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In this supplementary material, we provide details of our proposed method Compression-
Complexity Causality (CCC), which are not covered in the main paper. We explain the way
dictionary construction is done for estimating conditional CCC for multi-variate measurements. A
table for detailed description of how CCC values can be computed to be either positive or negative
is included here. We also describe the criteria and rationale for choosing the parameters of CCC
and details of our MATLAB implementation that is made available for free download and use.
Additional results of testing of CCC on simulations which could not be accommodated in the main
paper are included here.

1 Dictionary building for conditional CCC

To estimate causality from time series Y to X, amidst the presence of other variables (say Z and
W ), two time varying dictionaries are built — D that encodes information from all variables (X,
Y , Z, W ) and D′ that encodes information from all variables except Y (X, Z, W only). Suppose
the time series blocks being considered at a time t are Xpast, Ypast, Zpast and Wpast, then the
dictionary at that time Dpast is built as follows. Suppose (for example)









Xpast

Ypast

Zpast

Wpast









blocks of length 4 time points take values









0 0 1 0
1 0 1 0
1 1 1 1
0 1 1 1









,

after each time series block (such as Xpast) is binned using 2 bins. Then encoding in Dpast is done
based on assigning a particular value to each column. As each row in the first column can take
2 values, there exists a total of 16 possible combinations that the 4 rows can take together in a
column. We encode information in 4 rows to a single row by assigning combinations of different
values in the 4 rows an encoding from ‘0’ to ‘15’. In the dictionary Dpast, the above sequences are
encoded as a single sequence —

(

6 3 15 3
)

.

The second dictionary D′

past at the same time constructed using all variables except Y similarly
encodes blocks





Xpast

Zpast

Wpast





taking values




0 0 1 0
1 1 1 1
0 1 1 1
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as
(

2 3 7 3
)

assigning each column one particular state out of 8 possible states. Thus, for the above example,
D = (6, 3, 15, 3) and D′ = (2, 3, 7, 3). Effort-to-Compress (ETC) [1] can now be applied on the two
dictionaries D and D′ as these sequences are now just 1-dimensional symbolic sequences.

2 Positive and Negative CCC

CCC values estimated can be either positive or negative. This is because the dynamical compression-
complexities estimated for the purpose of CCC estimation, CC(∆X|Xpast) and CC(∆X|Xpast, Ypast),
can take either positive or negative values. How different cases result because of different signs
of the above dynamical compression-complexities and their implication on CCC is discussed in
Table S1.

3 Parameter selection for CCC: Criteria and Rationale

In Table S2, we summarize the criteria and rationale for choosing the four parameters (w, δ,B, L) of
the proposed measure CCC. We have described the measure of Compression-Complexity Causality
in the main paper with the idea of intervention. Appropriate parameter selection criteria is done
with the view to find out the correct intervention point for a time series to check its causal influence
on another given time series . Put more specifically, the main task is choosing the correct value
for the length of the time series block Ypast and accordingly for Xpast.

The parameter w which is the length of the moving window ∆X is fixed to 15 for all the
datasets used in this work. It is chosen such that it contains sufficient number of data points over
which CC rate can be reliably estimated. Earlier studies have revealed that ETC is able to reliably
capture complexity of even very short time series (as small as length of 10 samples) [2]. δ, the
step size by which the ∆X as well as Xpast window is moved, is chosen based on the criteria of
sufficient overlap (20−50%) between successive Xpast windows of length L. B, the number of bins
used to generate the symbolic sequence of the input time series is chosen such that it is sufficient
to capture the underlying dynamics. It was found that for the AR processes, B ≥ 2 is sufficient
whereas the time series from the chaotic tent map requires at least B = 8.

Once w, δ,B are chosen, we choose L, the window length of Xpast. For this, we analyze the
curves of ETC measure as they vary with L, for different time series blocks as appropriate for a
given dataset. A detailed description of selection criteria for L is discussed below.

3.1 Selection Criteria for L

As discussed in Table S2, for given time series X and Y , we first plot ETC(Xpast + ∆X) and
ETC(Ypast +∆X) vs. L when causality is to be checked from Ypast to ∆X. We choose a value of
L at which the two curves are well separated. In this work, we start with an L = 20(> w) and go
up to L = 300 (in case of the predator prey ecosystem data, only 62 data points were available and
thus we go up to L = 40). In Figures S1, S2, S3 and S4 which show these curves plotted for linearly
and non-linearly coupled tent maps, predator prey and squid giant axon systems respectively, there
exists some range of values of L for which the two curves are well separated. A value of L can
thus be chosen from within this range. The choice of L for these curves is based on averaged ETC
values for referred blocks over the entire time series. However, the choice of L may vary with
time if we expect to have causality at different temporal scales with varying time. Moreover, for
all the cases taken we have chosen the same values of L for checking causality from Ypast to ∆X
and for checking causality from Xpast to ∆Y . These values can however be different depending on
the curves of ETC(Xpast +∆X), ETC(Ypast +∆X) and ETC(Ypast +∆Y ), ETC(Xpast +∆Y )
respectively.

The separation between the curves ETC(Xpast +∆X) and ETC(Ypast +∆X) is taken to give
Ypast the maximum opportunity to cause ∆X. The complexities of these time series blocks will
be very different at the scale at which there is an influence from past block of Y to the present
block of X. Thus the choice of L is about adaptive determination of the temporal scale at which
causality exists from Y to X.
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Table S1: Sign of Dynamical Compression-Complexities, CC(∆X|Xpast) and
CC(∆X|Xpast, Ypast), and their resulting implication on the sign of estimated Compression
Complexity-Causality, CCCYpast→∆X .

CC(∆X|Xpast)

CC(∆X|Xpast, Ypast)

−ve +ve

−ve

Xpast +∆X was more structured
than Xpast. Further, two cases

arise. 1. When |CC(∆X|Xpast)| >
|CC(∆X|Xpast, Ypast)|,

CCCYpast→∆X < 0. Here,
intervention by Ypast in the joint

case degraded the structure by
bringing patterns different from

Xpast. Dynamical influence of Ypast

on ∆X is very different from the
dynamical influence of Xpast on
∆X. e.g.: CCC from independent
tent map to dependent tent map.

2. When |CC(∆X|Xpast)| <
|CC(∆X|Xpast, Ypast)|,

CCCYpast→∆X > 0. Intervention
by Ypast in the joint case

enhanced the structure by
bringing patterns similar to Xpast.
Dynamical influence of Ypast on

∆X is very similar to the
dynamical influence of Xpast on
∆X .e.g.: CCC from independent

autoregressive (AR) process to
dependent AR process.

CCCYpast→∆X is −ve always.
Xpast +∆X was more structured
than Xpast. Intervention by Ypast

in the joint case degraded the
structure. Dynamical influence of
Ypast on ∆X is very different from
the dynamical influence of Xpast on
∆X. e.g.: CCC from independent
tent map to dependent tent map.

+ve

CCCYpast→∆X is +ve always.
Xpast +∆X was less structured

than Xpast. Intervention by Ypast

in the joint case enhanced the
structure by bringing patterns

similar to Xpast. Dynamical
influence of Ypast on ∆X is very

similar to the dynamical influence
of Xpast on ∆X.

Xpast +∆X was less structured
than Xpast. Further, two cases

arise. 1. When |CC(∆X|Xpast)| >
|CC(∆X|Xpast, Ypast)|,

CCCYpast→∆X > 0. Here,
intervention by Ypast in the joint

case enhanced the structure by
bringing patterns similar to Xpast.
Dynamical influence of Ypast on

∆X is very similar to the
dynamical influence of Xpast on

∆X.
2. When |CC(∆X|Xpast)| <

|CC(∆X|Xpast, Ypast)|,
CCCYpast→∆X < 0. Intervention

by Ypast in the joint case
degraded the structure by

bringing patterns different from
Xpast. Dynamical influence of Ypast

on ∆X is very different from the
dynamical influence of Xpast on

∆X .
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Table S2: Criteria and rationale for choosing the parameters (w, δ,B, L) for CCC. Values of each
parameter chosen for Autoregressive (AR), Tent Map (TM), Squid Giant Axon System (SA) and
Predator Prey Ecosystem (PP) are enlisted in the rightmost column. Please refer to the main
paper for details of these four systems.

Param-
eter

Descrip-
tion

Criteria Rationale
Values
Chosen

w
Window
length
∆X

Minimal data length over
which CC rate can be

reliably estimated.

Earlier studies have
revealed that ETC is able

to reliably capture
complexity of even very

short time series [2].

AR: 15
TM: 15
SA: 15
PP: 15

δ Step-size

An overlap of 20− 50%
between successive time
series windows (Xpast of

length L) over which CC is
estimated.

To capture the continuity of
time series dynamics.

AR: 80
TM: 80
SA: 50
PP: 4*

B
Number
of bins

Smallest number of symbols
that capture the time series

dynamics.

CCC requires symbolic
sequences that represent the

underlying dynamics.

AR: 2
TM: 8
SA: 2
PP: 8

L

Window
length of
immedi-
ate past
to ∆X
(Xpast)

and
(Ypast)

After choosing w, δ,B as
above, to check causal

influence from Ypast to ∆X,
we plot ETC(Xpast +∆X)
and ETC(Ypast +∆X) vs.

L.
First criteria : Choose a

value of L at which the two
curves are well separated.
If the above criteria fails
(there is an overlap in the
ETC curves for all L), we
plot ETC(Xpast, Ypast) and
ETC(Xpast +∆X,Ypast +

∆X) vs. L.
Second criteria : Choose a
value of L such that the two
curves are well separated.

Well separation of the
complexity values of time

series blocks (Xpast +∆X)
and (Ypast +∆X) is taken
to give maximum possible
opportunity to Ypast to
influence ∆X as against

Xpast. This L is hence the
best intervention point. If
no such value of L can be

found, the maximum
separation of curves
(Xpast, Ypast) and

(Xpast +∆X,Ypast +∆X),
gives the maximum

opportunity to
(Xpast, Ypast) jointly to

affect ∆X.

AR: 150
TM: 100
SA: 75
PP: 40

*This was an exception with 90% overlap as very short data length was available.

If the above criteria fails (there is an overlap in the curves), it means that at no temporal scale
can Y intervene to make visible its dynamical influence on ∆X (by change of complexity) as against
the dynamical influence due to past of X. We then plot ETC(Xpast, Ypast) and ETC(Xpast +
∆X,Ypast+∆X) vs. L. We choose a value of L such that the two curves are well separated. In case
of AR processes where the first criteria is not met due to the overlap between ETC(Xpast +∆X)
and ETC(Ypast +∆X), the second pair of curves is plotted as shown in Figure S5. The rationale
behind this criteria is to see at which intervention point L do Xpast, Ypast jointly begin to have an
influence on the dynamical evolution of ∆X.

If the two time series are independent or are constant in time and identical, both the above
criteria are bound to fail. This implies that there exists no temporal scale at which there is an
influence from one of these time series to the other. For the case of two independent and uniformly
distributed real time series the curves for both criteria are shown in Figures S7 and S8. There
exists no value of L at which there is a causality from Y to X or vice versa.

4



L

0 100 200 300

N
o
rm

a
liz

e
d
 E

T
C

0.2

0.4

0.6

0.8

X+∆X Y+∆X

L

0 100 200 300

N
o
rm

a
liz

e
d
 E

T
C

0.2

0.4

0.6

0.8

Y+∆Y X+∆Y

(a) (b)

Figure S1: (color online). Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in subfigure (a)
and ETC(Ypast +∆Y ), ETC(Xpast +∆Y ) curves in subfigure (b) for linearly coupled tent maps
(ǫ = 0.2) with Y causing X (simulated as per Eq. 17, 18 of the main paper). w = 15, δ = 100, B = 8
and L is incremented by a value of 5 data points each time. Using the first criteria for selection of
L, L = 100 to 300.
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Figure S2: (color online). Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in subfigure (a)
and ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ) curves in subfigure (b) for non linearly coupled tent
maps (ǫ = 0.2) with Y causing X (simulated as per Eq. 1, 2). w = 15, δ = 100, B = 8 and L
is incremented by a value of 5 data points each time. Using the first criteria for selection of L,
L = 75 to 300.

4 Results

Some additional results for the proposed measure CCC and its comparison with existing methods,
Transfer Entropy (TE) and Granger Causality (GC), are given below.
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Figure S3: (color online). Averaged ETC(Xpast+∆X), ETC(Ypast+∆X) curves in subfigure (a)
and ETC(Ypast+∆Y ), ETC(Xpast+∆Y ) curves in subfigure (b) for predator prey ecosystem with
Y representing Didinium (predator) population and X representing Paramecium (prey) population.
w = 15, δ = 1, B = 8 and L is incremented by a value of 5 data points each time. Using the first
criteria for selection of L, L = 20 to 40.
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Figure S4: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X) curves in subfigure
(a) and ETC(Ypast +∆Y ), ETC(Xpast +∆Y ) curves in subfigure (b) for squid giant axon system
(‘a5t01’) with Y representing the applied stimulus current and X representing observed voltage.
w = 15, δ = 100, B = 2 and L is incremented by a value of 5 data points each time. Using the
first criteria for selection of L, L = 75 to 300. Lower values of L are not used despite sufficient
separation so as to avoid making computation based on the transient stage values.

4.1 Non-linearly coupled tent maps

Non-linearly coupled tent maps were simulated as per the following equations. Independent process,
Y , is generated as:

Y (t) = 2Y (t− 1), 0 ≤ Y (t− 1) < 1/2,

Y (t) = 2− 2Y (t− 1), 1/2 ≤ Y (t− 1) ≤ 1.
(1)
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Figure S5: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X), ETC(Xpast, Ypast),
ETC(Xpast+∆X,Ypast+∆X) curves for coupled AR processes with Y causing X (simulated as per
Eq. 15 with all settings as in Section 5.1.1 of the main paper with ǫ = 0.8). w = 15, δ = 100, B = 2
and L is incremented by a value of 5 data points each time.Using the second criteria for selection
of L, L = 100 to 300.
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Figure S6: (color online). Averaged ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ), ETC(Ypast, Xpast),
ETC(Ypast+∆Y,Xpast+∆Y ) curves for coupled AR processes with Y causing X (simulated as per
Eq. 15 with all settings as in Section 5.1.1 of the main paper with ǫ = 0.8). w = 15, δ = 100, B = 2
and L is incremented by a value of 5 data points each time. Using the first criteria for selection of
L, L = 100 to 300.

The dependent process, X, is as below:

X(t) = 2f(t), 0 ≤ f(t) < 1/2,

X(t) = 2− 2f(t), 1/2 ≤ f(t) ≤ 1,

f(t) = ǫY (t− 1) + (1− ǫ)X(t− 1),

(2)

where ǫ is the degree of non-linear coupling.
The length of the signals simulated in this case was 3000, i.e. t = 1 to 3000s, sampling period
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Figure S7: (color online). Averaged ETC(Xpast + ∆X), ETC(Ypast + ∆X), ETC(Xpast, Ypast),
ETC(Xpast+∆X,Ypast+∆X) curves for independent processes Y and X. w = 15, δ = 100, B = 2
and L is incremented by a value of 5 data points each time.
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Figure S8: (color online). Averaged ETC(Ypast + ∆Y ), ETC(Xpast + ∆Y ), ETC(Ypast, Xpast),
ETC(Ypast+∆Y,Xpast+∆Y ) curves for independent processes Y and X. w = 15, δ = 100, B = 2
and L is incremented by a value of 5 data points each time. Using the second criteria for selection
of L, based on this figure and Fig. S7, L = 100 to 300, avoiding the range of L giving transient
values of CCC.

= 1s and the first 2000 transients were removed to yield 1000 points for causality estimation.
Figure S9 shows the performance of CCC and TE for non-linearly coupled tent maps (as mean
values over 50 trials) as ǫ is varied (CCC settings: L = 100, w = 15, δ = 80, B = 8). The
assumption of a linear model for estimation of GC was proved to be erroneous for most trials and
hence GC values are not displayed.

As ǫ is increased for both linear and non-linear coupling, TEY→X increases in the positive
direction and then falls to zero when the two series become completely synchronized at ǫ = 0.5.
The trend of the magnitude of CCC values is similar to TE, however, CCCY→X increment is in
negative direction. This is because of the fact that with increasing coupling the kind of dynamical
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Figure S9: (color online). Mean of causality values estimated using CCC (a) and TE (b) for non-
linearly coupled tent maps, from Y to X (solid line-circles, black) and X to Y (solid line-crosses,
magenta) as the degree of coupling is increased. With increasing coupling (until synchronization),
magnitude of CCC and TE values increases. CCC values are negative while TE are positive.

influence from Y to X becomes increasingly different than the dynamical influence from the past
values of X to itself.

The range of standard deviation of CCC values from Y to X is 0.0057 to 0.0087 for different
values of ǫ and that from X to Y is 0.0057 to 0.0102. For TE, Y to X, standard deviation range
is 0 to 1.2854 and X to Y , standard deviation range is 0 to 1.0479.

Kullback-Leibler divergence (KL) and Jensen Shannon Divergence (JSD) were also estimated
along with CCC to verify increasing negative values of CCC obtained with increasing non-linear
coupling between tent maps. These results are shown in Figure S10.
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Figure S10: (color online). Mean values of divergence between distributions of non-linearly coupled
tent maps using Symmetric Kullback Leibler (KL) (a) and Jensen Shannon (JSD) (b) divergences
(in nats), and the mean of causality values estimated using CCC from Y to X (solid line-circles,
black) and X to Y (solid line-crosses, magenta) (c), as the degree of coupling, ǫ is varied. For
ǫ < 0.5, CCC and KL/JSD are highly negatively correlated.

4.2 Decimated coupled signals with uniform sampling

It is often the case that the rate of sampling of acquired measurements is not equal to the rate
of generation of the process. Causal inferences are regularly made from such data [3], for e.g.,
fMRI signals [4, 5] as well as other neurophysiological recordings [6], climate data [7]. Two sets of
coupled AR processes were first simulated and subsequently decimated.

Set 1 of AR processes, of order 1, were simulated as below:

Y (t) = 0.7Y (t− 1) + εY,t,

X(t) = 0.9X(t− 1) + 0.8Y (t− 1) + εX,t.
(3)
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Set 2 of AR processes, of order 5, were simulated as below:

Y (t) = 0.7Y (t− 5) + εY,t,

X(t) = 0.9X(t− 5) + 0.8Y (t− 1) + εX,t,
(4)

where, noise terms, εY , εX = νη, where ν = noise intensity = 0.03 and η follows standard
normal distribution. The original length of X and Y simulated in both the sets is 2000. Upon
decimation, the length of the time series reduces. β represents the decimation factor that scales
the sampling frequency. As β is varied from 1 to 0.5, sampling frequency is scaled from its original
value to half its value.
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Figure S11: Frequency Spectrum of dependent AR(1) process from Set 1 without decimation (a)
and when decimation factor equals 0.5 (b). The process does not undergo aliasing on decimation.

Frequency (Hz)

0 0.2 0.4 0.6

A
m

p
lit

u
d

e

0

0.02

0.04

0.06

0.08

Frequency (Hz)

0 0.2 0.4
0

0.02

0.04

0.06

0.08

(a) (b)

Figure S12: Frequency Spectrum of of dependent AR(5) process from Set 2 without decimation
(a) and when decimation factor equals 0.75 (b). The process undergoes aliasing on decimation.

Set 1 of processes, being of order one, have low frequency components in the signal. As a result,
even when β is reduced to 0.5, it does not lead to frequency folding in the spectrum of process Y
and X. Frequency spectrum for a trial of X in this process is shown in Figure S11 for the original
case and the case where β is reduced to 0.5. In case of Set 2, decimation of the signals Y and X
leads to aliasing. This is because higher frequency components are present in the signals, leading
to folding of these frequencies even as β is reduced to 0.8. The frequency spectrum for a trial of
X for its non-decimated version and for decimation with β equal to 0.75 is shown in Figure S12.

4.2.1 Equal decimation of independent and dependent signal

When both signals Y and X from the two sets are decimated by scaling their sampling rate by an
equal decimation factor, β, ranging from 1 to 0.5 at intervals of 0.05, the results obtained using
the three methods, CCC, TE and GC are as shown in Figures S13 and S14. Figure S13 shows the
results for Set 1 while Figure S14 shows results for Set 2 as mean causality values estimated over
10 trials. CCC settings for both sets: L = 150, w = 15, δ = 80, B = 2.

While the values of CCC are relatively consistent even upon decimation (with or without alias-
ing), those of TE and GC are stable only in case of non-aliased decimation. For GC and TE in
the aliased case, even though there is no confounding of the causality direction, the magnitude of
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Figure S13: (color online). Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as
the decimation factor β is varied for both independent and dependent signal. The coupled AR
processes simulated do not undergo frequency aliasing. All three measures perform fairly well in
this case.
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Figure S14: (color online). Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as
the decimation factor β is varied for both independent and dependent signal. The coupled AR
processes simulated become frequency aliased. CCC values are stable compared to TE and GC.

causality estimated is not consistent and reliable.

4.2.2 Decimation of dependent signal

When only signal X is decimated by scaling its sampling rate by a decimation factor β, ranging
from 1 to 0.5 at intervals of 0.05, the results obtained using the three methods CCC, TE and GC
are as shown in Figures S15 and S16. Figure S15 shows the results for Set 1 while Figure S16
shows results for Set 2 as mean causality values estimated over 10 trials. For the length of the two
signals to match, the independent signal considered is truncated at the length of the dependent
signal. CCC settings for both sets: L = 150, w = 15, δ = 80, B = 2.

In this scenario, for both non-aliased and aliased decimation, CCC estimates are much more
stable and consistent (across β) when compared to those of TE and GC, where confounding in
the direction of causality results even upon slightest decimation. It is clear from these results that
CCC is the most robust, reliable and consistent among the three causality measures.

5 Description of CCC Toolbox

The accompanying CCC toolbox, implemented in MATLAB contains the following files:

1. demo_2processes.m calls functions to simulate a system of two coupled AR processes or
tent maps to estimate the value of Compression-Complexity Causality between them.
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Figure S15: (color online). Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as
the decimation factor β is varied for the dependent signal. The dependent AR process simulated
does not undergo frequency-aliasing. Only CCC can capture the correct direction and strength of
coupling when β is decreased.
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Figure S16: (color online). Mean causality estimated using CCC (a), TE (b) and GC (c) for coupled
AR processes from Y to X (solid line-circles, black) and X to Y (solid line-crosses, magenta) as
the decimation factor is varied for the dependent signal. The dependent AR process simulated
becomes frequency aliased. Only CCC can capture the correct direction and strength of coupling
when β is decreased.

2. demo_3processes.m calls functions to simulate a system with three AR processes with cou-
pling between them and estimates the value of conditional Compression-Complexity Causality
between any two variables chosen.

3. coupled_AR.m simulates a system of two unidirectionally coupled AR processes with a
desired level of noise or percentage of non-uniform sampling.

4. puncture.m introduces non-uniform sampling/non-synchronous measurements in the data.

5. coupled_tent.m simulates a system of two unidirectionally non-linearly coupled tent maps.

6. UpdateTent.m updates the values of the tent map at every iteration.

7. coupled_AR_3processes.m simulates a system of three coupled AR processes.

8. conditional_CCC.m estimates conditional Compression-Complexity Causality between
any two input variables (time series) from a given multivariate system.

9. ETC.m estimates individual/joint ETC values. Dn_to_D1.m subroutine called by the ETC
function performs the task of dictionary building.

10. Partition.m bins the given time series before estimating ETC values.
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