene annotation, which is based on the BDGP6 
reference genome [21]. The details of how the gene annotation information is used is dependent on the 
software package being assessed.  

When the RNA-seq data is analysed by LiBiNorm, the <fileroot>_counts.txt file produced by LiBiNorm 
shows the length and the read count for each gene and this is used to calculate the standard TPM 
expression values for each gene. Only those genes where the read counts for both the TruSeq and the 
Smart-seq2 data was greater than nine were used to quantify the correlation between the two sets of 
expression values. 

The quantification of correlation values for the other packages for each Smart-seq2/TruSeq combination 
was restricted to the same set of genes in order help ensure the comparisons were as equivalent as 
possible. 

LiBiNorm 
Read alignment and expression quantification were performed as described in the main body of the 
paper.  
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The <filename>_counts.txt provides the bias corrected TPM values as well as the transcript lengths and 
raw counts for each gene.  An excel spreadsheet was used to calculate the standard linear TPM values, 
find the log2 expression values, calculate the R2 value for those genes where the count exceeded 9 for 
both samples and plot the correlation graph. 

Cufflinks 
The following was used to evaluate the gene expression using Cufflinks: 

cufflinks -p 4 -g Drosophila_melanogaster.BDGP6.91.gtf -G 
Drosophila_melanogaster.BDGP6.91.gtf bamfiles/<fileroot>.bam 
 
The –G option ensures that Cufflinks aligns and counts the reads just to the same transcript definitions 
as was used for the LiBiNorm evaluation. 

Bias correction in Cufflinks is optional; the following was used to determine gene expression with this 
feature enabled: 
cufflinks -b ../Drosophila_melanogaster.BDGP6.dna.toplevel.fa -p 4 -G 
Drosophila_melanogaster.BDGP6.91.gtf <fileroot>.bam 
 
The FKPM column from the genes.fpkm_tracking file was used to calculate the correlation between the 
TruSeq and Smart-seq2 results. The correlation is identical to that which would be found using TPM 
values because FPKM and TPM values for any RNA-seq dataset differ only by a single scaling factor. 

Salmon 
Salmon is not designed to work with reads that are aligned to a full genome but instead works with 
reads that have been aligned to a reference transcript set. 

LiBiNorm includes a feature to create a fasta file that corresponds to the transcripts that it is using to 
determine gene expression. Such a fasta file, corresponding to the transcripts used for the LiBiNorm 
evaluation, was generated using: 
LiBiNorm refSeq -i gene_id Drosophila_melanogaster.BDGP6.91.gtf 
bdgp6_tran\genome_tran > refseq.fa 
 
where bdgp6_tran\genome_tran is the root filename of the HISAT2 reference genome previously 
used to align the RNA-seq data. 

Salmon was then used to convert the fasta file into a suitable index using: 
salmon index -t refseq.fa -i index 
 
Gene expression was then quantified using: 
salmon quant -p 2 -i index -l A -r <fileroot>.fastq.gz -o <fileroot>_quant 
 
Bias correction in Salmon is also optional and expression levels were generated with the feature enabled 
using:  
salmon quant --seqBias --posBias -p 2 -i index -l A -r <fileroot>.fastq.gz –o 
<fileroot>_quant 
 

We calculated the R2 statistic using the TPM values in the quant.sf files that were generated.  

Mix2 
The same aligned reads used for the LiBiNorm analysis were used to evaluate Mix2.  Gene expression 
was then quantified using: 
mix-square -o . -G Drosophila_melanogaster.BDGP6.91.gtf -B <fileroot>.bam 
 
We calculated the R2 statistic using the FPKM_CHN column of the genes_summary_<fileroot>.dat 
files. 

MaxCount 
The same bamfiles of aligned reads were used as for the LiBiNorm analysis. 
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The bedtools patch that implements the MaxCount algorithm was downloaded from:  
http://sysbiobig.dei.unipd.it/?q=MAXCOUNTS&sid=2036 
 

and applied to the bedtools2-2.19.1 source from the Cygwin command line. It was then compiled using 
gcc version 6.4.0 after having added the –fpermissive option as required within the makefile to ensure 
that the compilation ran to completion. 

LiBiNorm includes a feature where it can create a bed file that corresponds to the transcripts that it is 
using to determine gene expression. Such a bed file, corresponding to the transcripts used for the 
LiBiNorm evaluation, was generated using: 
LiBiNorm bed -i gene_id Drosophila_melanogaster.BDGP6.91.gtf > genome.bed 
 

The count of the maximum number of overlapping reads within each exon was then calculated using 
bedtools coverage -max -abam <fileroot>.bam -b genome.bed > <fileroot>_counts.txt 
 
This produces a text file listing the maximum count for each exon in the bed file.  An Excel pivot table 
was then used to find the maximum count across all of the exons associated with a specific gene. 
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4. Evaluation of bias removal – results 
The reference for the analysis of bias removal was the R2 correlation statistic of the comparison of the 
log2 of the linear TPM expression values for all 56 combinations of the Smart-seq2 and TruSeq data 
(Supplementary Figure 1 and Table 1). 

These were then compared with the R2 correlation statistics for the same 56 combinations when 
LiBiNorm was used to correct for the global bias in the Smart-seq2 data (Supplementary Figure 2 and 
Table 2).  For each of these combinations the improvement in R2 was calculated as a percentage and 
the mean improvement used as a measure of the effectiveness of the bias correction. 

For comparison, a similar process was performed with Cufflinks, with and without the ‘-b’ bias 
correction option (Supplementary Figures 3 & 4 and Tables 3 & 4), Salmon, with and without the ‘--
seqBias --posBias’ bias correction options (Supplementary Figures 5 & 6 and Tables 5 & 6), Mix2 
(Supplementary Figure 7 and Table 7) and MaxCount (Supplementary Figure 8 and Table 8).     

In all of the following tables the sample identifiers are abbreviated for clarity, such that SRR1743153 
is identified as ..153. 

The following colour scales are used for all of the tables: 

  -30% 
0.7000  -20% 
0.7500  -10% 
0.8000  0% 
0.8500  10% 
0.9000  20% 
0.9500  30% 

R2 values  
R2 change with 

respect to reference 
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Reference Linear TPM comparison TruSeq   
   0% D.v. 5% D.v. 10%  D.v. 20%  D.v. 
Smart-seq2 Model ..167 ..168 ..169 ..170 
 0%   D.v. ..153 0.7048 0.6874 0.6998 0.7012 

 5%   D.v. ..154 0.8310 0.8191 0.8238 0.8200 
 10% D.v. ..155 0.8036 0.7901 0.8238 0.7931 
 20% D.v. ..156 0.8224 0.8080 0.8155 0.8119 
       

2.5-fold dilution  ..167 ..168 ..169 ..170 
 0%   D.v. ..157 0.8921 0.8804 0.8878 0.8853 

 1%   D.v. ..158 0.8904 0.8733 0.8854 0.8823 
 5%   D.v. ..159 0.8646 0.8491 0.8580 0.8530 
 10% D.v. ..160 0.8663 0.8476 0.8607 0.8586 
 20% D.v. ..161 0.8311 0.8126 0.8221 0.8176 
       

5-fold dilution  ..167 ..168 ..169 ..170 
 0%   D.v. ..162 0.8916 0.8769 0.8862 0.8839 

 1%   D.v. ..163 0.8870 0.8685 0.8816 0.8779 
 5%   D.v. ..164 0.8609 0.8444 0.8537 0.8496 
 10% D.v. ..165 0.8580 0.8425 0.8546 0.8530 
 20% D.v. ..166 0.8398 0.8199 0.8305 0.8256 

 
Supplementary Table 1. Reference R2 correlations for the linear TPM expression values for all of the 
TruSeq/Smart-seq2 protocol combinations with different Nextera reagent dilutions and amounts of 
additional D. virilise RNA. 

 

 

 

 

Supplementary Figure 1 (Figure 
2a in the main paper). 
Correlation of the reference 
linear TPM gene expression for 
the SRR1743160/ 
SRR1743167 combination that 
is identified with a box in the 
table above. 
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Smart-seq2 bias correction using LiBiNorm     

 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.7905 0.7823 0.7835 0.7833  29.0% 30.4% 27.9% 27.5% 
..154 0.8525 0.8440 0.8457 0.8427  12.7% 13.7% 12.4% 12.6% 
..155 0.8210 0.8092 0.8145 0.8123  8.9% 9.1% -5.2% 9.3% 
..156 0.8325 0.8195 0.8261 0.8238  5.7% 5.9% 5.8% 6.3% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.9213 0.9162 0.9174 0.9157  27.0% 29.9% 26.4% 26.6% 
..158 0.9242 0.9155 0.9195 0.9165  30.8% 33.3% 29.8% 29.1% 
..159 0.8840 0.8735 0.8772 0.8716  14.3% 16.2% 13.5% 12.6% 
..160 0.9089 0.9000 0.9029 0.9007  31.8% 34.3% 30.3% 29.8% 
..161 0.8402 0.8298 0.8305 0.8247  5.4% 9.2% 4.7% 3.9% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.9245 0.9176 0.9192 0.9173  30.3% 33.1% 29.0% 28.8% 
..163 0.9210 0.9108 0.9157 0.9118  30.1% 32.2% 28.8% 27.8% 
..164 0.8813 0.8709 0.8732 0.8681  14.7% 17.0% 13.3% 12.3% 
..165 0.9024 0.8953 0.8995 0.8973  31.3% 33.5% 30.9% 30.2% 
..166 0.8558 0.8429 0.8459 0.8406  10.0% 12.8% 9.1% 8.6% 

 
Supplementary Table 2. R2 correlation coefficients for the same combinations as was evaluated with 
the reference linear TPM analysis (Supplementary Table 1), except that the global bias corrected Smart-
seq2 expression values are used (left). Percentage improvements in correlation compared to the 
reference comparison are also shown (right). 

 

 

 

Supplementary Figure 2 (Figure 2b in 
the main paper). Correlation for the 
same SRR1743160/SRR1743167 
combination as Supplementary 
Figure 1 with global bias correction 
applied to Smart-seq2 data. 
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Expression Quantification using Cufflinks    

 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.7231 0.7062 0.7186 0.7201  6.2% 6.0% 6.3% 6.3% 
..154 0.8366 0.8249 0.8296 0.8262  3.3% 3.2% 3.3% 3.5% 
..155 0.8117 0.7984 0.8046 0.8019  4.1% 3.9% -10.9% 4.2% 
..156 0.8304 0.8168 0.8240 0.8210  4.5% 4.6% 4.6% 4.8% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.8914 0.8799 0.8864 0.8845  -0.7% -0.5% -1.2% -0.7% 
..158 0.8879 0.8723 0.8829 0.8805  -2.3% -0.8% -2.3% -1.5% 
..159 0.8615 0.8468 0.8545 0.8504  -2.3% -1.5% -2.5% -1.8% 
..160 0.8631 0.8471 0.8576 0.8570  -2.4% -0.4% -2.2% -1.2% 
..161 0.8268 0.8093 0.8186 0.8157  -2.5% -1.8% -2.0% -1.0% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.8899 0.8759 0.8841 0.8829  -1.6% -0.8% -1.8% -0.8% 
..163 0.8844 0.8673 0.8790 0.8761  -2.3% -0.9% -2.1% -1.5% 
..164 0.8574 0.8421 0.8502 0.8469  -2.5% -1.5% -2.3% -1.8% 
..165 0.8557 0.8418 0.8522 0.8509  -1.6% -0.4% -1.7% -1.4% 
..166 0.8342 0.8142 0.8255 0.8216  -3.5% -3.1% -3.0% -2.3% 

 
Supplementary Table 3. As Supplementary Table 2 but with expression quantified using Cufflinks. 

 

 

 

 

Supplementary Figure 3. 
Correlation of the same 
SRR1743160/SRR1743167 as 
Supplementary Figure 1 with 
expression quantified using 
Cufflinks. 
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Cufflinks with Bias Correction     
 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.6602 0.6424 0.6613 0.6656  -15.1% -14.4% -12.8% -11.9% 
..154 0.7882 0.7764 0.7889 0.7896  -25.4% -23.6% -19.8% -16.9% 
..155 0.7521 0.7378 0.7524 0.7527  -26.2% -24.9% -40.5% -19.5% 
..156 0.7824 0.7687 0.7833 0.7840  -22.5% -20.5% -17.5% -14.8% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.8659 0.8540 0.8643 0.8642  -24.3% -22.1% -20.9% -18.4% 
..158 0.8655 0.8480 0.8631 0.8621  -22.7% -20.0% -19.5% -17.1% 
..159 0.8263 0.8100 0.8244 0.8217  -28.3% -25.9% -23.7% -21.3% 
..160 0.8435 0.8265 0.8413 0.8414  -17.1% -13.9% -13.9% -12.2% 
..161 0.7867 0.7665 0.7832 0.7814  -26.3% -24.6% -21.8% -19.8% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.8721 0.8573 0.8700 0.8702  -18.0% -15.8% -14.2% -11.7% 
..163 0.8603 0.8412 0.8576 0.8564  -23.7% -20.7% -20.2% -17.6% 
..164 0.8214 0.8036 0.8188 0.8167  -28.3% -26.2% -23.8% -21.9% 
..165 0.8329 0.8204 0.8326 0.8339  -17.6% -14.1% -15.2% -13.0% 
..166 0.8036 0.7821 0.7992 0.7964  -22.6% -21.0% -18.4% -16.8% 

 
Supplementary Table 4. As Supplementary Table 3 but with the –b bias correction applied when the 
expression was quantified using Cufflinks. 

 

 
 

 

Supplementary Figure 4. 
Correlation of gene expression 
as Supplementary Figure 3 but 
with the –b bias correction 
applied when the expression 
was quantified using Cufflinks. 
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Salmon      

 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.7255 0.7077 0.7213 0.7221  7.0% 6.5% 7.2% 7.0% 
..154 0.8361 0.8240 0.8296 0.8265  3.0% 2.7% 3.3% 3.6% 
..155 0.8116 0.7975 0.8051 0.8016  4.1% 3.5% -10.6% 4.1% 
..156 0.8307 0.8167 0.8246 0.8215  4.7% 4.5% 4.9% 5.1% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.8889 0.8801 0.8876 0.8855  -3.0% -0.3% -0.2% 0.2% 
..158 0.8856 0.8711 0.8831 0.8810  -4.3% -1.7% -2.1% -1.1% 
..159 0.8612 0.8477 0.8552 0.8519  -2.5% -0.9% -2.0% -0.7% 
..160 0.8608 0.8473 0.8589 0.8583  -4.1% -0.2% -1.2% -0.3% 
..161 0.8247 0.8085 0.8184 0.8153  -3.8% -2.2% -2.1% -1.3% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.8874 0.8762 0.8849 0.8839  -3.9% -0.5% -1.1% 0.1% 
..163 0.8817 0.8665 0.8791 0.8763  -4.7% -1.5% -2.1% -1.3% 
..164 0.8554 0.8426 0.8510 0.8484  -3.9% -1.1% -1.8% -0.8% 
..165 0.8558 0.8428 0.8534 0.8526  -1.5% 0.2% -0.9% -0.2% 
..166 0.8327 0.8154 0.8265 0.8232  -4.4% -2.5% -2.3% -1.4% 

 
Supplementary Table 5. As Supplementary Table 2 but with expression quantified using Salmon. 

 

 

 

Supplementary Figure 5. Gene 
expression correlation for the 
same SRR1743160/SRR1743167 
combination as Supplementary 
Figure 1 but with expression 
quantified using Salmon. 
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Salmon with Bias correction     

 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.7434 0.7279 0.7456 0.7494  13.1% 13.0% 15.3% 16.1% 
..154 0.8176 0.8061 0.8181 0.8170  -8.0% -7.2% -3.2% -1.7% 
..155 0.7891 0.7757 0.7895 0.7877  -7.4% -6.9% -19.4% -2.6% 
..156 0.8133 0.8004 0.8141 0.8130  -5.1% -4.0% -0.7% 0.6% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.8672 0.8585 0.8695 0.8684  -23.1% -18.3% -16.3% -14.7% 
..158 0.8633 0.8594 0.8748 0.8739  -24.7% -11.0% -9.3% -7.1% 
..159 0.8477 0.8343 0.8467 0.8441  -12.5% -9.8% -8.0% -6.1% 
..160 0.8544 0.8427 0.8574 0.8586  -8.9% -3.2% -2.3% 0.0% 
..161 0.8143 0.7987 0.8130 0.8110  -9.9% -7.4% -5.1% -3.6% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.8748 0.8632 0.8756 0.8753  -15.6% -11.1% -9.3% -7.4% 
..163 0.8714 0.8565 0.8725 0.8710  -13.8% -9.1% -7.6% -5.7% 
..164 0.8444 0.8318 0.8452 0.8434  -11.8% -8.0% -5.8% -4.1% 
..165 0.8478 0.8364 0.8495 0.8508  -7.2% -3.9% -3.5% -1.5% 
..166 0.8212 0.8043 0.8195 0.8167  -11.6% -8.7% -6.5% -5.1% 

 
Supplementary Table 6. As Supplementary Table 5 but with --seqBias --posBias bias correction options 
applied when processing the data using Salmon. 

 

 

 

Supplementary Figure 6. Gene 
expression correlation as 
Supplementary Figure 5 but with 
the --seqBias --posBias bias 
correction options applied when 
processing the data using 
Salmon. 
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Mix2     

 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.7002 0.6807 0.6952 0.6955  -1.5% -2.2% -1.5% -1.9% 
..154 0.8264 0.8140 0.8189 0.8149  -2.7% -2.8% -2.8% -2.8% 
..155 0.7982 0.7836 0.7907 0.7868  -2.8% -3.1% -18.8% -3.1% 
..156 0.8193 0.8048 0.8125 0.8089  -1.7% -1.7% -1.6% -1.6% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.8862 0.8722 0.8802 0.8779  -5.5% -6.9% -6.8% -6.4% 
..158 0.8809 0.8625 0.8748 0.8722  -8.7% -8.5% -9.3% -8.5% 
..159 0.8550 0.8374 0.8471 0.8425  -7.1% -7.7% -7.7% -7.2% 
..160 0.8550 0.8354 0.8491 0.8470  -8.5% -8.0% -8.3% -8.2% 
..161 0.8167 0.7964 0.8063 0.8030  -8.5% -8.6% -8.9% -8.0% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.8850 0.8682 0.8783 0.8756  -6.1% -7.0% -7.0% -7.1% 
..163 0.8767 0.8568 0.8699 0.8668  -9.1% -8.9% -9.9% -9.1% 
..164 0.8505 0.8320 0.8427 0.8379  -7.4% -7.9% -7.5% -7.8% 
..165 0.8477 0.8306 0.8435 0.8413  -7.2% -7.6% -7.7% -7.9% 
..166 0.8254 0.8026 0.8145 0.8106  -9.0% -9.6% -9.4% -8.6% 

 
Supplementary Table 7. As Supplementary Table 2 but with expression quantified using Mix2. 

 

 
 
 
 
 
 
Supplementary Figure 7. Gene 
expression correlation for the 
same SRR1743160/SRR1743167 
combination as Supplementary 
Figure 1 but with expression 
quantified using Mix2. 
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MaxCount      

 TruSeq  R2    R2 improvement  
Smart-
seq2 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..153 0.7160 0.7079 0.7181 0.7150  3.8% 6.5% 6.1% 4.6% 
..154 0.7677 0.7642 0.7651 0.7614  -37.5% -30.4% -33.3% -32.5% 
..155 0.7477 0.7415 0.7458 0.7408  -28.5% -23.2% -44.2% -25.3% 
..156 0.7808 0.7740 0.7791 0.7749  -23.4% -17.7% -19.7% -19.7% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..157 0.8453 0.8312 0.8392 0.8348  -43.4% -41.2% -43.3% -43.9% 
..158 0.8440 0.8272 0.8380 0.8323  -42.3% -36.4% -41.4% -42.4% 
..159 0.7923 0.7746 0.7870 0.7777  -53.4% -49.4% -50.0% -51.2% 
..160 0.8196 0.8031 0.8151 0.8111  -35.0% -29.2% -32.7% -33.7% 
..161 0.7610 0.7427 0.7494 0.7436  -41.5% -37.3% -40.9% -40.6% 

          
 ..167 ..168 ..169 ..170  ..167 ..168 ..169 ..170 
..162 0.8475 0.8314 0.8406 0.8357  -40.7% -36.9% -40.1% -41.5% 
..163 0.8308 0.8129 0.8231 0.8178  -49.7% -42.3% -49.3% -49.3% 
..164 0.7952 0.7778 0.7880 0.7798  -47.2% -42.8% -44.9% -46.4% 
..165 0.8146 0.7990 0.8135 0.8079  -30.5% -27.6% -28.3% -30.7% 
..166 0.7763 0.7569 0.7673 0.7604  -39.6% -34.9% -37.2% -37.4% 

 
Supplementary Table 8. As Supplementary Table 2 but with expression quantified using MaxCount. 

 

 

 

 

 

 

Supplementary Figure 8. Gene 
expression correlation for the 
same SRR1743160/SRR1743167 
combination as Supplementary 
Figure 1 but with expression 
quantified using MaxCount. 
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