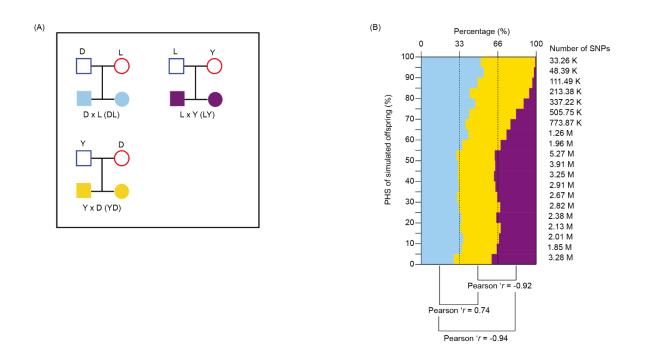
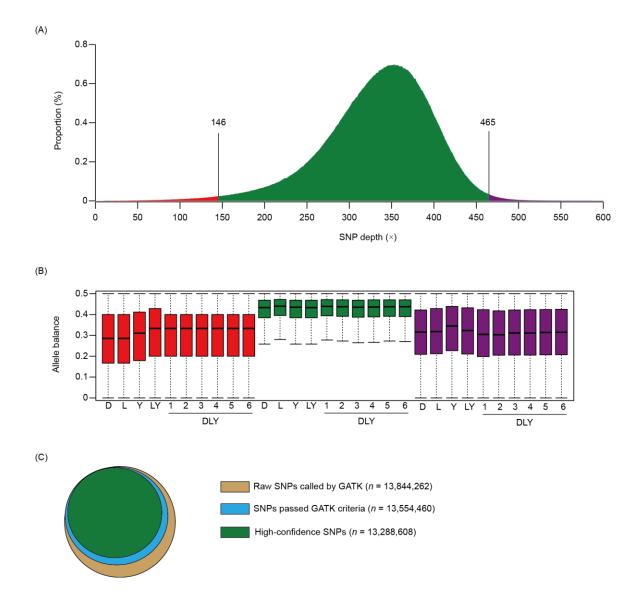
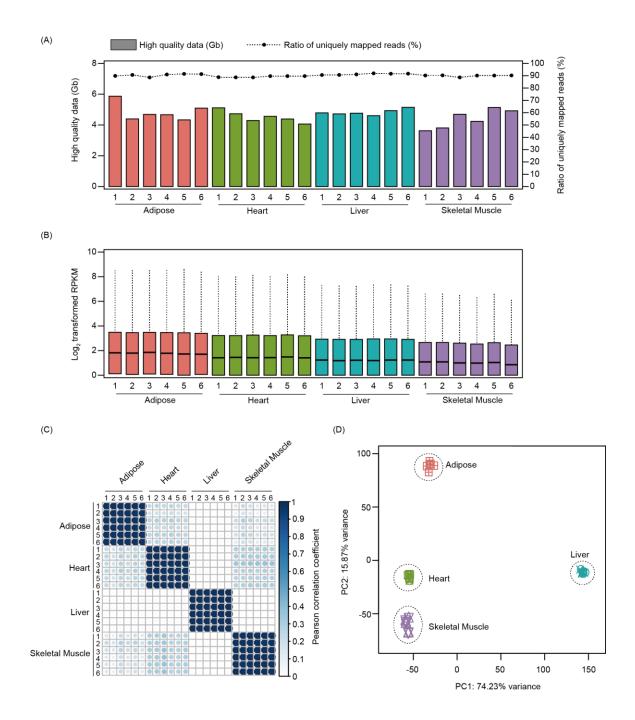
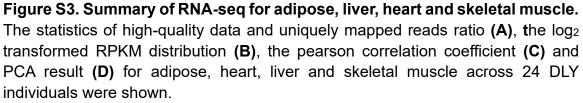
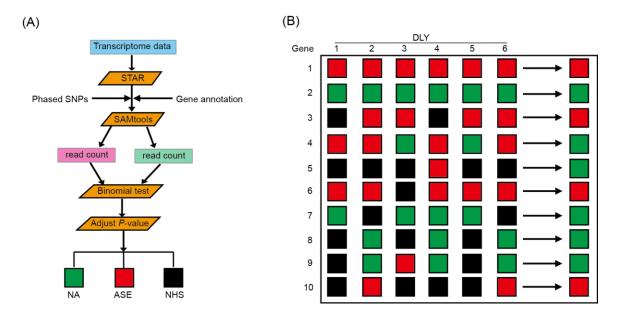
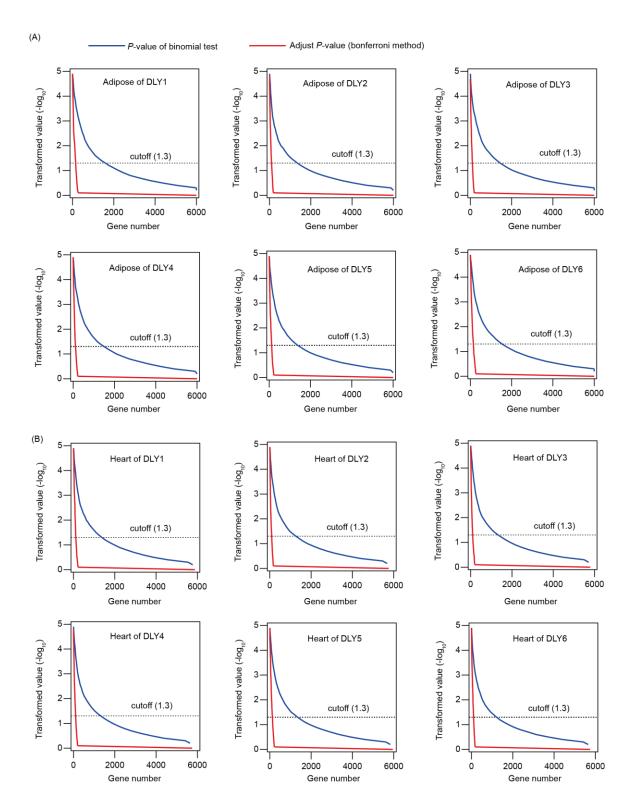
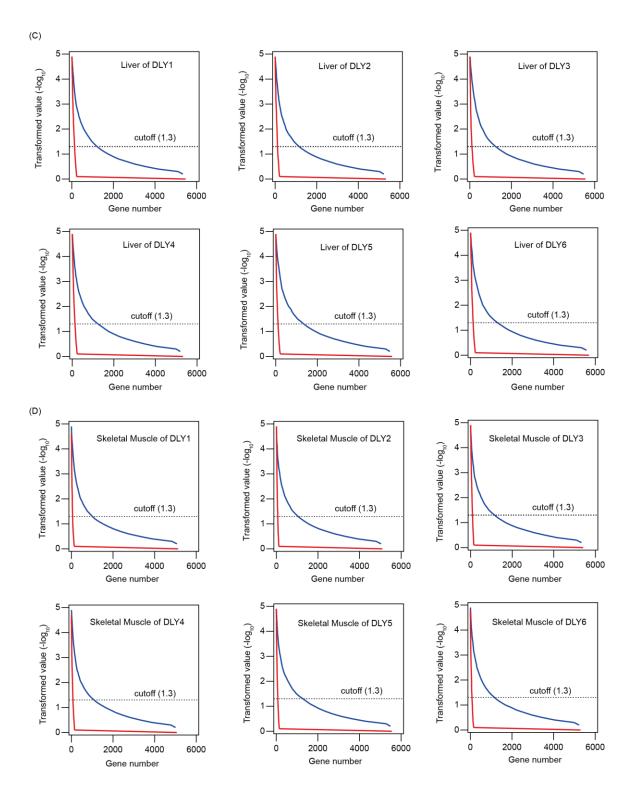
Supplementary Figures and Tables


Figure S1. Distribution of heterozygous SNPs in two-way crossbreeding offspring. A Simulation of three kinds of two-way crossbreeding. B Distribution of SNP number of the simulated offspring of three kinds of two-way crossbreeding systems for 20 equal intervals (based on PHS, from 0% to 100%, with intervals of 5%). Pearson '*r* was inferred between each two kinds of two-way crossbreeding systems.


Figure S2. The pipeline of depleting low-confidence SNPs. (A) The distribution of SNP depth of the sequenced DLY pig family. We empirically depleted ~1% SNPs located in left tail (SNP depth < 146, marked in red) and right tail (SNP depth > 465, marked in purple). **(B)** The distribution of allele balance for left tail SNPs (red), high-confidence SNPs (green) and right tail SNPs (purple) of ten sequenced pigs. **(C)** The number of raw SNPs called by GATK (*n* = 13,844,262), SNPs passed GATK criteria (*n* = 13,554,460) and high-confidence SNPs (*n* = 13,288,608).



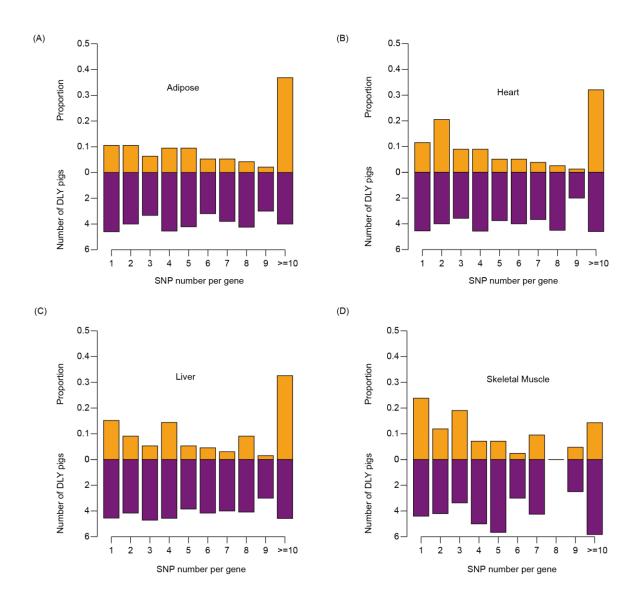
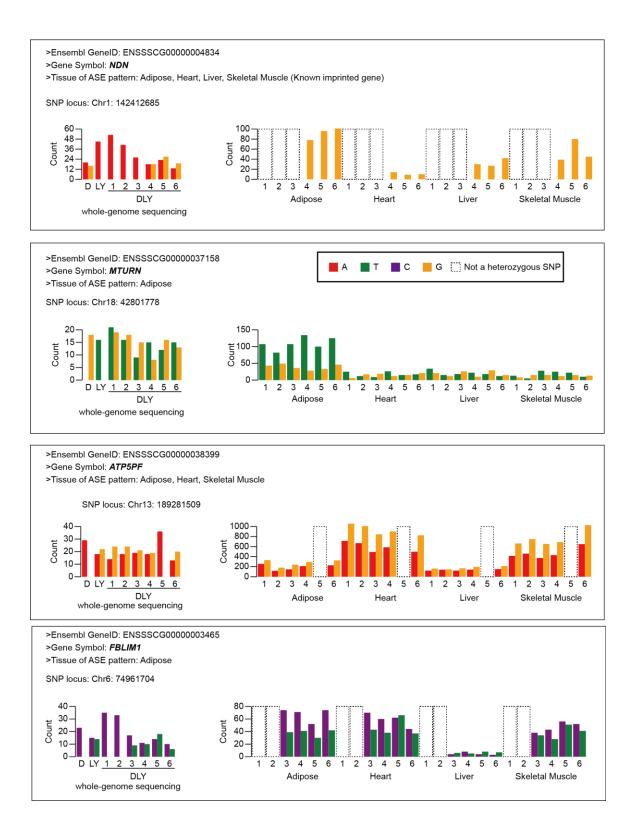
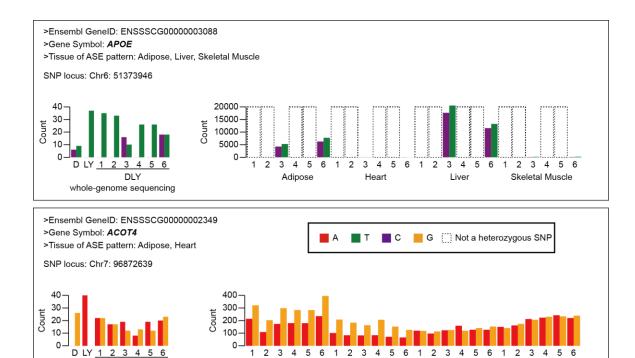


Figure S4. The pipeline of ASE genes identification. (A) The process of mapping, binomial test and classification. Transcriptome data were mapped with STAR and the total number of reads for each gene aligning to different alleles were counted by SAMtools. Each gene was classified to three categories, including ASE (adjust-P < 0.05, binomial test), NA (not significant for allele-specific expression) and NHS (no heterozygous SNP). (B) The principle of ASE identification: more than two DLY individuals harbor phased exonic SNPs and are all ASE categories.





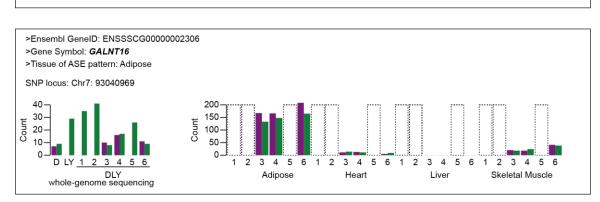
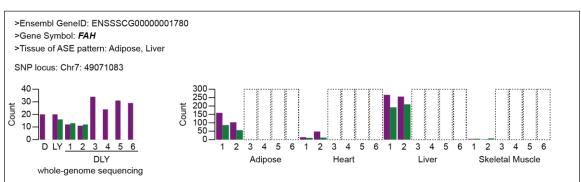
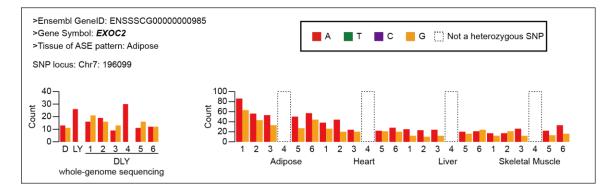
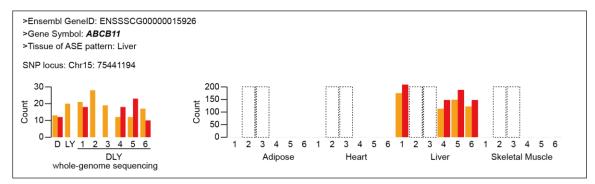

Figure S5. *P*-value adjustment using Bonferroni method. The *P*-values calculated by binomial test were adjusted using bonferroni method for adipose (A), heart (B), liver (C) and skeletal muscle (D).

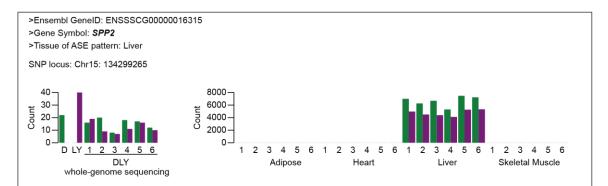
Figure S6. The Statistics of SNP number for ASE genes. For each ASE gene, the proportion (marked in orange) and the number of DLY pigs (marked in purple) for each rank of average SNP number (keep integer) were calculated for adipose **(A)**, heart **(B)**, liver **(C)** and skeletal muscle **(D)**.

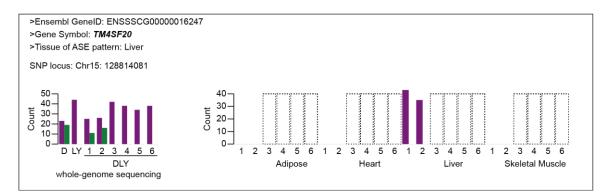
Adipose

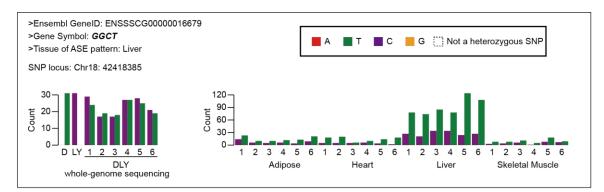

Heart

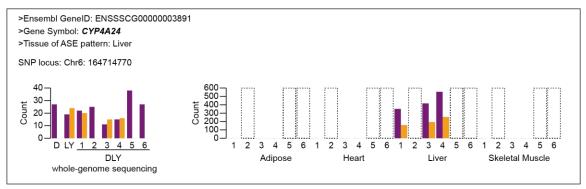

DLY

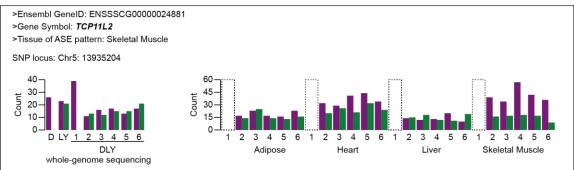

whole-genome sequencing

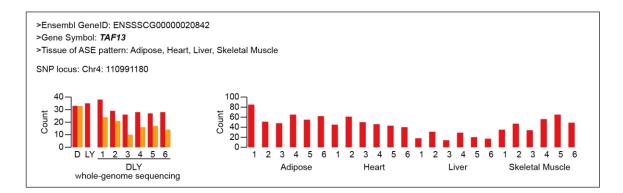

Skeletal Muscle

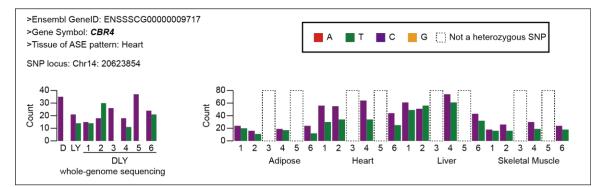

Liver

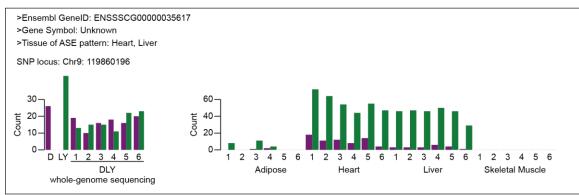


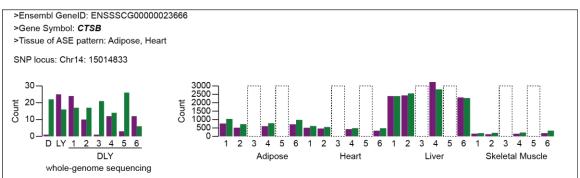


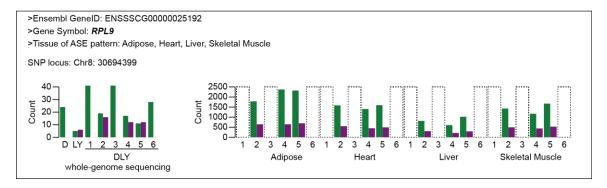


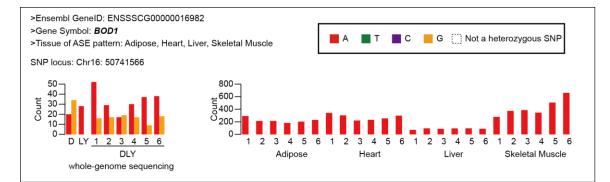


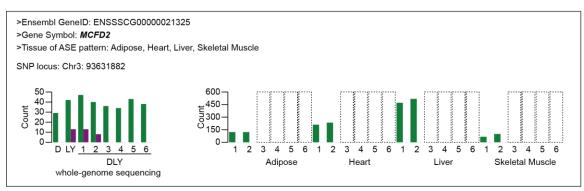


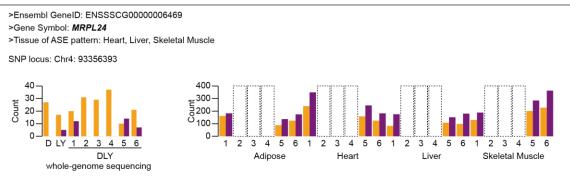


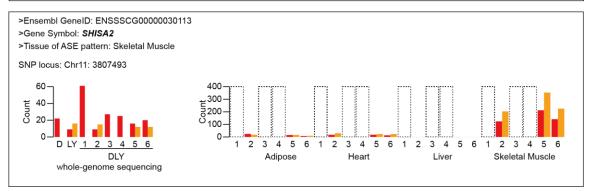


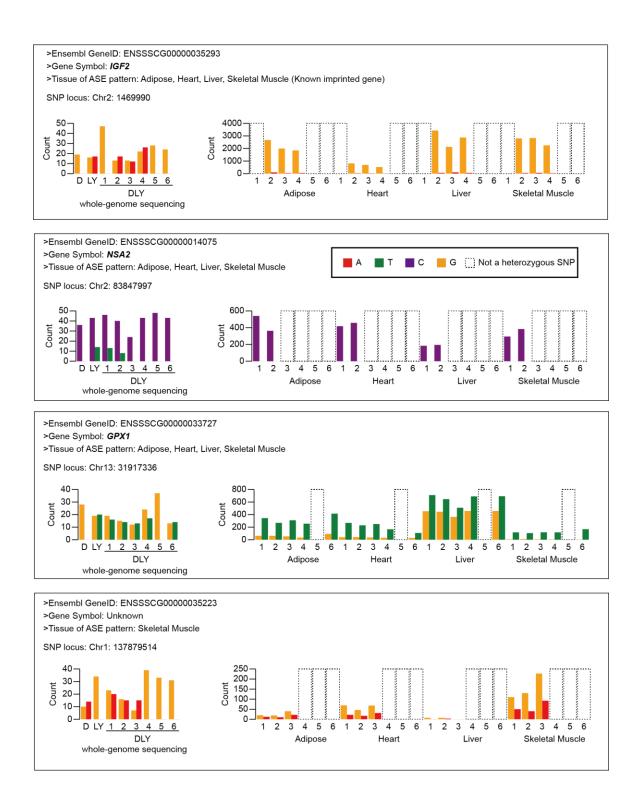


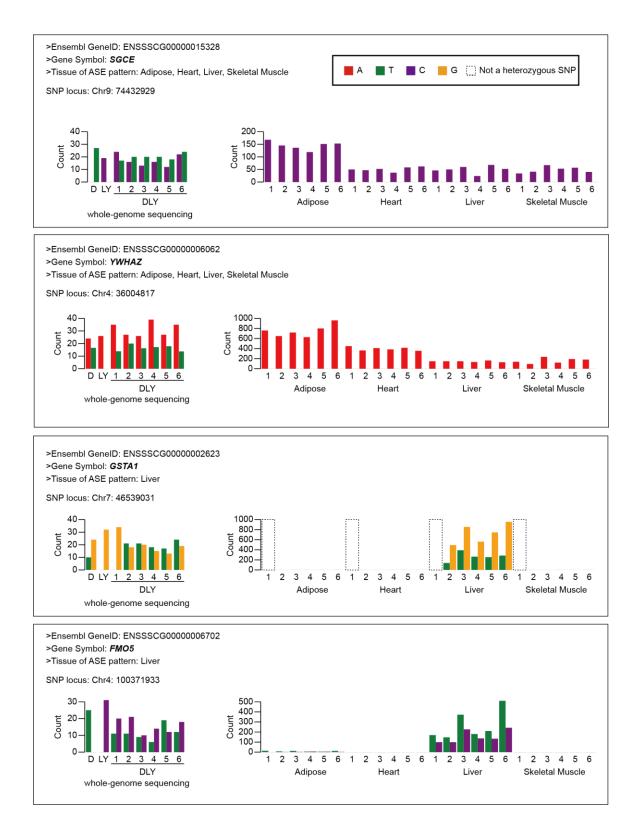


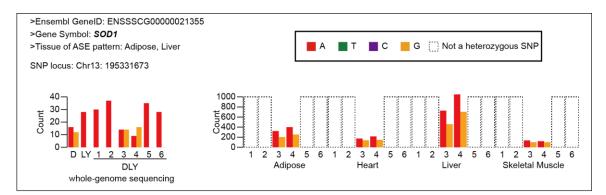


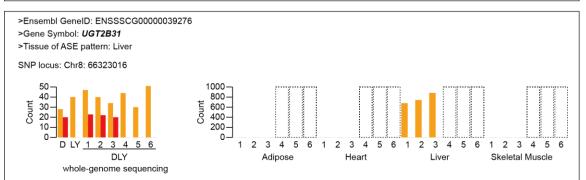


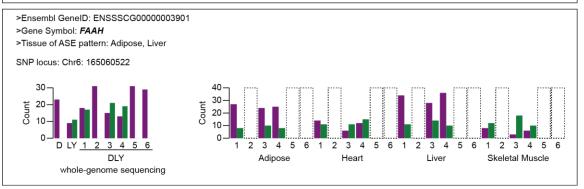


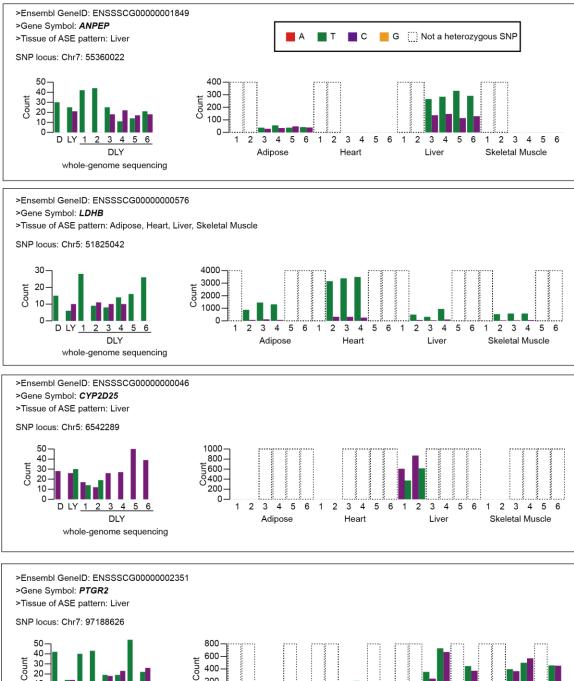


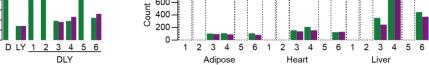


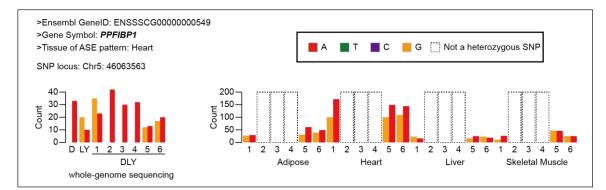




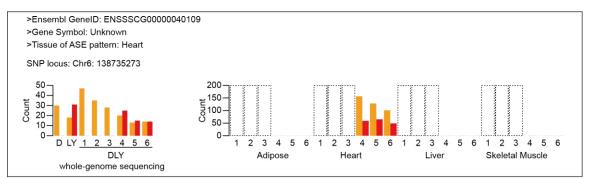


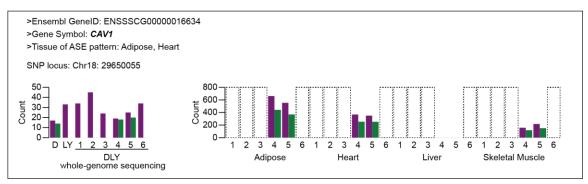


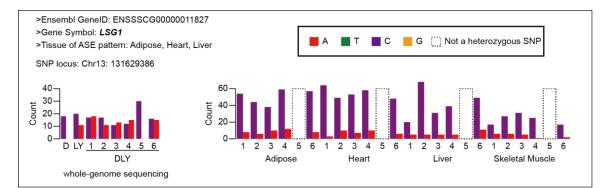


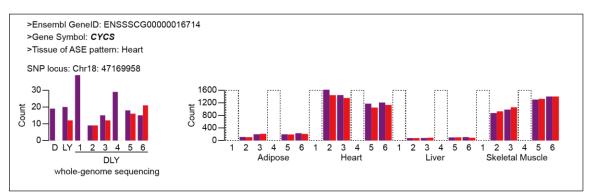

1 2 3 4 5 6

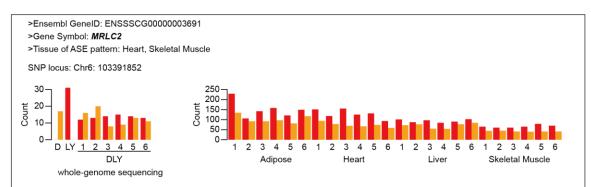
Skeletal Muscle

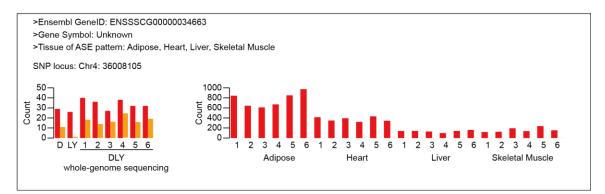

Liver


10 0


whole-genome sequencing







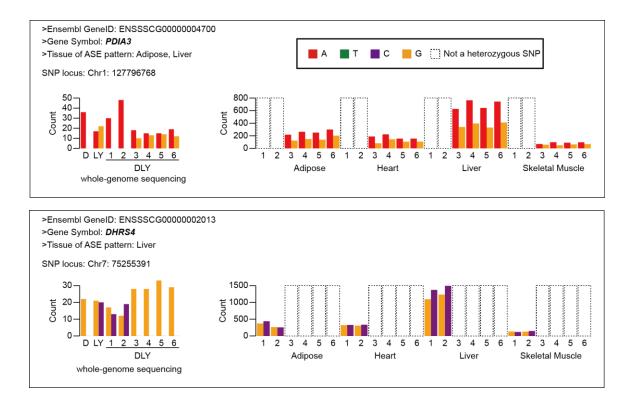


Figure S7. Visualization of 50 random selected ASE genes. The detail information of the representative SNP (maximum coverage) for each ASE gene, including the count distribution of whole-genome sequencing and the count distribution of RNA-seq of adipose, heart, liver and skeletal muscle were shown. These 50 ASE genes include *NDN*, *MTURN*, *ATP5PF*, *FBLIM1*, *APOE*, *ACOT4*, *GALNT16*, *FAH*, *EXOC2*, *ABCB11*, *SPP2*, *TM4SF20*, *GGCT*, *CYP4A24*, *TCP11L2*, *TAF13*, *CBR4*, *ENSSSCG0000035617*, *CTSB*, *RPL9*, *BOD1*, *MCFD2*, *MRPL24*, *SHISA2*, *IGF2*, *NSA2*, *GPX1*, *ENSSSCG0000035223*, *SGCE*, *YWHAZ*, *GSTA1*, *FMO5*, *SOD1*, *FOLR1*, *UGT2B31*, *FAAH*, *ANPEP*, *LDHB*, *CYP2D25*, *PTGR2*, *PPFIBP1*, *ENSSSCG000003430*, *ENSSSCG0000040109*, *CAV1*, *LSG1*, *CYCS*, *MRLC2*, *ENSSSCG00000034663*, *PDIA3* and *DHRS4*.

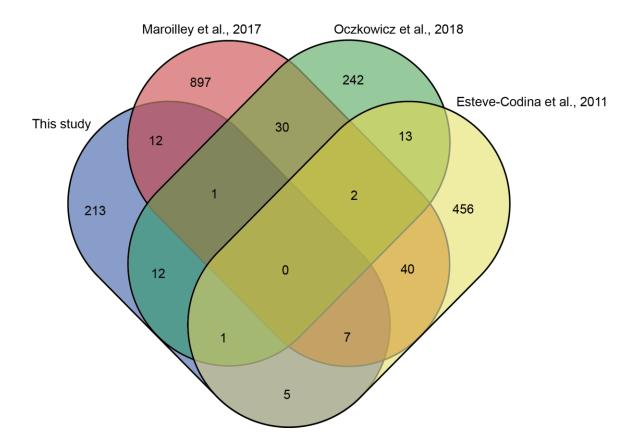


Figure S8. Comparison of identified ASE genes with previous reported studies.

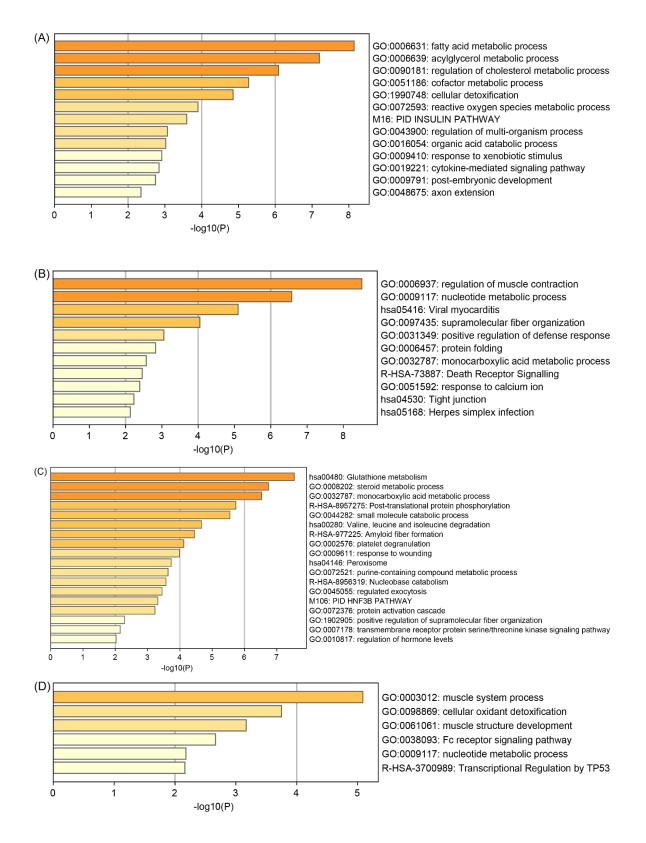


Figure S9. Bargraphs of function enrichment for ASE genes in adipose (A), heart (B), liver (C) and skeletal muscle (D).

Breed	Individual	Accession	High-quality	$Covorado (\times)$	Number of SNPs		
Dieeu	Individual	No.	data (Gb)	Coverage (×)	Heterozygous	Homozygous	
	1	SRX703502	38.41	15.36	2,970,948	1,970,902	
	2	SRX703503	43.73	17.49	2,915,641	1,961,520	
	3	SRX703538	41.63	16.65	3,017,625	1,926,350	
	4	SRX703508	40.02	16.01	3,131,836	1,817,067	
	5	SRX703504	43.15	17.26	2,739,820	1,947,156	
D	6	SRX703511	36.85	14.74	2,997,191	1,956,779	
	7	SRX703509	42.92	17.17	2,788,873	1,991,953	
	8	SRX703532	44.33	17.73	2,853,844	1,923,391	
	9	SRX703535	35.44	14.18	2,939,385	2,032,922	
	10	SRX703537	35.52	14.21	3,079,185	1,879,770	
	11	SRX703539	38.35	15.34	3,045,528	1,883,315	
-	1	SRX703541	35.62	14.25	3,054,680	3,089,734	
	2	SRX703540	34.61	13.84	3,147,921	3,091,648	
	3	SRX703542	33.61	13.44	3,074,258	3,135,548	
	4	SRX703543	32.42	12.97	3,035,506	3,187,635	
L	5	SRX703548	33.23	13.29	3,553,960	2,825,913	
	6	SRX703550	32.84	13.14	2,843,044	3,283,290	
	7	SRX703552	33.25	13.30	3,818,360	2,727,436	
	8	SRX703551	32.62	13.05	3,747,785	2,812,506	
	9	SRX1544487	51.71	20.68	3,029,667	2,967,386	
	1	SRX703594	31.83	12.73	2,895,003	3,365,363	
	2	SRX703596	35.13	14.05	3,646,253	2,814,432	
	3	SRX703599	33.42	13.37	3,462,828	3,063,392	
	4	SRX703597	34.27	13.71	3,511,229	3,076,198	
Y	5	SRX703577	44.18	17.67	3,050,148	3,261,253	
	6	SRX703579	43.84	17.54	3,210,946	3,054,866	
	7	SRX703581	42.33	16.93	3,226,449	3,159,891	
	8	SRX703582	43.22	17.29	3,331,057	3,026,034	
	9	SRX703595	34.01	13.60	3,133,195	3,047,464	
	10	SRX1544506	51.63	20.65	3,649,140	2,974,150	
average	-	-	38.67	15.47	-	-	
Total	-	-	1,160.12	-	12,56	4,044	

Table S1 Data summary and SNP statistics of the downloaded pig breeds

Breed /		High-quality		Q20	Genome	e coverage	e at least	Number	Number of SNPs		
Crossbred	Individual	data (Gb)	Coverage (×)	(%)	1× (%)	4 × (%)	10× (%)	Heterozygous	Homozygous		
D	1	86.16	34.44	96.52	99.53	99.27	98.19	4,437,816	2,165,490		
L	1	108.22	43.28	96.64	99.45	99.13	98.38	4,722,522	3,744,240		
Y	1	90.43	36.16	95.58	99.16	98.85	98.01	5,444,996	3,399,276		
LY	1	90.83	36.32	95.13	99.12	98.77	97.57	5,617,905	3,335,535		
	1	102.11	40.84	95.53	99.57	99.33	98.68	6,263,658	2,196,226		
	2	98.62	39.44	96.36	99.57	99.34	98.68	6,163,204	2,206,296		
	3	97.54	39.00	95.65	99.57	99.32	98.61	6,135,372	2,178,981		
DLY	4	94.87	37.92	96.51	99.19	98.97	98.45	6,115,540	2,208,917		
	5	94.56	37.80	96.09	99.19	98.96	98.45	6,167,311	2,175,091		
	6	99.12	39.64	96.31	99.21	98.98	98.48	6,201,672	2,243,369		
Average	-	96.25	38.51	96.03	99.36	99.09	98.35	-	-		
Total	-	962.46	-	-	-	-	-	13,28	8,608		

 Table S2 Data summary and SNP statistics of the DLY pig family

SNP type	Cotogony	DLYLY-		DLY							
SNP type	Category	U	L	T	LT	1	2	3	4	5	6
	SNPs identified	4,323	8,740	7,560	7,698	4,586	4,742	4,464	4,447	4,645	4,549
	by the chip	4,020	0,740	7,500	7,000	4,000	7,772	-2 -,-0,-	4,040	,0+0 +,0+0	
Homozygous	Validated by	4,210	8,591	7,429	7,584	4,485	4,655	4,390	4,365	4,553	4,465
	GATK	4,210	8,591	7,429	7,504	4,403	4,055	4,390	4,303	4,555	4,405
	Concordance	97.39	98.30	98.27	98.52	97.80	98.17	98.34	98.16	98.02	98.15
	ratio (%)	97.39	90.30	90.27	90.52	97.00	90.17	90.34	90.10	90.02	90.15
	SNPs identified	11,422	11,552	14,223	12 970	15 042	45 404	15,768	15,766	15,610	16.022
	by the chip				13,870	15,843	15,484				16,033
Heterozygous	Validated by	11,254	11,303	13,873	13.664 15	45 040	45 040	5,243 15,527	15,528	15,390	15 011
	GATK				13,004	15,613	15,245				15,814
	Concordance	00.50	07.04	97.53	00.54	00 55	55 98.44	98.47	98.49	98.59	09.63
	ratio (%)	98.53	97.84	97.55	98.51	98.55	90.44	90.47	90.49	90.09	98.63
	SNPs identified	45 745	20,202	04 700	04 500	20420	20,220	00.000	00.040	00.055	00 500
	by the chip	15,745	20,292	21,783	21,568	20429	20,226	20,232 20,213 20,2	20,255	5 20,582	
Total	Validated by	15,464	10 904	21 200	01 040	20008		40.047	40.000	40.040	00.070
	GATK		464 19,894	21,300	21,248	20098	19,898	19,917	19,893	19,943	20,279
	Concordance	98.22	98.04	97.78	98.52	00.20	98.38	98.44	98.42	98.46	09 53
	ratio (%)	90.22	90.04	91.10	90.02	98.38	90.30	90.44	90.42	90.40	98.53

Table S3 Validation of the accuracy of SNP identification by the chip

Term	Description	Count	%	Log10(P)	Log10(q)
GO:0006631	fatty acid metabolic process	11	16.67	-8.14	-3.83
GO:0006639	acylglycerol metabolic process	7	10.61	-7.20	-3.46
GO:0090181	regulation of cholesterol metabolic process	5	7.58	-6.09	-2.68
GO:0051186	cofactor metabolic process	10	15.15	-5.27	-1.96
GO:1990748	cellular detoxification	5	7.58	-4.85	-1.78
GO:0072593	reactive oxygen species metabolic process	6	9.09	-3.90	-1.24
M16	PID INSULIN PATHWAY	3	4.55	-3.59	-1.07
GO:0043900	regulation of multi-organism process	6	9.09	-3.07	-0.73
GO:0016054	organic acid catabolic process	5	7.58	-3.02	-0.70
GO:0009410	response to xenobiotic stimulus	5	7.58	-2.91	-0.60
GO:0019221	cytokine-mediated signaling pathway	8	12.12	-2.84	-0.54
GO:0009791	post-embryonic development	3	4.55	-2.74	-0.47
GO:0048675	axon extension	3	4.55	-2.35	-0.17

Table S4 Function enrichment of ASE genes in adipose

Table S5 Function enrichment of ASE genes in heart

Term	Description	Count	%	Log10(P)	Log10(q)
GO:0006937	regulation of muscle contraction	8	15.38	-8.51	-4.35
GO:0009117	nucleotide metabolic process	11	21.15	-6.58	-3.34
hsa05416	Viral myocarditis	4	7.69	-5.10	-2.27
GO:0097435	supramolecular fiber organization	8	15.38	-4.05	-1.50
GO:0031349	positive regulation of defense response	6	11.54	-3.05	-0.71
GO:0006457	protein folding	4	7.69	-2.83	-0.54
GO:0032787	monocarboxylic acid metabolic process	6	11.54	-2.57	-0.30
R-HSA-73887	Death Receptor Signalling	3	5.77	-2.46	-0.21
GO:0051592	response to calcium ion	3	5.77	-2.39	-0.17
hsa04530	Tight junction	3	5.77	-2.23	-0.05
hsa05168	Herpes simplex infection	3	5.77	-2.13	0.00

Table S6 Function enrichment of ASE genes in liver

Term	Description	Count	%	Log10(P)	Log10(q)
hsa00480	Glutathione metabolism	6	7.32	-7.54	-3.22
GO:0008202	steroid metabolic process	10	12.20	-6.74	-2.90
GO:0032787	monocarboxylic acid metabolic process	13	15.85	-6.53	-2.88
R-HAS	Post-translational protein phosphorylation	6	7.32	-5.73	-2.27
8957275					
GO:0044282	small molecule catabolic process	10	12.20	-5.55	-2.27
hsa00280	Valine, leucine and isoleucine degradation	4	4.88	-4.67	-1.71
R-HSA-	Amyloid fiber formation	5	6.10	-4.45	-1.63
977225					
GO:0002576	platelet degranulation	5	6.10	-4.12	-1.41
GO:0009611	response to wounding	10	12.20	-3.99	-1.34
hsa04146	Peroxisome	4	4.88	-3.73	-1.23
GO:0072521	purine-containing compound metabolic process	9	10.98	-3.63	-1.16
R-HSA-	Nucleobase catabolism	3	3.66	-3.57	-1.14
8956319					
GO:0045055	regulated exocytosis	10	12.20	-3.45	-1.05
M106	PID HNF3B PATHWAY	3	3.66	-3.32	-0.97
GO:0072376	protein activation cascade	5	6.10	-3.23	092
GO:1902905	positive regulation of supramolecular fiber	4	4.88	-2.29	-0.20
	organization				
GO:0007178	transmembrane receptor protein serine/threonine	5	6.10	-2.15	-0.13
	kinase signaling pathway				
GO:0010817	regulation of hormone levels	6	7.32	-2.02	-0.04

Table S7 Function enrichment of ASE genes in skeletal muscle

Term	Description	Count	%	Log10(P)	Log10(q)
GO:0003012	muscle system process	6	23.08	-5.09	-0.77
GO:0098869	cellular oxidant detoxification	3	11.54	-3.75	0.00
GO:0061061	muscle structure development	5	19.23	-3.17	0.00
GO:0038093	Fc receptor signaling pathway	3	11.54	-2.67	0.00
GO:0009117	nucleotide metabolic process	4	15.38	-2.18	0.00
R-HSA-3700989	Transcriptional Regulation by TP53	3	11.54	-2.16	0.00