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0.1 Introduction to the Maximum Entropy principle: Correlations vs
effective interactions

Consider an n-dimensional space of vectors, x = (xi)
n
i=1 ∈ χ, along with a set of K observables,

Ok : χ→ R, k = 1, . . . ,K. The maximum entropy approach [1, 2, 3, 4] provides the most probable
probability distribution P (x|λ), x ∈ χ, which is consistent with a fixed value of the operators, in
the sense that their average according to P , 〈Ok〉P is constraint to assume a fixed value,

〈Ok〉P = ok (0.1)

(where 〈Ok〉P =
´

dxOk(x)P (x|λ)). In other words the maximum entropy probability distribution
Pme is the one exhibiting highest entropy (i.e., the most random, or less structured distribution)
subject to the constraint (0.1), and to no other constraint. It assumes the form:

Pme(x) =
1

Z(λ)
exp

[
K∑
k=1

λkOk(x)

]
(0.2)

Z(λ) being a normalizing constant. The maximum entropy probability distribution is, hence, for-
mally identical to a Maxwell-Boltzmann distribution in the canonical ensemble at temperature
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= 1, with effective Hamiltonian H = −
∑
k λkOk. It is important to remark that no assumption

at all has been done about thermal equilibrium, ergodicity, nor about the existence of an effective
interaction in energy units: the Maxwell-Boltzmann form is a consequence of the maximum en-
tropy assumption –reflecting, rather, absence of hypothesis– of a probability distribution subject
to constraints on the average of some operators. The values of the Lagrange multipliers λ’s in (0.2)
are such that the constraints in (0.1) are satisfied.

In the context of unsupervised statistical inference, one infers from a finite number M of
experimental measures of the observables Ok, to which correspond the values o(m)

k , m = 1, . . . ,M .
The maximum entropy distribution provides a generative probabilistic model for the data, that
is aimed to be a faithful representation of the experimental dataset and, at the same time, a
generalisation of the dataset, not too dependent on the specific realisation of the database that is
being inferred. For this reason, P is chosen to reproduce the experimental value of a limited set of
observables, depending on the dataset. Ideally, a faithful and general model should be consistent
with the minimum set of experimental averages that allow to reproduce some essential database
properties and, at the same time, that may be significantly inferred given the database finiteness.
Once the observables have been selected, a possible choice for their value ok (determining the
value of the parameters λk) in 0.1 is the experimental average, 〈Ok〉 = (1/M)

∑M
m=1 o

(m)
k . This

choice ok = 〈Ok〉 is equivalent to the Maximum Likelihood prescription of the whole experimental
database:

{λ∗k}k = arg max
{λk}k

M∑
m=1

lnP (x(m)|λ) (0.3)

where x(m) is the m-th experimental configuration, and o(m)
k = Ok(x(m)). The parameters λ are

called effective interactions, in the language of statistical physics. In the case that the observables
to be reproduced by P are the data correlations of order n ≤ p (where the correlations of order
n are defined as C(n)

i1,··· ,in = 〈xi1 · · ·xin〉), the effective interactions assume the form of n-th order
tensors J (n) coupling n-plets of vector coordinates, with n = 1, . . . , p.

A self-consistency criterion for the choice of the sufficient statistics Ok is that of calculating dif-
ferent nontrivial observables according to P (different from the sufficient statistics, i.e., observables
that P is not required to reproduce by construction, and that cannot be expressed in terms of the
sufficient statistics), and comparing them with their experimental counterparts. In particular, a
criterion is that of choosing the n ≤ p-th order correlations as sufficient statistics, with p being the
minimum value such that the p+1-th order experimental correlations are satisfactorily reproduced
by Pme (i.e., 〈xi1 · · ·xip+1

〉 ' 〈xi1 · · ·xip+1
〉P ), and such that all the parameters corresponding to

such sufficient statistics may be significantly inferred from the data.
Correlations and effective interactions. The effective interaction tensors J (n) may ad-

mit, in certain circumstances, an interpretation regarding the mutual effective influence among
variables, beyond the statistical correlation among them (whose experimental value is C(n)). Cor-
relations and effective interactions are actually different. Focusing for simplicity in p = 2, the
pairwise correlations are but the statistical consequence of the effective interactions among couples
of landmarks causing them. This is the case in the direct problem (the calculation of C(2) from
J (2)): in this case, it may happen that the matrix J (2) is sparser than C(2): there are couples of
variables not influencing each other that, nevertheless, result statistically correlated. In the direct
problem, the Maximum Entropy method may allow for a discrimination of the spurious correlations
of couples of components that are correlated although they do not influence each other (but are,
instead, commonly and mutually influenced by other components). This a frequent phenomenon
in biological data [5, 6], with an obvious interpretation in statistical physical terms: in the general
case, the mutual influence among a sparse set of couples of bodies propagates statistically, leading
to emergent, collective phenomena. A paradigmatic and extreme case of this general phenomenol-
ogy is critical behaviour [7], in which microscopic interactions lead to macroscopic correlations:
long-range and high-order body correlations originate from short-range, sparse and pairwise inter-
actions [5]).

Probably the simplest illustration of the emergence of spurious statistical correlations is that
of three variables (x1, x2, x3 in fig. 0.1, of which only two of them are strongly interacting (in the
figure J12 = J13 = 2), while the second and third are moderately interacting (or even negatively
interacting, as in the figure: J23 = −1). Such an information is not accessible from the emerging
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Figure 0.1: Effective interactions (left) versus the emerging statistical correlations (right) among
three binary variables, σi = ±1, i = 1, 2, 3. The effective interactions are given by the symmetric
matrix J12 = J13 = 2, J23 = −3/4 (i.e., 2,3 are negatively coupled). The correlations 〈σiσj〉
are given by their expectation value according to the Maxwell-Boltzmann probability distribution
corresponding to a pairwise interaction given by matrix J : 〈σiσj〉 =

∑
σ σiσjP (σ), with P (σ) =

exp(+
∑
i<j σiσjJij)/Z where Z =

∑
σ exp(+

∑
i<j σiσjJij). The line width is proportional to

the absolute value |Aij | of the corresponding matrix element. The dashed line in the J triangle
indicates that J23 is negative (i.e., there is a tendency of 2 to decrease when 3 increases and
vice-versa). Such tendency is, however, not reflected in the correlation matrix, which presents all
positive elements.

correlations 〈xixj〉P (·|J) (in the direct problem), revealing a strong, positive correlation among all
the variables. Conversely, in the inverse problem (i.e., when an empirical correlation matrix is
given, resulting from an average of a sufficiently high number of measures), the Maximum Entropy
method may provide not only a generative model, P (·|J (n)

∗ ), but also the most probable interaction
matrices J (n)

∗ suggesting that, indeed, the correlation among 2 and 3 is (most likely, given the
data and the sufficient statistics, and within the Maximum Likelihood hypothesis) a statistical
consequence of the mutual influences of 1, 2 and of 1, 3. This information is not unambiguously
elicited from the data, but the result of an inference procedure: the most probable guess given the
inference model and the ambiguity induced by the data finiteness.

0.2 Maximum Entropy inference from pairwise correlations with a priori
constraints

In this section we solve the problem of the Maximum Entropy (MaxEnt) inference from pairwise
correlations (i.e., p = 2), in the presence of linear constraints involving the coordinates.

In the absence of constraints, the Maximum Likelihood solution to the problem, equation (0.3) is
analytic and straightforward. Suppose that one infers from a database composed by S experimental
realisations {x(s)}Ss=1 of a real, D-dimensional vector, x = (xi)

D
i=1 ∈ RD. The sufficient statistics

to infer from is by hypothesis the correlation matrix (supposing null-average vectors): Cij = 〈xixj〉
where 〈·〉 represents, as before, the experimental average: a symmetric, positive definite matrix.
The MaxEnt probability distribution is, consequently, the multi-variate normal distribution:

P (x|J) =

[
det J

(2π)n

]1/2
exp[−1

2
x†Jx]. (0.4)

The Maximum Likelihood solution for the matrix J , J∗, is that satisfying that the theoretical
pairwise correlations 〈xixj〉P = J−1ij coincide with the experimental correlations Cij . This is
satisfied whenever J∗ = C−1.

We now consider the presence of linear constraints involving the coordinates, xi. Each linear
constraint may be expressed in the form a†jx = cj , being aj a real D-dimensional vector and cj a
real constant, for the j-th constraint. If all the vectors in the database {x(s)}Ss=1, are subject to
the constraints, each constraint induces a null mode (a zero eigenvalue) in the experimental covari-
ance matrix. In this case, the Maximum Likelihood solution to the problem, i.e., the probability
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distribution P (·|J) such that 〈xixj〉P = Cij cannot simply be J∗ = C−1, since matrix C actually
exhibits a vanishing determinant.

We will see that Maximum Likelihood solution in this case is J∗ = C−1, where the −1 exponent
means the pseudo-inverse operation, a generalisation of the matrix inverse operation in which the
null eigenvalues are avoided. We define the pseudo-inverse of the real, square matrix A as:

A−1ij =
∑
k|εk 6=0

ε−1k η
(k)
i η

(k)
j (0.5)

where εk, η
(k)
j are the k-th eigenvalue and the j-th component of the k-th eigenvector of A, respec-

tively.
We first consider the solution of the direct problem, 〈xixj〉P from J , in a situation in which

the interaction matrix J is such that rank(J) = r < D. In other words, J exhibits D − r null
eigenvalues. Suppose that the eigenvalues λj of J are ordered in decreasing order, so that λj = 0
for j = r + 1, . . . , D. In this case, the probability distribution P (x) in equation 0.4 is, trivially,
constantly zero since the determinant of matrix J vanishes. However, we can define a real function
in the space of the D-dimensional variables x:

P̃ (x) =
1

Z̃
exp[−x†Jx] (0.6)

where Z̃ is a normalising factor involving the non-zero eigenvalues of J only:

Z̃ =

[
d̃etJ

(2π)r

]1/2
d̃etJ =

r∏
k=1

λk (0.7)

The function P̃ may be considered as a normalised probability distribution, but only over the
r-dimensional subspace of RD expanded by the first r eigenvectors of J : S+ = span{e(k)}rk=1 with
1 ≤ k ≤ r. In other words, P̃ is a probability distribution on the subspace of RD, S+, defined by
the vectors that are already subject to the constraints, for any value cj ’s of the constants associated
to the constraints.

One can easily define a proper, normalised probability distribution P defined in RD, by regu-
larising the null modes associated to the constraints:

P (x) = P̃ (x)

D∏
j=r+1

δ(x′j − cj) (0.8)

where the D − r-dimensional vector (x′r+1, . . . , x
′
D) is a vector of the projection of x in a basis of

vectors expanding the space of the constraints (as the vectors aj defining the constraints, before,
x′j+r = a†jx). On the other hand, we define the r-dimensional vector x′ = (x′1, . . . , x

′
r) as the

projection of x over the first r eigenvectors of J (associated to a non-null eigenvalue): x′ = Ex,
where E is the r ×D matrix defined as the row-disposed eigenvectors, Eij = e

(i)
j

1.
To each of the null eigenvalues corresponding to a constraint a·x = c, is associated an invariance

of P̃ with respect to the linear operator G(c) that changes the value of the constraint, i.e., such
that a · (G(c)x) = c:

P̃ (x|J) = P̃ (G(c)x|J). (0.9)

Indeed, G acts on the subspace S0 only, while it is the identity in the subspace S+ (where S0 is
defined as the complement of S+, i.e., RD = S+ × S0). In the physical language, each eigenvector
corresponding to a constraint is called a null mode, and represents a symmetry reflected in the
invariance of the function P̃ with respect to the symmetry. The function P , in its turn, represents
vectors for which the symmetry is broken, as the value of the constraint has been fixed. For
example, if the vectors are constrained to have a constant sum of its components,

∑D
i=1 xi =

c, the corresponding eigenvector, or null mode e, has all its components equal to ei = D−1/2.
Consequently, the function P̃ is invariant under scale transformations.

We are now interested in the calculation of a general n-order cumulant 〈〈xs1 · · ·xsn〉〉P according
to the distribution P in (0.8), with sj = 1, . . . , D. As it can be seen immediately, the n-th order

1We make notice that EE† = Ir but E†E 6= ID (where Id is the identity matrix in d dimensions).
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cumulant is related to the n-th order derivative of the generating function through the standard
cumulant expansion equation:

〈〈xs1xs2 ...xsn〉〉P =
∂n ln Z̃[h′]

∂h′s1∂h
′
s2 ...∂h

′
sn

∣∣∣∣∣
h=0

(0.10)

where the generating function Z̃[h] has the form:

Z̃[h] =

[
r∏

k=1

ˆ +∞

−∞
dz′k

]
e−

1
2x†Jx+h†x (0.11)

We notice that Z̃[0] = Z̃. We would like an analytical expression for Z̃[h]. Using the relations
x′ = Ex and J = E†ΛE, where Λ is the r × r diagonal matrix whose diagonal is λ1, . . . , λr, one
obtains:

Z̃[h] =

r∏
k=1

ˆ +∞

−∞
dx′k exp

[
−1

2
x′

2
kλk + x′kh

′
k

]
(0.12)

where h′ = Eh. Using Gaussian integration rules, one finds:

Z̃[h] = Z̃e
1
2h†J−1h (0.13)

where J−1 is the pseudo-inverse of matrix J , J−1ij =
∑
k≤r λ

−1
k e

(k)
i e

(k)
j . This equation is the

generalisation of the standard expression for the generating function of the multi-variate normal
distribution, to the case in which matrix J is be non-invertible. As it is evident from the expression
of Z̃[h] and from the cumulant expansion (0.10), and as it happens with the normal distribution, the
only non-zero cumulant is the second-order cumulant 〈〈xixj〉〉P , equal to the correlation 〈xixj〉P
in the case of null-averaged vectors. Its form is, from equation 0.10:

〈xixj〉P = J−1ij (0.14)

where J−1 is the pseudo-inverse of matrix J .
The theoretical correlation matrix whose elements are 〈xixj〉P exhibits, as matrix J does, rank

equal to r. Hence, the theoretical correlation matrix Mij = 〈xixj〉 as a function of J (i.e., the
direct problem) is M = J−1. Consequently, the J∗ that is needed to satisfy Cij = 〈xixj〉P given
an experimental correlation matrix C (i.e., the inverse problem) is J∗ = C−1, where the −1 power
means the pseudo-inverse operation.

0.3 Constraints in the database of facial modifications
As we have explained in the main text, the facial modifications in the 2017 experiment are defined
in terms of a set of 17 2D landmarks which are redundant in the sense that the positions of some
of them may be deduced in terms of 10 coordinates only. The facial landmarks are, in particular,
symmetric by construction, and hence the coordinates of the right-side landmark are determined
given those of the left side. We have, hence, considered a subset of n = 8 landmarks only (see figure
0.2 Furthermore, the landmark coordinates rc,i (where c = x, y) in the database S are still subject
to 6 constraints: indeed, 2× n− 6 = 10, the numer of degrees of freedom. For instance, the nose
endpoint abscissa is constrained to lie in the center of the image, ∆x,9 = 0, and the jaw landmark
is defined to be at the same heigth of the mouth, ∆y,3 = ∆y,7. We have intentionally kept such
redundant information in the inferred training database. Indeed, the redundant information turns
to be necessary for the correct interpretation of the inference parameters, as we will see in section
0.8.

The database S = {∆(s)}Ss=1 of facial displacements is, hence, highly constrained in the various
facial coordinates. The following constraints hold, for all the vectors in the database:
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Figure 0.2: Left: definition of the face space in terms of inter-landmark distances d. The landmark
coordinates are, instead, the x, y 2D coordinates ~ri of a subset of seven landmarks, marked with
blue circles. Right: all the landmarks used for the facial deformation algorithm described in [8].

∆4,x = 0 (0.15)
∆4,y −∆5,y = constant (0.16)
∆7,y −∆3,y = 0 (0.17)
∆0,y −∆1,y

∆0,x −∆1,x
= constant (0.18)

∆0,y −∆2,y

∆0,x −∆2,x
= constant (0.19)

∆1,x −∆0,x

∆0,x −∆2,x
= constant (0.20)

The last three constraints ensure that the eye aspect ratio remains unchanged with respect to the
average facial vector ∆ = 0 (otherwise, the image deformation algorithm corresponding to the
landmark deformation 0 → ∆ could lead to an ellipse-like shaped eye). Indeed, the constants
in the right-hand side of each equation correspond to the value that assumes the left-hand side
quantity in the average facial vector.

Each of these constraints induces a null mode in one of the correlation matrices C(xx), C(yy), C(xy)

(those involving only x’s coordinates, in C(xx); those involving only y’s, in C(yy); those involving a
x and a y coordinate, in C(xy)). As we have shown before, the inverse problem in this case is solved
through the matrix pseudo-inverse operation. In these circumstances, the probability distribution
L(·|J,h) described in the main article refers to a probability distribution in the 10-dimensional
sub-space of coordinates that are invariant under the symmetries associated to the constraints (P̃ ,
in the notation of section 0.2). Strictly speaking, to become a proper probability distribution in
the space of facial modification vectors ∆ it has to be regularised as in section 0.2:

P (∆|J,h) =

(∏
µ

δ(∆′µ − cµ)

)
P̃ (∆|J,h) (0.21)

where P̃ is the distribution that in the main article is called L = exp(−H)/Z, the product is over
the ∆ components over the 6 eigenvectors of the global correlation matrix with a null eigenvalue,
λµ = 0, and ∆′ = E∆, with E being the matrix of column-eigenvectors of C (and of J).
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0.4 Correlation vs interaction matrices
In the particular case of our database, the main source of spurious correlations is not collective
behaviour but the presence of the a priori constraints among various landmark coordinates, which
are imposed in the experimental construction of the face space vectors (see sec. 0.3 and [8] for a
precise description of the constraints), and that play the role of the strong interaction 1, 2 in fig.
0.1. The MaxEnt method subtracts the effect of such constraints and provides a sparser interaction
matrix. Our MaxEnt inference scheme discounts the effect of constraints since we eliminate the
matrix C eigenvectors corresponding to the constraints (through the pseudo-inverse operation
C−1), see sec 0.8 for an in-depth discussion.

In figure 0.3 we present a comparison among the matrices C(xx) and J (xx), C(yy) and J (yy), C(xy)

and J (xy). As a general observation, the effective matrices are sparser than the correlation matrices,
as expected. In particular, while both C(xx)

6,3 and C(xx)
7,3 are statistically significant, only J7,3 is

(the effective interaction attributes the 6 − 3 correlation to the ∆7,x −∆3,x = 0 constraint). The
same happens, for instance with C(yy)

1,3 and C(yy)
0,3, statistically significant, while only J0,3 is

(the 1− 3 correlation is attributed to the 0− 1 constraint).
We conclude that the effective interaction coupling matrix J provides information beyond the

experimental correlations, since it disambiguates the correlations propagated by the constraints,
attributing them to the effect of a reduced set of couplings. In section 0.8 we illustrate the fact
that an alternative method of avoiding the constraints, consisting in fitting a dataset in which
the redundant variables are eliminated (instead of keeping them and avoiding the influence of the
constraint-eigenvectors), may lead to J matrices whose interpretation is misleading.

0.5 Longitudinal and Torsion interaction strengths
The n × n vertical, horizontal and oblique correlation matrices are defined as the corresponding
correlations among landmark fluctuations: C(xx)

ij = 〈∆i,x∆j,y〉, and the same for C(xy), C(yy). The
whole 2n × 2n correlation matrix C is defined as Cµν = 〈∆µ∆ν〉, where the 2n Greek indices
µ = i, ci denote the ci = x, y coordinates of the i-th landmark. We define analogously the vertical,
horizontal and oblique interaction matrices. The relation among these matrices is given by:

C =

(
C(xx) C(xy)

C(xy)† C(yy)

)
, J =

(
J (xx) J (xy)

J (xy)† J (yy)

)
, C = J−1 (0.22)

where the −1 power means the pseudo-inverse operation.
In their turn, the longitudinal and torsion interaction matrices, J‖, J⊥, correspond to the

displacements along, and normal to, the segment joining the landmarks i and j, called êij =

〈~rij〉/rij , where ~rij = ~rj − ~ri and rij = |〈~rij〉|. These are defined so that the matrix elements J‖ij ,
J⊥ij are the J (xx)

ij and J (yy)
ij couplings, but in a (ij−dependent) rotated basis such that the x-axis

coincides with the i, j inter-landmark segment versor, êij . Henceforth, the J‖ and J⊥ matrices are
not obtained by a rotation of the original matrices J (xx) and J (yy). Instead, each J‖ij element results
from a whole inference procedure in a different basis depending on the couple ij. In particular,
J
‖
ij = J (xx)

ij(êij), where J (xx)(êij) is the inferred matrix obtained from the pseudo-inverse of matrix
C(êij) in a coordinate system in which the x axis coincides with the ij-segment (in other words,
C(êij) = R†ijCRij , where Rij is the 2D rotation matrix by the angle −αij , and the matrix product
is over the x and y blocks of matrix C).

We remark that there is less information in J
‖
ij , J

⊥
ij (for all i, j) than in the whole effective

interaction matrix J (since the matrix whose matrix elements are J (xy)
ij(êij) is not J‖, nor J⊥).

We now provide a clearer interpretation of the longitudinal and torsion effective interaction
matrices. J‖ij , J

⊥
ij capture the relative relevance of the fluctuations around the average distance

〈rij〉, and of angle fluctuations around αij , respectively. Large values of J
‖
ij imply that the distance

among i and j in the direction of its average axis is highly “locked”, i.e., it tends to exhibit small
fluctuations, from sample to sample, around its most probable value. For instance (see figure 4
in the main text), a small fluctuation δ

‖
4,7 = |(~∆4 − ~∆7) · ê4,7| of the 4, 7-segment distance with

respect to the average face ∆ = 0 implies a large energy increment, J‖4,7δ
‖
4,7

2
and, consequently,

a large decrement of the probability density L, proportional to exp(−J‖4,7δ
‖
4,7

2
). Conversely, a
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Figure 0.3: Comparison between matrices C and J . Top left: the C(xx) box of matrix C (upper
right triangle) versus the J (xx) box of matrix −J . Top right: idem, but for C(yy) and J (yy). Bottom
left: C(xy). Bottom right: J (xy). Mind that the J matrix is such that negative matrix elements
represent ferromagnetic couplings, or affine interactions. As a general trend, matrix J is sparser
than matrix C, as expected. The matrices C and J exhibit similar matrix elements, except in
couples of coordinates involved in the same constraint. In the top row, the diagonal has been set
to zero.

fluctuation of the 6, 7 segment distance δ‖6,7 will give rise to a small or non-significant decrement of
the probability of the resulting facial vector since the longitudinal coupling constant J‖6,7 is small,
a fact that highlights the prominent importance of the inter-landmark distance r4,7 over r6,7 in
the process of facial discrimination. In the same way, fluctuations in the transversal components
of both segments, δ⊥4,7 and δ⊥6,7 (and consequent fluctuations of the inter-landmark segment angles
around α4,7 and α6,7), have a strong impact in their probability of being sculpted (i.e., in their
perceived attractiveness), since both torsion coupling constants J⊥4,7 and J⊥6,7 are large in absolute
value.

0.6 Dependence of J on inter-landmark distances and angles
A different, interesting aspect of the matrix of effective interactions J is the dependence of the
interaction strengths among landmarks i, j as a function of their average distance 〈rij〉 and average
segment angle αij . We stress that 〈rij〉 and αij are meta-parameters in the sense that that they
are not codified in the database S and, hence, are not inferred (the facial vectors ∆ are actually
fluctuations around the average single-landmark positions). From a cognitive point of view, one
would expect that the interaction strengths |J (xx)

ij |, |J (yy)
ij |, |J (xy)

ij | among couples of nearby
landmarks should tend to be stronger for smaller values of rij or, at most, that they do not present
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Figure 0.4: The t-value corresponding to the matrix elements J‖ij , J
⊥
ij versus the inter-landmark

average distance 〈rij〉.

an increasing trend (which would mean that farther away landmarks influence each other more
than closer landmarks). In its turn, if the ij coupling absolute value decreases with αij , this would
indicate the prominence of horizontal over vertical inter-landmark segments, and vice versa.

The data does not allow for sharp conclusions at these regards. However, and although the
absolute value of the J matrix elements do not show a clear trend with rij nor with αij , some
interesting information can be retrieved from such analysis. Indeed, a moderate decreasing trend
is observed in |J‖ij | vs. rij , signifying that nearer landmarks tend to influence each other more
than farther away landmarks, but only along the inter-ij landmark segment, in the sense that
only the longitudinal coupling presents such trend. Interestingly, the trend is lost when the x, y,
xy components of J are plotted vs. rij . The absence of a clear trend with αij indicates lack of
prominent importance of horizontal versus vertical inter-landmark segments.

We show in figures 0.4,0.5 the quantities J‖ij , J
⊥
ij versus 〈rij〉 and αij , respectively (see the main

article). Although no clear trend is observed, it is apparent a moderate decreasing trend of |J‖ij |
versus 〈rij〉, as referred in the main article, and a slight decreasing trend of |J⊥ij | versus αij .

We notice that, in the notation of the article, negative values of J indicate the tendency to
positive correlations (a ferromagnetic interaction, in the statistical-physical language).

0.7 The Harmonic inference in the limit C(xx), C(yy) � C(xy)

It can be shown that the solution of the inverse problem, at first order in the limit C(xy) �
C(xx), C(yy)), is:

J (xx) = C(xx)−1 (0.23a)

J (yy) = C(yy)−1 (0.23b)
J (xy) = −J (xx)C(xy)J (yy) (0.23c)

and that, in this limit, it is:

Z =
(2π)n

(det J (xx) det J (yy) det J (xy))1/2
(0.24)

This can be shown by Gaussian integration, or approximating the inverse of the matrix
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Figure 0.5: The t-value corresponding to the matrix elements J‖ij , J
⊥
ij versus the angle subtended

by ê(ij) with the x-axis, αij .

J =

(
J (xx) J (xy)

J (xy)† J (yy)

)
(0.25)

by using the first-order (inA) matrix expansion: [B(1+A)]−1 ' (1−A)B−1, withB =

(
J (xx) 0

0 J (yy)

)
.

Indeed, the experimental matrices C(xx), C(xx) are larger than C(xy). The approximated solu-
tion, equation 0.23 is, consequently, a rather good approximation. In figure 0.6 we show this by
comparing the exact J (xx), J (yy), J (xy) as different blocks of J = C−1, versus the ones resulting
from equation (0.23).

The relative influence of oblique correlations may be also assessed by defining a simpler model,
that we will call the null-xy model, consisting in neglecting oblique interaction terms (taking J (xy) =
0). An even simpler model, that we will call dot model, consists in neglecting oblique interactions
and supposing that the couplings J (xx) and J (yy) are equal:

Hdot =
1

2

∑
i,j

J
(dot)
ij

~∆i · ~∆j (0.26)

In this case the probability distribution is simply:

Pdot(∆x,∆y|J (dot)) =
(2π)n

det J (dot)
exp

(
−H(dot)[∆x,∆y]

)
(0.27)

where J (dot) is the inverse matrix of C(dot)
ij = 〈~∆i · ~∆j〉.

We have assessed the efficiency of the dot and null-xy models by evaluating their efficiency
in the classification task. As we show in section 0.16, neglecting the oblique correlations (in the
null-xy model) and the anisotropy of vertical/horizontal correlations (in the dot model) leads to
a poorer performance. This provides a quantitative assessment of the relative influence of these
terms. We conclude that the influence of oblique correlations is crucial, and not negligible, in the
facial perception process.

0.8 Two ways of inferring with constraints in the database of facial mod-
ifications

In section 0.2, we have exposed a method of MaxEnt inference (from pairwise interactions) from a
database exhibiting linear constraints. Within this method, all theD components of the vectors are
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Figure 0.6: The comparison between the exact J = C−1 and the approximated J computed as in
equation 0.23. Left column: approximated J . Right column: exact J . First, second and third row:
J (xx), J (yy) and J (xy) respectively.

considered, and inferred from, despite they are redundant. The resulting experimental correlation
matrix C is singular as it exhibits D − r null eigenvalues, each one corresponding to a constraint.
However, the influence of the constraints on the inferred model is subtracted by defining a proba-
bility distribution in the subspace of the coordinates that are invariant under the linear operation
associated to the constraint. Mathematically, this is done through the pseudo-inverse operation
(see eq. 0.14), which discards the subspace expanded by the eigenvectors corresponding with null
eigenvalue. The corresponding inferred probability distribution corresponds to a system which is
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invariant under rescaling of the constraints cj , equation (0.9).
An alternative method to infer P avoiding the influence of constraints consists in inferring only

a subset of r non-redundant, unconstrained variables, in terms of which the correlation matrix has
rank equal to r. As mentioned before and in the main article, this method may lead to a matrix
of effective interactions leading to a less clear interpretation. The Jij elements will reflect in this
case the influence of the constraints in the considered r variables. Oppositely, with the null-mode
subtraction method, the J matrix represents a system which already satisfies the constraint (see
section 0.4) and, for this reason, the Jij matrix elements do not reflect its influence on the data.

An illustration of these concepts is shown in the main article, where we compare matrices C
and J . The null-mode subtraction method provides a matrix J which is actually sparser than
matrix C. This does not occur when inferring from a reduced, non-redundant set of variables.

A further, particularly clear illustration is seen in terms of inter-landmark distances d = (di)
10
i=0,

an alternative parametrization of the facial vectors ∆ (see the precise definition in [8] and in figure
0.2) in terms of 11 vertical or horizontal distances separating couples of landmarks. The function
that maps a vector of inter-landmark distances d into a vector of landmark coordinates ∆ is one-
to-one (and depends on some distances of the reference portrait). The distances d are subject to
a constraint, reflecting the scale invariance of the problem [8]:

∑4
i=1 di = 1, which signifies that

all the distances di are in units of the total face length (see figure 0.2). This constraint induces a
null mode in the correlation matrix.

We now compare the effective interaction matrices corresponding to the two alternative ways
of inference discussed before. We first calculate, see figure 0.7, the matrices J (−k) = C(−k)−1, the
inverse of the D−1×D−1 correlation matrices C(−k)

ij = 〈didj〉 in which the k-th row and column
have been removed, i, j 6= k. The matrices J (−k) are presented in figure 0.7 for k = 1, 2, 3, 4,
compared with matrices C(−k).

We observe that the variables involved in the constraint result to be anticorrelated, C(−k)
ij <

0 when both i, j are in the set 1, 2, 3, 4, a fact fact may be attributed to the presence of the
constraint (e.g., vectors with larger distances d1 tend to exhibit lower d2’s, since, for all vectors,
d1 + d2 + d3 + d4 = 1). Indeed, also −J (−k)

ij < 0 for 1 ≤ i, j ≤ 4 and such that i, j 6= k , i 6= j:
it is necessary an anti-ferromagnetic interaction, or a statistical tendency of variable i to decrease
when variable j increases, in order that the theoretical distribution associated to J (k) describes
the statistics of the set of variables. Such statistical tendency is on the top of other statistical
tendencies, of cognitive origin, not related to the constraint. In other words, the matrices
J (−k) describe the data statistics of two different origins: those associated to the constraint, and
those of cognitive origin.

Second, in figure 0.8 we present the resulting effective interaction with the null-mode subtraction
method, using as J the pseudo-inverse of matrix C. We observe that, interestingly, all the couplings
−Jij > 0 when both i, j belong to the set {1, 2, 3, 4}, implying a ferromagnetic effective interaction
in the physical language, or a positive tendency of di to increase when dj increases. In the pseudo-
inverse case, J represents the statistical effective interaction with the influence of the constraint
subtracted. We learn information of cognitive, “physical” origin from J , that was veiled in the
matrices J (−k)’s, influenced by the presence of the constraint. In particular, we learn that the
experimental subjects tend to prefer higher eyes, higher d1, in facial modifications with larger
noses, larger d2.

In conclusion, the method of null-mode removal that we have used in this work allows, in general,
for a more faithful interpretation of the effective parameters with respect to the alternative method
of inferring from a set of non-redundant variables. It is important to stress that the generative
model obtained from J and from J (−k) is expected to be equally faithful. In other words, the
difference discussed in this section regards but the interpretation of Jij elements, and only in
situations in which the parameters actually admit an interpretation, as it is the case in the present
and in other problems in biophysics and neurophysics. Indeed, the efficiency of both generative
models as a classifier in the two groups of subjects (male/female, S = SA ∪ SB), results to be
equivalent, see section 0.16.

0.9 Average proportions and pairwise correlations
Facial beauty has been related to proportions since the Renaissance [9, 10], and most modern
machine learning studies pose the problem in terms of proportions too [11, 12, 13, 14, 15, 16].
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Figure 0.7: t-value corresponding to the matrices C(−k) (upper right triangle) and J (−k) (bottom
left triangle), in terms of inter-landmark distances, and avoiding the k-th distance, dk. Top left,
top right, bottom left and bottom right correspond, respectively, to k = 1, 2, 3, 4. We can observe
that, for i, j = 1, 2, 3, 4, all the elements of Jij are positive. The diagonals of all matrices have
been set to zero for a clearer comparison.

In the main text we have explained that the dataset is faithfully described by a MaxEnt prob-
ability distribution L(x|J,h), whose sufficient statistics is the matrix of pairwise correlations. We
have also argued that, for a complete statistical description of the database of facial modifications,
a model based on pairwise correlations is not enough. This implies that proportions, or ratios
among facial distances, contains most of the information present in the database, although there
is significant information, of cognitive origin, beyond proportions. We here justify such state-
ment, making notice that the information regarding facial proportions is codified in the matrix of
correlations among couples of facial distances.

Consider two facial coordinates, rα, rβ , referring to the x or y coordinates of two landmarks,
say i and j. We will consider their ratio, rα/rβ , which is the mathematical expression of a pro-
portion. Calling r̄α = 〈rα〉 the experimental average value, one has rα = r̄α + ∆α, by definition of
displacement ∆α. The displacements around the average, ∆α, are much lower than the averages
r̄α, for all coordinate, α (see [8]). This justifies a Taylor expansion of rα/rβ for low ∆’s. Indeed,
to the second order in the ∆’s:

rα
rβ

=
r̄α
r̄β

(
1− ∆β

r̄β

)
+

∆α

r̄β
− ∆α∆β

r̄β
+O

[(
∆

r

)2
]

(0.28)

The experimental average of this expression 〈rα/rβ〉 is, up to an additive constant, equal to
−(1/r̄2β)〈∆α∆β〉 (having used that 〈∆α〉 = 0). Hence, the average proportions are completely
determined, in the case of small displacements, by the pairwise correlations.
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0.10 Harmonic interactions and elastic constants
In the main article we have explained that the 2-MaxEnt model for vectors of facial distance
displacements ∆ may be interpreted as the Maxwell-Boltzmann distribution corresponding to a
set of particles in 2D interacting through a set of three anisotropic, couple-dependent springs,
in the canonical ensemble. We will here justify such statement. We will focus in a couple of
landmarks, say i, j. We will call xi, xj the components of the position of landmarks i, j over two
versors in the plane, ê(i), ê(j), respectively. In other words: xi = ~ri · ê(i) and the same for j, in
the notation of the main article. Given the coordinates xi, xj , and if ê(i) = ê(j), the quantity
δij = xi − xj − (x̄i − x̄j) is the change in the distance among i and j with respect to the average
vector, and along the common axis ê(i). For example, if the versor is the vertical axis, δij indicates
the shift of the vertical distance among landmarks i, j with respect to the average distance among
i, j. We will define the elastic interaction energy as (1/2)kijδ

2
ij , which is minimum and equal to

zero whenever the distance among i, j is unchanged with respect to the average, δij = 0, regardless
on the single-landmark displacements xi, xj . We make notice that expanding, again, in δi = xi− x̄i
to the second order in δi and δj , it is: δ2ij = −2δiδj + b + O[δ2], where b is a constant in δi and
δj , depending only on x̄i and x̄j . Henceforth, the elastic interaction energy, E = (1/2)kijδ

2
ij is,

up to a constant, and for small fluctuations around the average, = −2δiδjkij , which is the form
of the interaction energy in the pairwise Hamiltonian model with the following relation among
elastic constant and effective interaction matrix element: kij = −(1/2)Jij . Fixing, for example,
ê(i) = ê(j) = êij , the versor joining the average position of both landmarks, êij = 〈~ri−~rj〉/|〈~ri−~rj〉|,
we have that k‖ij = −(1/2)J

‖
ij , and idem for the perpendicular components of ~r, ⊥, and for the

vertical, horizontal and oblique components of ~r.

0.11 Cognitive origin of non-linear correlations
In the experiments presented in [8], the subject sculpts her/his ideal facial modification through
the interaction with a software called FACEXPLORE, based on genetic and image deformation
algorithms. The sculpture process consists in a sequence of multiple left/right choices among
couples of facial images, eventually leading to an estimation of the ideal modification according to
the subject. Actually, the genetic algorithm performs the recombination and mutation steps,
while the single experimental subject actually plays the role of the selection step, through her/his
choices.

The genetic algorithm used (called Differential Evolution) processes different coordinates inde-
pendently (see the SI of [8]). The only correlation among coordinates is expected to be induced
by the selection process, performed by the human subject. As a consequence, one should expect
that the only origin of correlations among coordinates in the populations sculpted by subjects (by
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the same or by different subjects) are of cognitive nature.
In fact, this is not the case: part of the correlations that one observes experimentally are due

to an artifact of the algorithm. In a null-model experiment with a random sequence of left/right
choices, the resulting database exhibits significant non-linear correlations of order 2 and 3 among
facial coordinates. The correlations of order three, 〈∆i∆j∆k〉, are statistically compatible with
the 3-order correlations observed in the human experiment [8].

The solution of this paradox is that, while the genetic algorithm does not introduces correlations
in the recombination and mutation steps, it actually may amplify the correlations among facial
coordinates which are present in the initial condition of the null-model genetic population of facial
vectors. Such initial populations are trivially correlated, since some constraints were imposed in
the definition of the face space: mainly

∑4
i=1 di = 1 and d10 < d5 (see section 0.8 and figure 0.2).

In reference [8] we proposed a method to “subtract” the influence of the a priori, non-cognitive
or artifact correlations present in the null model experiment, from the cognitive true correlations
that we observed. The method revealed that the artifact pairwise correlations did not have a
significant impact in the results. We suspect that correlations of higher order may be, instead,
significantly influenced by the artifact effect.

In the main article text, we have explained that non-linear inference algorithms allow for a much
better classification of the database according to the gender of the experimental subject. This fact
implies that, quite interestingly, the differences between facial vectors sculpted by males and by
females is encoded in non-Gaussian correlations, beyond proportions (p = 2), beyond triplets and
perhaps quadruplets of facial distances. In the main article, we have also explained that this may
imply that such differences codified in non-Gaussian correlations are of cognitive order, i.e., that
male and female subjects’ do prefer facial variations differing in non-Gaussian correlations and,
in particular, that humans evaluate quantities that are much more complicated than proportions,
when forming an impression about a face. The fact that the introduction of non-linearity helps in
a gender classification task, which reflects real and well-known cognitive differences, may suggest
so.

An alternative explanation is that the distinguishable differences among male and female pre-
ferred facial variations are all codified in pairwise effective interactions only (say, roughly speaking,
that males and females differ only in the J matrix, if it could be measured without bias). The
non-linear interactions would turn anyway relevant for the classification, since the correlations
propagated by the genetic algorithm are coupled to the ones induced by the subject: subjects
differing only in J would also induce, by means of the artifact, differences in the correlations of
higher order.

Further experiments are needed to clarify this issue.

0.12 Generality of the unsupervised inference models
Crucially, the two models of unsupervised inference presented in the main text exhibit a wide
generality, going beyond the particular database that we infer in this work. (1) First, the inferred
set of facial vectors may be composed by facial images selected according to any criterion: selected
by a pool of subjects among real facial images or by a single individual (in this case the distribu-
tion L(·|θ) would probabilistically characterise the single subject’s preferred region in face-space);
selected according to a criterion different from attractiveness; even not having been selected by
subjects but chosen according to some objective criterion as age or gender (L(f |θ) would hence
represent the probability that a facial image characterised by the facial vector f presents the de-
sired feature). (2) Second, they can be used to infer any other database of images characterised by
the geometric positions of facial (or, in general body) landmarks. (3) Third, these models may be
immediately extended to process also non-geometric degrees of freedom (treating the texture and
geometric degrees of freedom on the same footing [17]).

0.13 Learning in the non-linear MaxEnt model.
The 3-MaxEnt model parameters are np = [D]+[D(D+1)/2]+[(D3−D2)/6+D] = D3/6+D2/3+
5D/2 independent components of the interaction tensors θ = (h, J,Q) of order 1,2,3. Their value
in the article is fixed by Maximum Likelihood, equation (0.3). In the case of the 3-MaxEnt model,
we have estimated the maximum likelihood value of the parameters θ∗ by means of a numerical
maximisation of the joint database likelihood by deterministic gradient ascent (see also [18]).
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A discrete sequence of interaction tensors θ(t) are recursively updated according to a determin-
istic gradient ascent rule: θ(t+ 1) = θ(t) +ηθ ∂θ [lnL(S|θ)]θ(t), using a learning rate ηθ depending
on the tensor that is being updated. We use ηJ = 10−2 for the matrices and ηQ = 10−3 for the
3-order tensors.

At a given epoch t of the gradient ascent iteration, the gradient of the joint likelihood with
respect to the effective interaction components involves a theoretical correlator (of order 1,2 or 3) ac-
cording to the current value of the couplings. For instance:

[
∂Jαβ lnL(S|θ)

]
θ(t)

= 〈∆α∆β〉L(·|θ(t))−
〈∆α∆β〉. Such theoretical correlator is in its turn estimated by means of a Markov Chain Monte
Carlo (MCMC) Metropolis algorithm for the sampling of configurations from the theoretical dis-
tribution at the corresponding epoch, L(·|θ(t)). For such MCMC algorithm, we use a number
of sweeps = 106 in each epoch. The MCMC vectors ∆ are initialised as normal variables with
variance equal to their empirical variance, and the Metropolis trials are chosen uniformly in the
interval ∆α ∈ [−6σα, 6σα], where σα is the empirical standard deviation of ∆α. This corresponds
to maximising the likelihood function:

L(∆|θ) =
1

Z
e−H(∆|θ)H(∆|B) (0.29)

where H is the multivariate Heaviside function in the hyper-parallelepiped centered in the origin
∆ = 0 and of side lengths 2Bµ = 12σµ, and where H(·|θ) = H2(·|θ2) + H3(·|Q). Finally, in
order to monitor the state the convergence to the stationary state, in every step of the gradient
ascent maximisation we evaluate the difference of the empirical average of the Hamiltonian and its
expected value according to L(·|θ),

∆H(t) = 〈H(·|θ(t))〉 − 〈H(·|θ(t))〉L(·|θ(t)) (0.30)

the iteration stops when |∆H(t)| decreases below a certain threshold [19, 18]. The condition
∆H = 0 is necessary for the maximum likelihood condition. As initial values of the learning
dynamics, we choose h = 0, J = ID, Q = 0.

The value of Bµ = 6σµ has been chosen so that all the empirical vectors lie in the parallelepiped
B and, at the same time, the maximum likelihood probability distribution exhibits a single local
maximum in its support B. Indeed, the probability distribution projected along the data principal
components (∆′µ or the projection of ∆ on the µ-th eigenvector of J), is qualitatively a perturbed
normal distribution with variance σ2

µ (obtained for Q = 0), with asymmetric and fatter tails (see
[18]).

0.14 Learning the database with the Gaussian Restricted Boltzmann
Machine

Definition of the model. The Gaussian Restricted Boltzmann Machine (GRBM) is a type of
generative stochastic two-layered Artificial Neural Network [20, 21, 22, 23]. It is a generalisation of
the Restricted Boltzmann Machine (RBM) model [24], that learns a probabilistic generative model
for real-valued vectors: the visible neurons in the input layer, v, assume real values. The value of
the hidden neurons h is, instead, binary, hj = 0, 1. The state of the Nv visible v = (vi)

Nv
i=1 and Nh

hidden h = (hi)
Nh
i=1 neurons is described by an energy-based probability density:

p(v,h|θ) =
1

Zθ
e−E(v,h|θ) (0.31)

in terms of the parameters θ = {W, b, c,σ}, to be inferred in the learning process. W is a real
Nv ×Nh matrix coupling real and visible variables, while c, σ are Nv-dimensional real vectors
representing the bias over the visible neurons and their standard deviation, respectively, while b
is a real Nh-dimensional vector representing the bias over hidden neurons. Zθ is a normalising
constant, depending on the parameters. The function energy E is defined so that the conditional
probability distribution p(v|h,θ) results to be a normal, independent distribution over visible
variables. It assumes the form:

E(v,h) = −
Nv∑
i=1

Nh∑
a=1

Wiaviha
σ2
i

+

Nv∑
i=1

(
vi − ci

)2
2σ2

i

−
Nh∑
a=1

haba (0.32)
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The GRBM probabilistic generative model is obtained through a marginalisation of the hidden
variables: p(v|θ) =

∑
h p(v,h|θ). This model (as far as the hidden neurons are binary) is known

to induce non-linear interactions among the visible variables, up to order p = Nv in the most
general case [25].

Learning protocol. We have trained the model over a set of redundant or non-redundant
data, obtaining equivalent results. As a learning algorithm we have used gradient ascent through
persistent contrastive divergence with k = 1 Monte Carlo step, along with mini-batch learning
with batch size B [21], and an epoch-depending variable learning rate, η, increasing linearly with
the number of epochs. We have set the value of the learning hyperparameters to: number of steps
ns = 2 ·105, batch size B = 200, momentum µ = 0, initial learning rate η0 = 2 ·10−3. The learning
rate slope is set such that ηns = 2 · 10−5. The parameters W , b and c are initialized following a
standard procedure [26, 27]:

Wia = χia

√
6

NV +Nh
, χia ∈ (−1, 1) ∀i, a (0.33a)

ba = −1

2
(||W∗,a + c||+ ||c||) + log(0.1) ∀a (0.33b)

ci = 0 ∀i (0.33c)
σi = 1/2 ∀i (0.33d)

As equilibration test we have verified that the test-set joint likelihood is stationary as a function of
the number of epochs, within its associated standard deviation. We have performed an assessment
of the algorithm efficiency as a function of the number of hidden neurons, Nh. As shown in figure
0.9, both the test and training-set joint likelihood exhibit a monotonous increasing behaviour vs
Nh, showing no sign of severe overfitting. The auROC score saturates at its maximum value for
values Nh & 8Nv, with Nv = 10, confirming this picture. We have consequently considered, for
the analysis performed in the main article, Nh = 100.

0.5 1.0 2.0 4.0 8.0 16.0 32.0

Nh/Nv

12

11

10

9

ln
P(

|
)

Training Set
Test Set

Figure 0.9: Training and test-set log-likelihood as a function of the ratio Nh/Nv, each point has
been obtained averaging over 5 realizations of the learning, once the stationary state of the train
log-likelihood has been achieved.

Before GRBM learning, the data has been pre-processed eliminating 6 redundant coordinates,
subtracting the average (of the whole database, not of the {A,B}×{train, test} datasets separately)
and standardising, or dividing each vector component-wise by the vector of standard deviations
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Table 0.1:
algorithm auROC
random forest 0.995
GRBM 0.988
3-MaxEnt 0.930
2-MaxEnt 0.848
2-MaxEnt non-redundant 0.846
2-MaxEnt approximated 0.830
2-MaxEnt null-xy 0.770
2-MaxEnt dot 0.745
1-MaxEnt 0.654

along the whole set. We have learned the dataset with a variable number of hidden neurons Nh,
from Nh = D to Nh = 16D.

Afterwards, for the sake of the classification, the model has been trained over the A,B training
databases separately, leading to two sets of parameters θA, θB and, consequently, to a likelihood
function LRBM(·|θA,B). Afterwords, the score s(r̃) = lnL(r̃|θA) − lnL(r̃|θB) is defined for every
standardised and non-redundant vector r̃ of the A,B test-sets. Such score is used to construct the
ROC curve and scores shown in the main article.

0.15 Classification with the Random Forest algorithm
In the random forest classification presented in the main article and in figure 0.10, we have used
the Random Forest Classifier [28, 29], using 1000 trees created from bootstrapped sub-sample and
with nodes expanded until all leaves are pure. As an assessment of the single-split quality we have
considered the Gini function. The number of random features considered in the best split choice
is equal to int(sqrt(D)), where D = 16 is the number of features.

0.16 Detailed comparison among several classification methods
We now present a more detailed analysis of all the classification algorithms that we have considered
for the classification of the database according to the subjects’ gender. In table 0.1 we present a
systematic comparison of the auROC value [30], a standard estimator of the classification accuracy
(the area under the corresponding ROC curves in figure 0.10), associated to the classification
according the various algorithms. In particular, 2-MaxEnt approximated is the 2-Maxent model
resulting from the approximation in equation (0.23); 2-MaxEnt null-xy is the model consisting
neglecting the oblique interactions, J (xy) = 0; 2-MaxEnt dot is defined in equation (0.27); 1-
MaxEnt dot is defined by inferring the external fields only (and taking the interaction matrix J ,
required for the normalisation of P , as a diagonal matrix whose diagonal is equal to the inverse
variance of each variable).

The results of table 0.1 and of figure 0.10 confirm the picture presented in the main article.
The value of the single facial distances (in units of the facial length) are not enough for an accurate
description of the database of facial modifications. The introduction of pairwise effective interac-
tions, which explain proportions, or ratios of facial coordinates, induces a notable improvement in
the statistical description. Moreover, oblique effective interactions (coupling the x coordinate of
one landmark with the y coordinate of another landmark) result a fundamental ingredient. Finally,
a crucial role, at least for the sake of the classification according to the subjects’ gender, is plaid
by effective interactions of higher order: p = 3 (3-MaxEnt) and p > 3 (GRBM and random forest).
We conclude that the classification is a valid method for the assessment of the assessment of the
relative relevance of the various terms.

Remarkably, an as we anticipated in section 0.8, the algorithm used to avoid the constraints
(inferring from a reduced, non-redundant set of variables, or using the null-mode subtraction
method) do not change the efficiency of the classification. Indeed, the model that we call 2-
MaxEnt non-redundant in table 0.1 and in figure 0.10 is identical to 2-MaxEnt but in terms of
a subset of 10 non-redundant variables. Its auROC estimator and ROC curve are statistically
distinguishable from 2-MaxEnt (with 16 variables and null-mode subtraction).
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Figure 0.10: ROC curves of all the models defined in the text. The order of the model in the
legend (and in table 0.1) is also the order with which the corresponding curve crosses the vertical
line at FPR=0.2.

0.17 Inter- and intra-subject correlations and errors.
The set of facial vectors sculpted by a single subject, {r(v,i)}Ni=1, are not the result of independent
sculpting experiments. They are, rather, correlated as far as they are the outcome genetic popula-
tion of facial vectors that evolved according to a stochastic evolutionary algorithm coupled to a se-
quence of choices performed by the experimental subject [8]. Consequently, it is crucial to subtract
the effect of intra-subject (or intra-genetic population) correlations among facial vector components
from the inter-subject correlations. On the one hand, one may define the bare correlation matrix,
accounting from both sources of correlations, defined by summing over both subject and popula-
tion indices: Cαβ = 〈∆α∆β〉. On the other hand, the inter-subject correlation matrix accounts

only for the inter-subject correlation, and is defined as C̄αβ = (1/ns)
∑ns

v′=1 ∆
v(v′),i(v′)
α ∆

v(v′),i(v′)
β ,

where v(v′) and i(v′) are random indices in the sets 1, . . . , ns and 1, . . . ,N respectively, uncorre-
lated among them and on v′, and the overline · means an average over a sufficiently high number of
realisations of the set of indices v(v′), i(v′) for v′ = 1, . . . , ns. The statistical uncertainty associated
to the inter-subject correlation, σCαβ , is the standard deviation of the overline argument under
many realisations of the set of indices (in other words, a Bootstrap error using only one vector for
subject in each Bootstrap sampling, see the SI of ref. [8]). Consequently, the error associated to
the inter-subject correlation is of order ∼ ns

−1/2, and not of order ∼ S−1/2 as that of the bare
correlation matrix. Analogously, we also define inter-subject and bare 3-component correlations.

If the inferred model should describe the probability of a given facial vector to have been
selected by any subject in the database, then it should be committed to reproduce by construction
the inter-subject (not the bare) correlations. Otherwise, the probabilistic generative models may
also simply describe the whole set of facial vectors in the [8] experiments, hence accounting also for
the intra-subject correlations; the corresponding MaxEnt models would reproduce by construction
the 2 or 3 bare correlations in this case. In our data analysis software one can specify whether
the 2, 3 MaxEnt inferred model reproduce bare or inter-subject correlations. In this article, some
results (the reproduction of angle histograms and the analysis of J matrices) correspond to the
inter-subject inference models. The classification tests have, instead, been done with the bare
models. For the sake of classification, we have simply tested the ability of the algorithm to capture
any useful correlation, regardless of its origin, cognitive or algorithmic. The bare inference models
suffer less from the curse of dimensionality since the effective database size is S = Nns instead of
ns.
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0.18 Description of the E1 experiment
We now recall a description of the experiment E1 presented in [8].

The face-space. The face-space used in [8] is based on a separation of texture/geometric
degrees of freedom [14]. The face-space facial vectors codify the geometric degrees of freedom
only (corresponding to the Cartesian coordinates r of the set of landmarks), while the texture
degrees of freedom correspond to a real portrait called reference portrait. Given a vector r
and the reference portrait, we construct, throught image deformation algorithms (based on affine
linear transformations) a novel image whose landmarks occupy the positions given by r, and whose
texture is coherently and realistically deformed from that of the reference portrait. The reference
portrait used in the E1 experiment, called RP1, is fixed for all the subjects.

The aim of the experiment is to provide a population of N facial vectors for each ex-
perimental subject. Such a population aims to be an empirical sample of the subject’s preferred
modifications of the reference portrait. This means that the subject probabilistically prefers facial
images associated with vectors that are close to the vectors in the population, rather than local
fluctuations away from it. The subject does not sculpt the population by successive discrimina-
tion among faces differing by a single coordinate, which turns out to be an inefficient strategy of
face-space exploration, but rather through the interaction with a genetic algorithm, implemented
by our software FACEXPLORE. In such (differential evolution) genetic algorithm, the individuals
are the N facial vectors, their genetic code is the corresponding vector of geometric coordinates,
and the selection process is performed by the subject, who iteratively select, according to her/his
personal criterion, which facial vectors will survive in the next generation.

General description. The subjects sculpt their preferred variation of a facial vector, which
codifies geometric coordinates. Starting from N initial random facial vectors, the FACEXPLORE
software generates pairs of facial images (composed by each original facial vector and by a potential
offspring generated by mutation and recombination). Each pair is presented to the subject, who
selects the one that she/he finds more attractive. Based on N left/right choices, the genetic
algorithm produces a successive generation of N vectors. This process is repeated T times, in
a constant feedback loop of offspring generation and selection operated by the subject. Such
iterations leads to a sequence of T generations of facial vectors, each one more adapted than the
last to the subject’s selection criteria, eventually converging to a pseudo-stationary regime in which
the populations are similar to themselves and among consecutive generations. The T -th generation
is taken as the empirical sample of the subject’s preferred modifications of the reference portrait.

Some details of the experimental setup. The experiment was performed by a pool of
ns = 95 volunteers (54 female, 39 male, of age average and standard deviation: 26(12)), mainly
students, researchers and professors of the Sapienza University, in Rome. Each subject performed
a number of NT = 280 choices among couples of facial images. These are uncompressed 400× 300
pixel, B/W images of 72 pix/inch resolution in an 1024 × 768 monitor. The viewing distance is
65(10)cm. The reference portrait RP1 has been taken from the Chicago face database [31]. The
experiment lasted roughly 25 minutes on average.
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