Network Biology (Induced Subnetwork) Vignette

Introduction

Michael T. Zimmermann

2018-05-02

RITAN is a R package intended for Rapid Integration of Term Annotation and Network resources to be
applied to gene sets generated by current analysis methods.

For a general introduction to the package, please see the “enrichment” vignette.

library (RITANdata)
library (RITAN)
require(knitr)

The R object, network_list, contains 6 human network-biology resources. Additionally, RITAN leverages
existing R packages to access data from HPRD, BioGRID, and STRING. Citation information for each
resource can be accessed via attr():

kable(attr(network_list, 'network_data_sources'))

Abbreviation

Citation

PID

TFe

dPPI
HPRD
CCSB
STRING
HumanNet
Biogrid
ChEA

Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, et al. (2009) PID: the Pathway Interaction Database
Yusuf D, Butland SL, Swanson MI, Bolotin E, Ticoll A, et al. (2012) The transcription factor encyclopedia.
Vinayagam A, Stelzl U, Foulle R, Plassmann S, Zenkner M, et al. (2011) A directed protein interaction net
Prasad TS, Kandasamy K, Pandey A (2009) Human Protein Reference Database and Human Proteinpedia
Prasad TS, Kandasamy K, Pandey A (2009) Human Protein Reference Database and Human Proteinpedia
Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The STRING database in 2011
Lee I, Blom UM, Wang PI, Shim JE, Marcotte EM. Prioritizing candidate disease genes by network-based 1
Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, Stark C, Breitkreutz A,
Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Maayan A. (2010) ChEA: transcription factor re

*NOTE that many of these resources are themselves combinations of other more specialized resources.

We provide simple access to multiple network biology resources in order to facilitate rapid
evaluation, basic data annotation, and integration using a common framework.

We will elaborate on this functionality in the following examples.

Example 1 - Basic Network Query

We begin by gathering a starting list of gene symbols. In this example, we choose the genes that are most
highly up-regulated in human PBMCs, compared to healthy controls, gathered from an MSigDB module. See
our “enrichment” vignette for further introduction to MSigDB. This example, named my_ genes below, is
intended to represent the outcome of an analysis - the genes identified by a high-throughput experiment.
RITAN facilitates the integration of multiple network biology resources to query the know interactions within

my__genes.

my_genes <- geneset_list$MSigDB_C7[['GSE6269 HEALTHY_ VS_FLU_INF_PBMC_DN']]

net <- network_overlap(my_genes, resources = 'HPRD')
##

Generating undirected subnetwork...

##

Removing duplicate edges and self-loops...
Total induced subnetwork from 160 genes has 32 nodes and 22 edges (22 unique).

We now have what is referred to as the “induced subnetwork” for my_genes using only one resoure, HPRD.
The network is the subset of interactions from HPRD that contains exclusively gene symbols within my_genes.

The input list contained 160 symbols and 32 were identified as having interactions within the network
resources. Note: If very few genes have known connections between them, there may be a mismatch between
your input format and the network resources - see the “Check Input” section below.

There are 22 edges returned by this query with the first 5 shown for example:

head (unique (net))

#i# pl edge_type p2
7 WAS HPRD GRB2
8 EPHB2 HPRD GRB2
17 ATN1 HPRD GRN
18 ATN1 HPRD PLSCR1
37 GRB2 HPRD PAK2
46 TGFB1 HPRD YWHAE

The output format is a data.frame with three columns:

Name Description

pl The first interacting protein

edge_type The manner in which pl and p2 interact
p2 The second interacting protein

The edge type is taken from the network resource, when possible. For instance, the first edge shown above

indicates the self-reaction of the gene WAS. The second edge indicates protein-protein interaction between
WAS and GRB2.

Example 2 - Filtering out low-confidence interactions

Some network resources provide confidence scores for each interaction. Most notably, the popular STRING
resource has indexed many other resources and additionally included computationally inferred interactions.
Thus, many of the interactions within STRING have not been experimentally validated. While that does not
mean they are incorrect, depending on your application you may not be comfortable with including them.
We provide a simple means for trimming resources that provide scores using a simple threshold.

net2 <- network_overlap(my_genes, resources = c('HPRD','STRING'), minStringScore = 700)
str(net2)

Adding STRING brings the network to 86 genes and 265 edges among them. Thus, considering additional
resources increases the coverage of the input set of genes.

Scores within STRING are on a [0, 1000] scale with 1000 taken as “fully confident.” We recommend using a
threshold of 700 (the default) for “high confidence” investigation. The further integration of multiple resources
(as performed here) will help to achieve breadth of coverage without resorting to inclusion of low-confidence
interactions.

RITAN currently indexes 9 resources which can be quiried individually, or together to achieve greater
coverage. As each resource is derived from different types of experiments, consider if the source and
interaction type are applicable to your dataset. For a reference listing for resources, see attr(network list,
‘network__data_ sources’).

Check Input

Check how many input gene symbols are within the network resources.

A good quality-control step is to check how many of your input genes of interest actually appear in any of
the network resources. If too few appear, you either have identified a set of poorly understood genes (novel
finding), or the symbols used do not match (gene symbol version mismatch). The second is more likely.

To quickly check if your symbols appear in any of the loaded network resources:

my_genes <- geneset_list$MSigDB_C2[['VERNOCHET_ ADIPOGENESIS']]
i <- check_any_net_input(my_genes)

table (i)

i

FALSE TRUE
1 18

From the above, you can see that all (save one) genes in the adipogenesis geneset appear in a network resource.
Thus, we can be confident that that the combined network resource well-represents our genes of interest.
Additionally, the gene symbols in use by our input study (in this case, MSigDB) and RITAN, are compatible.

Users may want to only use one or a few selected resources. This may be useful for many reasons including
comparison to previous literature or preference for direct physical interactions over regulatory interactions.
To perform the analogous check using one resource:

i <- check_net_input(my_genes, network_list[['dPPI']])
table(i)

1
no yes
9 10

names (i) [i == 'no']
[1] "AOC3" "APCDD1" "CYP2F1" "LUM" "PANK3" "RARRES2" "RETN"
[8] "SULT1A1" "VNN3"

Now, it is evident that while across the resources indexed by RITAN, all of the genes are represented, the
representation by any one resource may be less comprehensive. This is the primary reason that we have
provided multiple resources within RITAN - to achieve more comprehensive coverage.

Example 3 - Including Neighbors

In many instances, the known relationships within a group of genes is the most direct (as above). However,
a broader analysis considering what other genes interact with the input list may be informative. If only a
few top candidates are of interest, prioritized by computational methods, we suggest established tools such
as GeneMANIA (webserver or Cytoscape App) or CyTargetLinker. RITAN will provide all neighbors, with
stringency filtering provided.

Because the previous example has a large number of genes, we will switch to a smaller example. Again
leveraging MSigDB, we gather an example of 19 genes “up-regulated with adipogenic differentiation and
down-regulated by troglitazone.”

my_genes <- geneset_list$MSigDB_C7[['GOLDRATH_NAIVE_VS_MEMORY_CD8_TCELL_UP']]
net3.1 <- network_overlap(my_genes, resources = 'PID',
include_neighbors = FALSE, dedup = TRUE)

##

Generating undirected subnetwork...

#it

Removing duplicate edges and self-loops...

Total induced subnetwork from 200 genes has 6 nodes and 4 edges (4 unique).

nets2use <- c('PID','dPPI','TFe', 'HumanNet','CCSB')
net3.2 <- network_overlap(my_genes, resources = nets2use,
include_neighbors = FALSE, dedup = TRUE)

#it

Generating undirected subnetwork...

##

Removing duplicate edges and self-loops...

Total induced subnetwork from 200 genes has 128 nodes and 241 edges (241 unique).

net3.3 <- network_overlap(my_genes, resources = 'PID',
include_neighbors = TRUE, dedup = TRUE)

#i#

Generating undirected subnetwork...

#i#t

Removing duplicate edges and self-loops...

Total induced subnetwork from 200 genes has 420 nodes and 2608 edges (2608 unique) .

First, we identified the induced subnetwork about our geneset of interest within the Pathway Interaction
Database (PID). We added the dedup option to remove duplicate edges.

Second, we augmented this subnetwork by using multiple network resources. As in the previous examples,
the coverage of the input geneset is markedly increased.

Third, we augmented the PID-only network by including all of the first-neighbors of input genes. The
“small-world” and context-non-specific nature of these network resources can easily lead to massive networks
with thousands of genes included, making interpretation very difficult (a.k.a. unwieldy “hairballs”). Thus, we
recommend pre-planned and thought-out analysis plans, when possible, to focus your network-based study on
the most relevant interactions.

The neighbors included in lists such as net3.3 indicate candidates for further study that could modulate the
activity of, in this case, differentially expressed genes.

Example 4 - Visualize Network within R

RITAN facilitates generating or gathering a network, while existing methods exist for analysis of the network.
One solution is the igraph package which provides a wide range of network analysis and visualization
functionality. For brevity, we will not query the larger network resources here.

From the following example plot, we can identify HIF1-alpha as a hub gene within the Memory-CD8-T-cell
up-regulated genes loaded in the previous example.
require (igraph)
net4 <- network_overlap(my_genes, resources = c('PID','dPPI','TFe'),
include_neighbors = FALSE, dedup = TRUE)

##

Generating undirected subnetwork...

##

Removing duplicate edges and self-loops...

Total induced subnetwork from 200 genes has 31 nodes and 24 edges (24 unique).

edges <- as.matrix(net4[, c(1,3)])

G <- igraph::make_undirected_graph(c(t(edges)))

par (mar=rep(0,4))

plot(G, vertex.size = 20, vertex.frame.color = 'white')

Example 5 - Identify “Bridging” Genes/Proteins

RITAN is a generic tool that can be used with other tools to facilitate novel analyses.

Say you have two genes of interest that do not interact with one another, but you suspect that they influence
one another. You can use the igraph package with RITAN to investigate this question.

Below, we show how to identify bridging genes/proteins from a network using the example of two cell cycle
checkpoint proteins, TP53 and SFN.

require (igraph)

G <- as.graph(network_list$PID)

all(c("EP300", "SFN", "TP53", "CCNB1") %in’% names(V(G)))

[1] TRUE

get.shortest.paths(G, "TP53" , to="CCNB1", mode = "all")$vpath
[[1]]

+ 2/1980 vertices, named, from 6af3e98:
[1] TP53 CCNB1

get.shortest.paths(G, "EP300", to="SFN" , mode = "all")$vpath
[[1]]

+ 4/1980 vertices, named, from 6af3e98:

[1] EP300 MAX HSP90OAA1 SFN

G <- as.graph(network_list$HumanNet)
all(c("EP300", "SFN", "TP53", "CCNB1") %in% names(V(G)))

[1] TRUE
get.shortest.paths(G, "TP53" , to="CCNB1", mode

"all")$vpath

[[11]
+ 3/16155 vertices, named, from 6b21dee:
[1] TP53 CCNG1 CCNB1

get.shortest.paths(G, "EP300", to="SFN" , mode

"all")$vpath

[[1]]
+ 3/16155 vertices, named, from 6b2ldee:
[1] EP300 ABL1 SFN

Example 6 - Write data for import into Cytoscape

Cytoscape is a powerful platform for network analysis that has gathered a large following from divers fields
of application. Thus, many extensions (Apps) have been written for Cytoscape. RITAN facilitates the
generation of networks using integrated resources and those networks can be exported for use in Cytoscape.
Beginning from one of the induced subnetworks generated above, we demonstrate export of this data to
simple text files and how it can be imported into Cytoscape for visualization and presentation.

The publication for the geneset is available here and describes which genes are “induced by white adipocyte
differentiation and inhibited by troglitazone activation of PPAR-gamma.” Taking data from Table 1, we

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725706/

annotate the genes by functional data. Additionally, we add a variable to indicate which genes are within the
initial list of genes.

my_genes <- geneset_list$MSigDB_C2[['VERNOCHET ADIPOGENESIS']]
net5 <- network_overlap(my_genes)
g <- unique(c(net5$pl, net5$p2))

tab <- data.frame(gene = c('FABP4', 'CEBPA','PPARG','ADRB3','RETN','AGT','HP',

'RARRES2', 'PANK3','FFAR2','LUM', 'MC2R','ADCYAP1R1'),

TrogRatio = c(1.8, 1.7, 0.6, 0.3, 0.3, 0.4 ,0.2,
0.3, 0.1, 0.5, 0.3, 0.5, 0.1),

WAT_BAT =c(0.8, 1.0, 0.6, 10.0, 21.6, 215.4,2.4,
9.5, 8.9, 4.6, 4.0 , 7.3, 2.6),

initial = g %in), my_genes

)

write_simple_table(net3.1, 'net_example.sif')
write_simple_table(tab, 'net_example.tab')
The write_simple_table will produce plain text files for input into Cytoscape.
Briefly, these can be imported into Cytoscape by:

e Import the network with: File —> Import —> Network —> File. ..

e Import the data table with: File —> Import —> Table —> File...

See the Cytoscape Tutorial for thorough examples of importing data into Cytoscape.

Example 7 - Use Your Own Network Resource

For many reasons, you may wish to use a network resource that we have not provided with this package.
Some examples include use of a different ID system, non-human data, or use of a gene coexpression network.
In this example, we use a short example of genes with tissue-specific expression from Tang’s 2010 Nature
paper, and the mouse interaction network from BioGRID.

Add a new resource to "network_list"

For brevity, we

network_list[['BioGRID_Mouse']] <- readSIF('BIOGRID-ORGANISM-Mus_musculus-3.4.136.symbols.sif.gz', hea
> str(network_list[['BioGRID_Mouse']])

'data. frame': 38322 obs. of 3 wariables:

& pl : chr "SMAD2" "SMAD2" "SMAD2" "SMAD2" ...

$ edge_type: chr '"phystical” "physical" "physical” "physical” ...
¢ p2 : chr "Rasd2" "Rab34" "Rhebll" "Rab38" ...

Short example from Tang's 2010 Nature paper
my_mouse <- c('Sost','Fxyd4','Tmprss6','Crtap','Thpo', 'Kcnn4','Osm','S1c29a3', " 'ALB')

First, check if these genes appear in the BioGRID network.
check_net_input(my_mouse, network_list[['BioGRID_Mouse']])
Sost Fzyd4 Tmprss6 Crtap Thpo Kcnng Osm Slc29a3 ALB

Ilyes n Ilno n Ilno n Ilno n Ilno

n n n

Ilno n Ilno Ilno Ilno n

After correcting a few gene names, get the induced subnetwork from mouse data.

http://www.nature.com/nbt/journal/v28/n7/pdf/nbt.1644.pdf
http://www.nature.com/nbt/journal/v28/n7/pdf/nbt.1644.pdf

my_mouse <- c('Sost','Fxyd4', 'Tmprss6','CRTAP', 'Thpo','KCNN4','Osm','S1c29a3"', " 'ALB')
net.m <- network_overlap(my_mouse, include_neighbors = TRUE, resources = c('BioGRID_Mouse'))
str(net.m)

Generating undirected subnetwork. ..

Total induced subnetwork from 9 gemes has 17 nodes and 17 edges (17 unique).
'data. frame': 17 obs. of 3 wariables:

¢ pi : chr "Sf3al" "Nphpl" "Iqcbl" "Inws" ...

$ edge_type: chr ‘'"phystcal” "physical" "physical” "physical” ...

8 p2 : chr "CRTAP" "Invs" "Nphpi" "ALB" ...

Also, check within BioGRD's human network

check_net_input(my_mouse, network_list[['BioGRID_Human']])

Sost Fzxyd4 Tmprss6 CRTAP Thpo KCNN4 Osm Slc29a3 ALB
Ilno n Ilno n Ilno n llyes n Ilno n l!yes n Ilno n Ilno n Ilyes n

Note that gene symbols are case sensitive

my_mouse <- c('SOST', 'Fxyd4', 'Tmprss6','CRTAP','THPO', 'KCNN4','0OSM', 'S1c29a3"', " 'ALB')
check_net_input(my_mouse, network_list[['BioGRID_Human']])

SOST Fxyd4 Tmprss6 CRTAP THPO KCNN4 0SM Slc29a3 ALB

I!yes n Ilno n Ilno n I!yes n llno n Ilyes n I!yes n llno n Ilyes n

Get the induced subnetowrk from human data
net.h <- network_overlap(my_mouse, include_neighbors = TRUE, resources = c('BioGRID_Human'))
str(net.h)

Generating undirected subnetwork. ..

Total induced subnetwork from 9 genes has 224 nodes and 755 edges (634 unique).
'data. frame': 755 obs. of 3 wariables:

& pl : chr "MBIP" "SH3GL1" "TNNT1" "GFAP" ...

§ edge_type: chr ‘'"phystcal "physical" "physical" "physical” ...

8 p2 : chr "MBIP" "SH3GL1" "TNNT1" "GRAP2" ...

From comparison of the above results, there are noticeable differences between using each resource. Some
genes are present in the mouse interaction network that are not present in the human (e.g. Fxyd4). Also,
there is usually a greater extent of interaction data available for human genes/proteins. This may be more
helpful for some studies, but too indirect for others.

Example 8 - Putting it All Together

RITAN’s two primary functions can be used together in order to gain stronger insights into
the functional role of the identified gene(s).

Between the two RITAN vignettes, you’ve seen how to use RITAN to perform term enrichment and to
generate subnetworks leveraging multiple data sources. In the following example, we will start from a single
gene of interest, gather the genes that it is known to physically interact with (protein-protein interaction;
PPI), and then perform enrichment analysis on group of interacting genes/proteins.

net <- network_overlap('FOXP3', include_neighbors = TRUE, resources = c("PID","dPPI","CCSB"))

##

Generating undirected subnetwork...

#i#

Removing duplicate edges and self-loops...

Total induced subnetwork from 1 genes has 10 nodes and 21 edges (21 unique).

genes <- unique(c(netpl, netp2))
el <- term_enrichment(genes, "Blood_Translaiton_Modules", verbose=FALSE, all_symbols = cached_coding_g
summary (el)

name
77 Blood_Translaiton_Modules.signaling in T cells (I) (M35.0)
24 Blood_Translaiton_Modules.regulation of antigen presentation and immune response (M5.0)
50 Blood_Translaiton_Modules.AP-1 transcription factor network (M20)
1 Blood_Translaiton_Modules.targets of FOSL1/2 (MO)
2 Blood_Translaiton_Modules.integrin cell surface interactions (I) (M1.0)
3 Blood_Translaiton_Modules.integrin cell surface interactions (II) (M1.1)
p n n.set q
77 3.786623e-08 3 14 1.310171e-05
24 8.080113e-06 3 79 1.397860e-03
50 2.251947e-05 2 14 2.597246e-03
1 1.000000e+00 O 11 1.000000e+00
2 1.000000e+00 O 29 1.000000e+00
3 1.000000e+00 O 12 1.000000e+00

e2 <- term_enrichment(genes, "ReactomePathways", verbose=FALSE, all_symbols = cached_coding_genes)
summary (e2)

name
520 ReactomePathways.Fc epsilon receptor (FCERI) signaling
489 ReactomePathways.FCERI mediated MAPK activation
86 ReactomePathways.Activation of the AP-1 family of transcription factors
732 ReactomePathways.Innate Immune System
706 ReactomePathways.Immune System
816 ReactomePathways.MAPK targets/ Nuclear events mediated by MAP kinases
p n n.set q
520 4.129647e-07 5 340 0.0007041047
489 5.373589e-06 4 246 0.0045809850
86 1.114849e-05 2 10 0.0063360586
732 1.801576e-05 5 734 0.0066978019
706 1.964165e-05 6 1339 0.0066978019
816 1.071665e-04 2 30 0.0304531344

Thus, starting from only one gene of interest, we identified 9 additional physically interacting genes. These
genes are known to be co-regulated in a Blood-Translation-Module associated with T-cell signaling. Addition-
ally, they are significantly associated with four Reactome pathways including AP-1 and MAPK signaling

	We provide simple access to multiple network biology resources in order to facilitate rapid evaluation, basic data annotation, and integration using a common framework.
	We will elaborate on this functionality in the following examples.
	Example 1 - Basic Network Query
	Example 2 - Filtering out low-confidence interactions
	Check Input
	Check how many input gene symbols are within the network resources.

	Example 3 - Including Neighbors
	Example 4 - Visualize Network within R
	Example 5 - Identify Bridging Genes/Proteins
	Example 6 - Write data for import into Cytoscape
	Example 7 - Use Your Own Network Resource
	Example 8 - Putting it All Together

