
SUPPLEMENTAL MATERIALS1

Continuous Skip-gram Model2

Word2vec is a successful word embedding technique in various applications in NLP. The main idea of3

Word2vec is to convert a word into a N-dimensional continuous vector. It can store information of an item4

within a system through establishing interactions with other members, i.e. neighboring words. Word2vec5

implements two main architectures, continuous bag-of-words (CBOW) model and the continuous Skip-6

gram (SG) model, to derive vector representations for different type words in the corpus. The input layer7

of CBOW model is the context words and the goal is to maximize the probability of the centered word8

based on the context words, while the Skip-gram model takes the current word as input and the output9

layer maximizes the likelihood of words within a certain range before and after the current word (Mikolov10

et al., 2013).11

In this work, the continuous Skip-gram model is adopted as the training model. In the Skip-gram12

model, the words occurring further away from the current word are given less weight while the close ones13

are endowed higher weight. The objective function of the Skip-gram model is shown in equation (1) and14

the conditional probability function is shown in equation (2):15

L = ∑
w∈C

log p(Context(w)|w) (1)

p(Context(w)|w) = ∏
u∈Context(w)

p(u|w) (2)

where C denotes all the words in a context window, w is the centered word in the window, Contexw(w)16

denotes the words in the context window except the centered one, and Equation (1) is viewed as the17

log-likelihood of a given sentence set.18

From the performance of the two models, the CBOW model takes a shorter time for training and the19

accuracy is slightly lower. Word vectors produced by the Skip-gram model have higher accuracy and the20

Skip-gram model has advantages to deal with low-frequency words.21

Deep neural network22

A deep neural network (DNN) can be viewed as a mathematical function that receives data in an

input layer, then transforms the inputs in a nonlinear way through multiple sequential layers, and offers

outputs in the final layer (Wainberg et al., 2018; Angermueller et al., 2016). For a standard two-layer

neural network, given an input vector v=[vi], we can calculate the predictive value yk from a mathematical

function as follows:

yk(v;θ) = f (2)(
m

∑
j=1

W (2)
k j f (1)(

D

∑
i=1

W (1)
ji vi +b(1)j )+b(2)k ) (3)

where vi is the i-th element of the input vector, m is the number within hidden units,Wn
i j denotes the23

weight of the i-th neuron of the n-th layer and the j-th neuron of the adjacent layer, bn represents the bias24

of the n-th layer. θ={W (1),W (2),b(1),b(2)} denotes model parameters, these parameters can capture the25

distribution from input/output samples. f(1)(·) and f(2)(·) denote nonlinear activation functions that can26

guarantee the nonlinearity of the whole model.27
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The goal of model training is to derive the most appropriate parameters θ so that when a new sample

is given, the probability measured at the output is heavily skewed to the correct class. A single cycle of the

parameter learning process is organized as (LeCun et al., 2015). Given a training dataset, the forward pass

sequentially computes the output in each layer and propagates the function signals forward through the

network. In the final output layer, an objective loss function measures error between the predicted outputs

and the true labels based on the current set of model weights. The loss is then backward propagated

through the chain rule to compute the gradients of the loss function. The model updates the parameters

iteratively. Backpropagation (Werbos, 1990) determines how much to adjust each weight and the gradient

can be efficiently evaluated by the object loss function. The formula of parameters update process is

shown as follows:

θ
τ+1 = θ

τ −η5E(θ τ) (4)

where5E(·) is a gradient vector of all the layers, η is a learning rate and τ denotes an iteration index. The28

update process is repeated until convergence. The weight parameters are often updated using stochastic29

gradient descent (SGD) algorithm with a minibatch subset of training samples (Bottou, 1991).30

In the canonical configuration, the object loss function of a classification network is often a cross

entropy loss function:

H(p,q) =−∑
x

p(x)log q(x) (5)

It defines between a true distribution and the estimated class probabilities.The most popular hidden

units.activation function is the Rectified Linear Unit (ReLU) function. This type of activation function

thresholds negative signals to 0 and passes through positive signal. Such operation allows faster learning

compared to other alternatives functions.

ReLU(x) = max(0,x) (6)

The output units’activation function is dependent on the target task being a classification or regression

problem. For example, a softmax activation function works as the following equation:

fi(z) =
ezi

∑ j ez j
(7)

The value of fi(z) denotes the predicted score for class i.31

In addition, regularization plays an important role in the training of deep learning architectures. It32

can avoid over-fitting and thus achieve good generalization performance. Currently, the most widely33

used regularization approach is dropout (Srivastava et al., 2014). Dropout operation removes hidden34

units from neural networks randomly during the training stage and can improve classification accuracy.35

Furthermore, batch normalization (Ioffe and Szegedy, 2015) provides a new regularization method through36

normalization of scalar features for each activation within a mini-batch.37

Cross validation38

Cross-validation scheme is a standard experimental technique for avoiding any sampling biases and39

verifying the constancy of the model (Stone, 1974). In this work, a five-fold cross validation procedure is40

applied for evaluating the performance of the classifier. More specifically, in a five-fold cross-validation41

procedure, the entire dataset is split into 5 random equal parts (folds), four of five folds are used for42
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training and the remaining one is used as test set in each fold of the cross validation. In this way, the same43

process is repeated five times and five separate models are obtained. Finally, the results on five separate44

experiments are averaged to give a comprehensive evaluation.45

Performance evaluation46

To assess the effectiveness and reliability of a classifier quantitatively, several widely used statistical

measures, including accuracy, recall, specificity, precision, MCC (Matthew’s correlation coefficient) and

F1 are taken to perform performance evaluation. The precise definition of these measures is as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(8)

Recall =
T P

FN +T P
(9)

Speci f icity =
T N

T N +FP
(10)

Precision =
T P

T P+FP
(11)

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(12)

F1 =
2T P

2T P+FP+FN
(13)

where, TP represents true positives that are correctly predicted interacting proteins, FP represents false47

positives that are incorrectly predicted non-interacting proteins, TN denotes true negatives that are48

correctly predicted non-interacting proteins, FN means false negatives that are incorrectly predicted49

interacting proteins, respectively.50

Among the above indexes, accuracy is a simple evaluation standard but there is a limitation that it51

would provide a very biased evaluation if the dataset is imbalance. Precision measure shows the number52

of predicted parts that are actually related to the protein-protein interactions. Since precision and recall53

are working in opposite direction, F1 is taken as the weighted harmonic mean of precision and recall to54

reflect the overall prediction performance (Hripcsak and Rothschild, 2005). A high value of F1 means55

a high value of both precision and sensitivity. MCC is an another objective index to reflect the overall56

performance of a method and can measure the matching degree between the prediction results and the57

real results (Matthews, 1975). In addition, the average AUC-ROC and AUC-PR value are also utilized58

to assess the performance of the classifier (Baten et al., 2006). AUC-ROC and AUC-PR compare the59

classifiers’ performance across the entire range of class distributions and error costs.60

Memory and Time61

Table 1 shows the memory and run time. From Table 1, we can see that the memory space increases62

exponentially when the residue dimension increases, for computational sake, we set upper limit as 24 for63

residue dimension. In our study, the window size of the SG model is set to 4, and residue dimension is64

set as 20. It is noteworthy that, Res2vec gains superiority of the running time to represent residue vector65

in data representing. Res2vec dramatically saves much time and manpower. With the use of NVIDIA66

GeForce GTX 1060 3GB, each training epoch takes only about 376s. It just needs less than 2 hours to67

train the DeepFE-PPI framework. With the aid of computer hardware, DeepFE-PPI can allow researchers68

to derive a novel residue representation method and a deep learning-based classifier in a tolerable level69

short time.70
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Table 1. Runtime and memory consumption of Res2vec models with different parameters.

Parameters (size,window) Word2vec Time (second) Memory consumption
(4,4) 251.03 40.1% (6534M/16294M)

(4,8) 397.17 43.6% (7104M/16294M)

(4,16) 716.31 50.5% (8227M/16294M)

(4,32) 1147.23 55.6% (9053M/16294M)

(8,4) 246.89 63.5% (10340M/16294M)

(8,8) 352.94 71.4% (11638M/16294M)

(8,16) 598.37 78.0% (12711M/16294M)

(8,32) 1181.66 49.8% (8108M/16294M)

(12,4) 287.56 84.2% (13721M/16294M)

(12,8) 402.41 77.5% (12633M/16294M)

(12,16) 728.63 86.9% (14161M/16294M)

(12,32) 1193.26 72.2% (11770M/16294M)

(16,4) 228.15 34.3% (5592M/16294M)

(16,8) 433.25 53.4% (8700M/16294M)

(16,16) 729.31 59.9% (9755M/16294M)

(16,32) 1054.91 54.6% (8900M/16294M)

(20,4) 260.53 55.5% (9039M/16294M)

(20,8) 420.19 53.9% (8783M/16294M)

(20,16) 743.30 55.9% (9108M/16294M)

(20,32) 1258.02 53.0% (8642M/16294M)

(24,4) 242.17 44.0%(7161M/16294M)

(24,8) 381.04 58.5% (9525M/16294M)

(24,16) 754.39 64.2% (10466M/16294M)

(24,32) 1281.08 56.7% (9240M/16294M)
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