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1 Measuring Asymmetry4

The asymmetry of a function f can be measured by decomposing it into a symmetric and an5

asymmetric part (see fig. 1), which can then be quantified using a seminorm on the underlying6

function space. The proposed concept is more sensitive as a measure of symmetry than the center7

of gravity used by Gould et al. (1987) in the sense that it is zero if and only if the corresponding8

function is axis symmetric, whereas a balanced center of gravity is not a necessary condition for9

symmetry.10

A function g is mirror symmetric (short symmetric) with respect to the y-axis if g(x) = g(−x). A11

function g is mirror symmetric with respect to the axis defined by x = a if the function g(x− a)12

is symmetric with respect to the y-axis. For simplicity we only examine the first case, the second13

case follows mutatis mutandis.14

For any function f , its symmetric part is defined as15

fsym(x) = min{ f (x), f (−x)} . (1)

It is maximal in the sense that it is the biggest symmetric function that is smaller than f . The16

asymmetric part of f is given by17

fasy(x) = f (x)− fsym(x) . (2)
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Let18

asy : f 7→ fasy (3)

be the operator that assigns every function f its asymmetric part, so asy( f ) = fasy. It has the19

following properties:20

asy( f ) ≡ 0 ⇐⇒ f is symmetric (4)

asy(λ f ) = λ asy( f ) for λ ≥ 0 (positive homogeneity) (5)

asy( f + g) = asy( fasy + gasy) ≤ asy( f ) + asy(g) (sublinearity) . (6)

Combining this operator with any monotonous seminorm ‖ · ‖ on the vector space of functions21

yields the function22

‖ f ‖asy := ‖ asy( f )‖ (7)

measuring the degree of asymmetry of the function f . We will refer to ‖ f ‖asy as quantified23

asymmetry, short QuAsy. It is slightly weaker than a seminorm in the sense that it is only24

positively homogeneous and not absolutely homogeneous.125

As an example, taking vectors in Rn as functions and using the 1-norm26

‖x‖d
1 =

n

∑
i=1
|xi| (8)

yields the QuAsy27

‖x‖asy =
n

∑
i=1
|xi −min{xi; xn−i}| (9)

measuring the asymmetry of binned data. Its continuous equivalent can be obtained by using28

the norm29

‖ f ‖c
1 =

∫
| f (x)|dx (10)

instead of ‖ · ‖d
1.30

1Note that the term “positively homogeneous” is not used consistently in the literature. Here we use it in the sense

of equation (5)
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2 The Effect of Noise31

Here, the example from the section ”The Effect of Noise” is formalized and the stated result is32

derived formally.33

By the assumptions made in the example in the main text, the real valued random variables Yn34

describing the result of a statistical analysis after n samples have been evaluated converge to35

some deterministic value a and the random variable Zn describing the contribution of the noise36

converge to 0. Let Pn be the distributions of Yn and Qn the distributions of the Zn. Adding37

random variables is equivalent to convoluting their distributions, so Ỹn has the distribution Pn ∗38

Qn, where ∗ denotes the convolution (Klenke, 2008, p. 277).39

We will show that Pn ∗ Qn(A) ' Pn(A) as n → ∞, meaning that the perturbed analysis is in the40

long run more likely to show results in any set A than the original analysis. Applying this to any41

set that does not contain a shows that the probability of deviations from the value a are higher42

in the perturbed analysis than in the original analysis.43

The main result of the theory of large deviations roughly states that44

lim
n→∞

Pn(A) ≈ exp(−n inf
z∈A

I(z)) (11)

and45

lim
n→∞

Pn ∗Qn(A) ≈ exp(−n inf
z∈A

J(z)) (12)

for two so called rate functions I, J that determine the rate of decay of the probability of the set46

A as n increases (Klenke, 2008, ch. 23) (Varadhan, 1984). To show the desired inequality, it is47

therefore sufficient to show that J(z) ≤ I(z) for all z, meaning that Pn ∗ Qn decays slower than48

Pn.49

To show this, let Pn and Qn satisfy a large deviation principle (LDP) with rate functions FP and50

FQ
2. By the assumption on the convergence of the noise, we have FQ(0) = 0, and by shifting the Pn51

2The existence of a LDP is not a strong assumption, since LDPs are known in many cases (e.g. for the Brownian

motion, empirical measures, averages of i.i.d. random variables) and preserved under a number of operations, e.g.
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by a, we can without loss of generality assume that FP(0) = 0. Then the product measures (Pn ⊗52

Qn)n∈B on R2 satisfy a LDP with rate function R(x, y) = FP(x) + FQ(y) (under the assumption53

that both Pn and Qn are exponentially tight) (Kühn, 2014, lemma 2.7). The image measures of54

(Pn ⊗ Qn) under the function f (x, y) = x are the Pn, which do, according to the contraction55

principle (see (Klenke, 2008, p. 518)) and by definition, satisfy a LDP with rate function I(z) =56

FP(z).57

Next, take the function g(x, y) = x + y. The image measure of (Pn ⊗ Qn) under this function is58

Pn ∗ Qn by the definition of the convolution. Applying the contraction principle yields the rate59

function60

J(z) = inf
x+y=z

[FP(x) + FQ(y)] (13)

for the LDP of Pn ∗Qn. By setting x = z, y = 0 and x = 0, y = z, the inequality61

J(z) ≤ min{FP(z), FQ(z)} (14)

follows. Although this estimate is not very elaborate and can certainly be improved, it is enough62

to show that63

J(z) ≤ min{FP(z), FQ(z)} ≤ FP(z) = I(z) (15)

which is the desired statement.64

3 Avoiding Averaging65

To avoid averaging, we propose a nonparametric approach that can be used to test hypothe-66

ses about the processes that underlie the measures of eco-evolutionary success (MESs) of taxa67

throughout their life.68

The approach exploits the fact that although the taxon’s MESs are in theory continuous in time,69

the way geological time is resolved imposes that they are, in most cases, described by assign-70

ing records of a taxon into a finite number of time bins. A MESs is then given by n bins, with71

pushforward measures under continuous functions, formation of product spaces and projective limits. This allows

for a variety of constructions.

4



each bin assigned a number describing the MESs of the taxon in the corresponding time interval.72

These bins can be taken as components of a vector, where the value of the k-th bin is the value73

in the k-th entry of the vector. This shifts the problem of recognizing patterns in the temporal74

trajectories from time series analysis to multivariate statistics while preserving the structure of75

the data as autocorrelated time series since the components of the vectors remain ordered and76

correlated.77

Multivariate statistics provides tests to decide whether two sets of points (time series) were sam-78

pled from the same distribution or not. Here we will focus on the multivariate Cramér test79

(Baringhaus and Franz, 2004; Cramer, 1928), a test whose univariate version is closely related to80

the Kolmogorov-Smirnoff test. In the context of the problem posed in this paper, it can be used81

to decide whether the trajectories of two sets of taxa were generated by the same underlying82

process or not, even if no knowledge of the nature of that underlying process is available. The83

test can further be used to test a model against empirical data. For this, temporal trajectories84

are simulated according to the model, binned into n bins and transformed into an n-dimensional85

space. Comparing the distribution of the point clouds of the simulated trajectories and the em-86

pirical trajectories provides information about the plausibility of the model. This procedure is87

demonstrated in example 1 by testing the the age-area hypothesis from Willis (1922).88

The described approach can also be used to create a nonparametric, distribution-free test for89

symmetry. For this, we propose to replace the notion of symmetry of the averaged trajectories90

by reversibility in time of the trajectories, a concept common in time series analysis (Lawrance,91

1991). Reversibility is more sensitive than symmetry of the averaged trajectories in the sense92

that reversibility implies symmetry of the averaged trajectories, whereas the converse is not true.93

Using reversibility is motivated by the property of the Brownian motion mentioned in the section94

”Symmetry and Similarity by Averaging” and by Gould et al. (1987), referring to the statement of95

Morris (1984) ”that the world has a different appearance in one direction of time than it does in96

the other” if there is such a thing as an ”arrow of time”. In a reversible process, every asymmet-97

rical trajectory is at some point balanced by the appearance of its mirrored version. An example98
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of the procedure to test reversibility can be found in example 2.99

For simplicity, the number of occurrences is used as a proxy for abundance in both examples. All100

calculations were done using R (R, version 3.2.3), the commented code is attached. The raw data101

used for the examples is accessible via the Open Science Framework (OSF) under osf.io/zw5ef/.102

3.1 Example 1: Testing the Age-Area Hypothesis103

The age-area hypothesis as formulated by Willis (1922) has been rejected as a general ecological104

pattern (Gaston, 1998) and only serves as a well-known example to demonstrate the described105

approach. We test a reformulation of it, which states that taxa have a constantly increasing106

abundance throughout their life. The idea behind testing this hypothesis was outlined above and107

can be generalized to any other hypothesis about the development of MESs throughout the life108

of taxa.109

3.1.1 The Data110

As the empirical data, marine microfossil data from the Neptune Sandbox Berlin (NSB) (Lazarus,111

1994; Spencer, 1999) was used. The data was downloaded on September 02, 2018 and con-112

tains information about occurrences of foraminifera. Questionable identifications, taxa invalidly113

included in the fossil group, open-nomenclature taxa, problematic samples, and problematic oc-114

currences were filtered out. The taxonomy was resolved using the Taxonomic Name List (TNL)115

project of the IODP (Renaudie et al., 2015), the age model used is based on Gradstein et al.116

(2012). The age of the samples was restricted to the interval between 1 and 65.5 Ma to ensure117

comparability with Liow and Stensteth (2007). After removing species with only one occurrence,118

the dataset contained 108882 occurrences from 452 species, with a mean of 254 occurrences per119

species and a median of 76 occurrences per species. For each species, the ages were rescaled for120

the first occurrence to be at 0 and the last occurrence at 1 and then binned into n = 10 bins of121

equal duration. Last, for each species, the values of the bins were rescaled for the combined area122

of the bins to have an area of one. This makes sure that every species has the same contribution123
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to the analysis, independent of its number of occurrences.124

3.1.2 Creating the Distribution of the Age-Area Hypothesis125

The trajectories representing the age-area hypothesis were generated in a stochastic model that126

assumes that although the abundance of taxa is constantly increasing, it is still subject to random127

fluctuations.128

The presence p of a taxon at time t is assumed to follow the equation129

a(t) = mt + Wt (16)

where m is a positive number and Wt is a Brownian motion. The parameter m determines how130

strong the expansion of the taxon is and was set to m = 5 for the simulation. A taxon originates131

at t = 0 and will go extinct if (1) its trajectory hits zero due to the fluctuations of the Brownian132

motion or (2) it survives until time t = 1. In the first case, the trajectory is rescaled to go extinct133

at t = 1 in accordance with the procedure described in the section ”The Way Data is Processed”.134

The number of trajectories simulated is identical to the number of taxa in the empirical data.135

Each trajectory was binned with the bins used above, the value of the bin with borders ti, ti+1 is136

given by137

bi =
∫ ti+1

ti

a(t)dt (17)

Last, for each trajectory, the values of the bins were rescaled for the combined area of the bins to138

have an area of one to make them comparable with the bins from the dataset given above.139

3.1.3 Testing the Hypothesis140

The procedure described above generated two sets of points in a ten-dimensional space: One set141

for the simulated trajectories, and one derived from the Neptune database. Each point within142

these sets represents the trajectory of one taxon. Applying the multivariate Cramér test for the143

two sample problem (Baringhaus and Franz, 2004) as implemented in the R package ”cramer”144
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(Franz, 2014) to these two datasets of points returns that the hypothesis of equal distribution of145

both datasets should be not be accepted (p = 0). Therefore the age-area hypothesis is rejected.146

3.2 Example 2: Testing Reversibility147

Testing reversibility is based on the fact that reversing a binned trajectory is equivalent to revers-148

ing the order of the entries of the corresponding vector. So to test invariance under time reversal,149

a sample is divided into two subsamples, one of which is reversed. If both subsamples have150

the same distribution, the original sample is reversible (Lawrance, 1991). To make sure this is151

not dependent on the division into subsamples, the test should be repeated multiple times with152

subsamples randomly drawn from the original sample153

To demonstrate this test, radiolarian data was downloaded from the NSB database (Lazarus,154

1994; Spencer, 1999) using the same parameters, options and rescaling as described above. Over-155

all, there were 97811 occurrences from 667 species, with the median of the number of occurrences156

per species being 48 and the mean 146.6 . For every species, the rescaled ages were binned into157

n = 10 bins. The bins of each species were then rescaled to have an area that sums up to one.158

Then two sets were created: one with the species whose histories were reversed in time and one159

with those whose trajectories were left unchanged. Each species was randomly assigned to one of160

these groups with a probability of 0.5. For these two datasets, the multivariate Cramér test for the161

two sample problem (Baringhaus and Franz, 2004) as implemented in the R package ”cramer”162

(Franz, 2014; R, version 3.2.3) was used to compare whether they were generated by the same163

distribution. The test was repeated 1000 times, each time with newly assigned unchanged and164

reversed datasets. In all of the 1000 runs, the hypothesis of equal distribution was rejected. The165

median over all p-values was 0, the mean 0.00045 and the maximum 0.003996 (see fig. 2). There-166

fore the hypothesis that the underlying distribution is invariant under time reversal is rejected.167

This suggests that the temporal dynamic of occurrence frequency observed among radiolarians168

is inconsistent with the effects of a reversible stochastic process, although the results from Liow169

and Stensteth (2007) suggest otherwise.170
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4 The Effects of Conditioning171

4.1 Formalizing Conditioning172

In the following, we will call some space E × A combined with a probability distribution P a173

model. The set E will represent the part of the space on which the conditioning will take place. In174

the cases discussed in the paper, E is the set of all values of temporal trajectories at their temporal175

endpoints and A is the set of all temporal trajectories without their last value. The order of E176

and A was changed for consistency of notation with the mathematical literature. The probability177

measure P determines the probability of any temporal trajectory to appear. By theorem 1.23 in178

Kallenberg (2017), P can be decomposed into a Markov kernel (transition kernel) Q from E to A179

and a probability distribution p on E such that p⊗Q = P. Here p describes the probability of the180

trajectories (in the unconditioned model) to arrive at a given value at the temporal endpoint and181

⊗ is the product of the probability measure and the kernel. This decomposition is characterized182

via183 ∫
E×A

f (e, a) P(de, da) =
∫

E×A
f (e, a) p⊗Q(de, da) =

∫
E

∫
A

f (e, a) Qe(da)p(de) (18)

Now chose any probability distribution p′ on E. The model conditioned to have the probability184

distribution p′ on E is then given as the product p′ ⊗Q. Conditioning of the model to determin-185

istically end at some value i ∈ E is formalized by setting p′ = δi, where δi is the Dirac measure186

on i.187

4.2 Uniqueness of Probability Distributions188

Probability distributions are uniquely determined by the integrals they define in the sense that if189

∫
f (x) P1(dx) =

∫
f (x) P2(dx) (19)

for all f from some class of functions F , then P1 = P2. Important classes of functions are190

continuous functions with compact support and bounded continuous functions ((Klenke, 2008),191
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chapters 13.1 and 15.1). By this statement, the definition of the product ⊗ and the construction192

of the conditioned models we obtain that p1⊗Q 6= p2⊗Q if p1 6= p2. So conditioned models are193

only identical if they are based on the same probability distribution on E.194

4.3 Systematic Differences Among Conditioned Models195

The characterization in the subsection above implies that for a large number of functions, inte-196

grals over these functions yield different results for different probability measures. Translating197

this into the dialect of probability theory by replacing the integral
∫

f (x) P(dx) by the expecta-198

tion value EP[ f (X)] shows that the expectation value of many functions that quantify a property199

of temporal trajectories will differ from the unconditioned model to the conditioned model. As200

an example for the systematic differences between conditioned models and unconditioned mod-201

els, assume that E is finite and that without loss of generality E = {0, 1, . . . , N}. Then by the202

definition of the product of kernels (see Kallenberg (2017), lemma 1.17) for any function f on203

E× A we obtain204

∫
f (e, a) P(de, da) =

∫
f (e, a) p⊗Q(de, da) =

N

∑
i=1

p(i)
∫

f (e, a) δi ⊗Qi(de, da) (20)

where p(i) is the probability of the unconditioned model that a trajectory ends at i and δi ⊗205

Qi(de, da) is the probability distribution describing the model conditioned to end at value i.206

Similarly if the model is conditioned to end with probability distribution q, we obtain207

∫
f (e, a) q⊗Q(de, da) =

N

∑
i=1

q(i)
∫

f (e, a) δi ⊗Qi(de, da) (21)

This shows that every conditioned model is a convex combination of the models that determin-208

istically end with value i ∈ E. By defining the simplex209

∆ := {x ∈ RN | xi ≥ 0 and ∑ xi = 1} , (22)

every conditioned model can be uniquely identified by the mapping210

x 7→
N

∑
i=1

xi δi ⊗Qi (23)
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where x ∈ ∆. Accordingly we get211

∫
f (e, a) p̃⊗Q(de, da) =

N

∑
i=1

xiai (24)

where ai =
∫

f (e, a)δi ⊗ Q(de, da) ∈ R and xi = q(i). Maximizing (minimizing) the integral212

for a fixed function f and varying conditioned models is therefore equivalent to maximizing213

(minimizing) the linear function ∑N
i=1 xiai over ∆. This is a linear optimization problem, therefore214

its optima can be found in the vertices of the simplex, which represent the models conditioned215

to deterministically end at some value.216

This abstract example becomes more alive when the elements of E are taken as the number of217

species living in the present day. It then shows that no matter what inference is made from the218

temporal development of species richness, it might be biased in both directions dependent on219

how well we know the species richness in the present.220

4.4 Identifying Models221

Take any set of models (Pl)l∈L, indexed by a set L. Let222

L : E× A→ L (25)

be a function that tries to identify the model at hand based on the observed trajectories. Its223

expectation value (under an abuse of mathematical dialect), given that the model Pl′ is present is224

given by225 ∫
L(e, a) Pl′(de, da) (26)

Assume that the function L does a good job in identidying the model in the sense that its226

expectation value is close to l′ if the model Pl′ is assumed.227

Now transition to the conditioned models derived from Pl′ , here denoted by δj ⊗ Ql′ for j ∈ E.228

Then by the line of argument in the subsection above,
∫
L(e, a) δj ⊗ Ql′(de, da) will differ from229

l′. So trying to identify unconditioned models on the basis of data derived from conditioned230

models will lead to the misidentification of the models.231
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As an example of this effect take the random walk models defined in the section ”The Effect232

of Noise”. The different unconditioned models can be uniquely identified by their transition233

probability p, which can be estimated by 1
2 + 1

2 X, where X is the mean of the Xi. However for234

the models conditioned to go extinct, the sum of the increasing and decreasing steps must be235

zero, so the upper estimator will always return the deterministic estimate 1
2 independent of (1)236

the value of p of the random walk model conditioned in the first place (2) the time of extinction237

used for the conditioning and (3) the path taken by the random walk.238
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5 Figures239
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Figure 1: The decomposition of the function f (x) = sin(x) (left) into its symmetric part (right,

red line) and its asymmetric part (right, blue line). Adding the asymmetric and the symmetric

part yields the original function.
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Testing reversibility: p values
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Figure 2: The distribution for the p values of the test for reversibility. Overall 1000 tests were

performed.

245

246

14



References247

Baringhaus, L., and C. Franz. 2004. On a new multivariate two-sample test. Journal of Multivari-248

ate analysis 88(1):190–206.249

Cramér, H. 1928. On the composition of elementary errors: Second paper: Statistical applications.250

Scandinavian Actuarial Journal 1928(1):141–180.251

Franz, C. 2014. cramer: Multivariate nonparametric Cramer-Test for the two-sample-problem R252

package version 0.9-1, https://CRAN.R-project.org/package=cramer .253

Gaston, K. J. 1998. Species-range size distributions: Products of speciation, extinction and trans-254

formation. Philosophical Transactions of the Royal Society of London B: Biological Sciences255

353(1366):219–230.256

Gould, S. J., N. L. Gilinsky, and R. Z. German. 1987. Asymmetry of lineages and the direction of257

evolutionary time. Science 236(4807):1437–1441.258

Gradstein, F. M., J. G. Ogg, M. D. Schmitz, and G. M. Ogg. 2012. The geologic time scale. Boston:259

Elsevier.260

Kallenberg, O. 2017. Random Measures. New York: Springer.261

Klenke, A. 2008. Probability Theory. A Comprehensive Course. London: Springer.262
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