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Supplementary methods

Environmental Predictor Variables

We used average minimum annual temperature, average maximum annual temperature, average annual 

precipitation, and average daily sea level atmospheric pressure calculated over 12 years (1995 to 2016) 

from the E-OBS European Climate Assessment and Dataset EU project (Haylock et al., 2008; van den 

Besselaar, Haylock, van der Schrier, & Klein Tank, 2011; 

http://www.ecad.eu/download/ensembles/downloadchunks.php).  For average minimum and maximum 

temperatures, we calculated the mean across all 12 years of the 2% and of the 98% quantiles of daily 

mean temperatures. For average annual precipitation, we summed daily precipitation within each year and

calculated the mean annual precipitation over all years (excluding years 2010 through 2012 because of 

missing daily precipitation values in those years). For average daily sea level pressure we took the mean of

daily sea level pressure over all 12 years.  We calculated the value of each climate variable at the E-OBS 

grid points and then interpolated to Irish 10 km grid cells using ordinary kriging.

We calculated the proportion of each grid cell covered by each of the “agricultural areas”, “artificial 

surfaces”, “forest and semi-natural areas”, “water bodies”, and “wetlands” Label 1 categories from the 

CORINE Land Cover database (CORINE, 2012). We calculated the average elevation within each grid 

cell by interpolating using ordinary kriging from the ETOPO1 Global Relief Model (Amante & Eakins, 

2009; https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/ice_surface/grid_registered/netcdf/  

[accessed 8 May 2019]).

Spatial clustering of predictor variable values was measured using Moran’s I calculated with the ‘Moran’

function in the ‘raster’ R package (Hijmans, 2018).
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Simulating species distributions

Coefficients specifying the virtual species’ responses were chosen such that the theoretical prevalence of 

the species (the sum of the probabilities of presence in each grid square divided by the number of grid 

squares) was greater than 0.01 so that virtual species were common enough to be observed and modeled.  

Coefficients for the squared terms were randomly drawn from a uniform distribution between zero (which

creates a straight-line response) and 1.3 (chosen because higher values produce response curves with 

narrow “humps”, representing species with highly specialized environmental niches such that there would 

be very few occurrences within Ireland).  The maximum coefficient value of 1.3 for the squared terms 

was chosen after exploring multiple values, with the goal of finding a value that regularly produced virtual

species with theoretical prevalences across the entire study extent greater than 0.01 (corresponding to the 

species being present in about 8 grid cells in Ireland).  Coefficients for 1st order terms were randomly 

drawn from a uniform distribution within minimum and maximum values chosen to ensure that the 

response to each predictor variable had an optimum within the range of values of the predictor variable 

within Ireland.   

Simulating sampling with spatial bias

The reason for varying the probability of sampling a species according to species prevalence (Section 

2.4.3 of main text) was to simulate the real-world scenario in which species that are present in many 

locations also likely have higher abundances (Gaston et al., 2000) and are therefore more likely than rare 

species to be recorded in any single sampling event. We defined the probability of observing a species as 

the twentieth root of that species’s prevalence in the entire study extent.  The twentieth root was chosen 

based on exploratory trials in which we generated checklists with species sampling probability weights 

defined by different transformations of prevalence (e.g. raw prevalence, square root of prevalence, or 
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logarithm of prevalence) and looked at histograms of the number of observations per species and scatter 

plots of the number of observations of species by the prevalence of species.  For many transformations of 

prevalence, including the logarithm of prevalence and the square root of prevalence, weighting sampling 

probability by the transformation generated sampled species lists that seemed badly unrealistic (e.g. 

weighting by raw prevalence produced checklists with almost only common species, and weighting by the 

natural logarithm of prevalence produced checklists of mostly rare species). Weighting by the twentieth 

root produced sampled species lists that seemed plausibly realistic in terms of the relative numbers of rare

and common species sampled.  Determining the probability of observing a species based on the species’s 

prevalence in the overall study extent meant that the probability of observing a species when it was 

present was the same across the entire study extent.

Because we sampled occurrence records with replacement from the list of present species, it was 

possible for a species to appear on a sampling event checklist more than once. This matched the nature of

many NBDC datasets in which some sampling event checklists were aggregations of records over long 

periods of time (e.g. all records from a location in a single year were aggregated and reported with an 

identical location and date). In those cases, a sampling event checklist may contain hundreds of records 

with many repeat observations of some species.

Species distribution modeling

Models were fitted with both five-fold block cross-validation and with no cross-validation (evaluating on

the training data).  Using block cross-validation is best practice, so only those results are presented in the 

main text.  We included fitting with no cross-validation to confirm that prediction performance measures 

appear overly optimistic when evaluation is done without cross validation (as has been reported in the 

literature) (Roberts et al., 2017).  
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Spatial block cross-validation (Roberts et al., 2017) partitioned the study extent into spatial blocks of 

100 km x 100 km and then allocated each 100 km x 100 km block to one of five cross-validation 

partitions.  The spatial position of the 100 km x 100 km blocks was determined randomly (by randomly 

setting an origin point for the grid). The exact number of 100 km x 100 km blocks required to cover the 

island of Ireland depended on the randomly-determined location of the grid cells.  A 100 km x 100 km 

block could be (and often was) positioned partially over ocean.  Therefore, not every 100 km x 100 km 

block contained the same number of terrestrial grid cells, and consequently not every block cross-

validation fold contained the same number of terrestrial grid cells.  Prediction performance (AUC and 

RMSE) of models was evaluated against true simulated species distributions at locations not included in 

the training set for each of the cross-validation folds, and AUC and RMSE values for all five cross-

validation folds were averaged to produce the final values of AUC and RMSE describing the prediction 

performance of each model. 

We provided five predictor variables to SDMs to model each species.  The five predictor variables were 

chosen randomly from the 10 possible predictors (Table 1) in order to simulate a real-world situation in 

which the factors that influence species distributions are not entirely known, and variables used for 

modelling likely include a mix of important and unimportant variables.  For GLMs, not all five predictor 

variables were necessarily used in the final model because of our model selection process (see below).  All

models used equal weights for presences and absences.    

For the small community simulations, we fit models to 110 virtual species by creating three small 

communities, each with 40 virtual species (the number of recorded butterfly species in Ireland) and 

modelling all virtual species in each community except for the last community (from which we only 

modeled 30 virtual species).  
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GLM

We used a logistic regression (‘glm’ function in R) with a binomial error distribution and logit link to 

model the probability of a species being recorded during a sampling event. Quadratic terms for each of 

the five environmental predictor variables were fitted, but we did not fit interactions between variables.  

Within each of the five block cross validation (CV) partitions, we tested all possible models that contained

few enough terms that there were at least 10 detections (or non-detections, whichever was smaller) per 

non-intercept term in the model.  We chose as the final model the combination of predictor variables that 

gave the model with the lowest AIC based on the training data in that partition.  Thus, the minimum 

model size was an intercept-only model, and the most complex model included an intercept plus 10 

additional terms (1st and 2nd degree terms for each of the five predictor variables chosen to model that 

species).  First degree terms for a variable were always included if a second degree term was selected for 

that variable. Because the goal was to produce predictive models for a large number of species, we did not

assess model assumptions for each individual species model.  

Boosted regression trees

We trained boosted regression trees using the function ‘gbm.step’ in the ‘dismo’ R package (Greenwell, 

Boehmke, & Cunningham, 2018; Hijmans, Phillips, Leathwick, & Elith, 2017).  We tested models with 

tree complexities of two and five.  Smaller learning rates are generally preferred because they result in 

better predictive performance but higher computation and memory requirements (Elith, Leathwick, and 

Hastie 2008).  Therefore, for each tree complexity (two and five), we first tried to train each model with a 

learning rate of 0.001.  If the model used fewer than 1000 trees, we shrank the learning rate by 50% in 

order to try to get models that used of 1000 trees (as recommended by Elith, Leathcwick, and Hastie 

2008).  If no model could be fitted with more than 1000 trees and a learning rate of higher than 0.00001, 

6 / 14

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124



we abandoned model fitting for that training dataset.  We used gbm.step to determine the optimal number

of trees for each model, based on monitoring the change in 10-fold cross-validated error rate as trees were

added to the model (Hijmans, Phillips, Leathwick, & Elith, 2017).  We started models with 50 trees and 

added trees in increments of 50 (step.size = 50).  If the model using the initial learning rate of 0.001 did 

not reach minimum error with fewer than 30,000 trees, we increased the learning rate incrementally by 

0.002 until either the model fit successfully with fewer than 30,000 trees or the learning rate got larger 

than 0.1. If no model could be fit with fewer than 30,000 trees and a learning rate smaller than 0.1, we 

abandoned model fitting for that training dataset.  Finally, we compared the models fit with tree 

complexities of two and five, and the optimum learning rate and number of trees selected for each of 

those models.  Of the two models with different tree complexities, we chose as the final model the one 

that had the lower cross-validation predictive deviance.  We then generated SDM predictions using this 

final model.  

Inverse distance-weighted interpolation

Within each grid cell, we calculated the proportion of sampling events on which the focal species was 

recorded. For each CV partition, we used the ‘gstat’ function in R (Gräler et al., 2016; Pebesma, 2004) to 

predict the probability of recording the species during a sampling event in locations in the test partition by

taking an inverse distance weighted average of proportions of training partition sampling events on which 

the species was recorded. The ‘gstat’ arguments specifying the optimal power parameter and number of 

points to use were chosen in an automated way by testing all combinations of powers in increments of 0.5 

between 0 and 10 and number of points in increments of two between one and the maximum number of 

points in the training partition. We fit the final model for each CV partition using the combination of 
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power parameter and number of observations that resulted in the lowest three-fold cross-validated RMSE 

on data in the training partition.

Investigating possible overfitting

After models were fitted, we looked for evidence of overfitting by inspecting graphs of 1) the number of

predictor variables used by GLMs as a function of sample size, and 2) prediction performance (spatial 

block cross-validated AUC) as a function of the number of terms in GLMs and sample size.  We also 

explored the effect of the constraints we placed on the computation time of boosted regression trees (i.e. 

limiting models to 30,000 or fewer trees) by inspecting boxplots of the number of trees used to fit models 

as a function of sample size and spatial sampling bias.  Finally, we assessed the effect of species 

prevalence on model performance metrics by inspecting plots of AUC and RMSE as a function of species 

prevalence and as a function of the number of positive detections of the focal species in the test dataset.  

Analyzing effects of sampling bias and sample size

Our main analysis (reported in the main text) used boosted regression trees to model the predictive 

performance (AUC and RMSE) of SDMs as a function of spatial sampling bias and sample size (average 

number of observations per species), SDM method, and (in the case of RMSE) species prevalence.  To 

assess whether our conclusions depended on the modeling method, we also used GAMs (Wood, 2017) to 

perform the same analysis of AUC and RMSE of SDMs as a function of spatial sampling bias and sample

size (average number of observations per species), SDM method, and species prevalence.  Using both 

boosted regression trees and GAMs provided a simple sensitivity test to ensure that our conclusions were 

not dependent on the choice of modelling method.  We also used the GAM predictions of AUC to 

produce the contour lines in Fig. 8 of the main text because the smoother GAM function made the shape 
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of the contour lines easier to visually distinguish than contour lines produced with boosted regression tree 

predictions.  

 We used boosted regression trees to model AUC as a function of a categorical spatial sampling bias 

variable, the average number of observations per species, and SDM method.  Boosted regression trees 

used a tree complexity of 3, a learning rate of 0.001, a Gaussian distribution, and the number of trees 

selected by the ‘gbm.step’ function in the ‘dismo’ R package.

We fit GAMs to model AUC and RMSE using the ‘gam’ function in the ‘mgcv’ R package.  We fit 

separate GAMs to model the prediction performance of each of the four SDM modelling methods 

because three-way interactions cannot be specified in ‘gam’ and we expected three-way interactions. We 

modeled AUC as a function of a categorical spatial sampling bias variable and a smooth of the average 

number of observations per species by sampling bias (so that the response shape of AUC to sample size 

could vary with bias level). We modeled RMSE as a function of a categorical spatial sampling bias 

variable, a smooth of the average number of observations per species by sampling bias, and a smooth of 

species prevalence. We used a beta distribution and logit link, and smoothed the number of observations 

per species by sampling bias level using cubic regression splines with a basis dimension of five. The basis 

dimension was chosen by fitting multiple models with basis dimensions varying from two to six and 

looking at effective degrees of freedom and the shape of fitted smooths. We selected the basis dimension 

to be high enough that effective degrees of freedom were below the basis dimension and neither the shape 

of the smooth nor the basis dimension changed substantially when the basis dimension was increased.

Predictions were generated from fitted boosted regression trees and GAMs.  We compared the expected

value of AUC and RMSE for SDMs trained with data containing different amounts of spatial sampling 

bias and different sample sizes. Variable importance was assessed based on the reduction in squared error 
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attributed to each variable in the boosted regression tree models and based on the change in adjusted R2 

of GAMs when variables were removed from the full model.

Supplementary Results & Discussion

Prediction performance of SDMs

AUC and Kappa were lower when models were evaluated using spatial block cross-validation than when

models were evaluated on the training data, as expected (Fig. S6, Fig. S7). Model evaluation on training 

data is known to be overly optimistic in most cases (Roberts et al., 2017), and our results confirm that.  In

particular, the drastic reduction in Kappa when evaluated with cross-validation indicated that our SDMs 

were poor at converting continuous SDM outputs into binary maps for locations outside the training 

partition (Fig. S6).  AUC evaluated using cross-validation was still high enough to give some confidence 

that models could correctly rank locations (Fig. S7, Fig. 6, Fig. 7).  Our SDMs therefore apparently differ 

in how well they generalize for different tasks: the SDMs had some ability to generalize when the task was

ranking sites (measured using AUC), but were unable to generalize when the task was creating binary 

maps of presence and absence (measured using Kappa).  

Analyses of the effects on prediction performance of spatial bias, average number of records per 

species, and SDM method were qualitatively similar when analyzed using boosted regression trees and 

GAMs, suggesting that our conclusions did not depend on the choice of error distribution or modeling 

technique (Fig. 6, Fig. S7).
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Investigating possible overfitting in GLMs and the effects of limiting computation time for boosted regression

trees

To avoid overfitting the GLM species distribution models, we used fewer terms in models when sample 

size was small, and only allowed more terms when sample size was large (Fig. S8).  The poor 

performance of GLM species distribution models trained with small sample sizes cannot be attributed to 

overfitting, as GLMs used relatively few terms when sample size was small (Fig. S8).  Out-of-sample 

prediction performance (AUC) of GLMs increased with the number of terms in models up to about three 

or four terms (Fig. S9).  When sample size was intermediate (an average of 10 or 50 records per species), 

prediction performance then initially increased with the number of terms in models, then decreased when 

more terms were used, indicating possible overfitting (Fig. S9, panels C, D, and E).  The possible 

overfitting was most pronounced for models trained with median or severely biased data with an average 

of 50 records per species (Fig. S9, panel D).  This suggests that GLMs may have been overfitting at 

moderate sample sizes, despite us limiting the number of terms in models based on sample size.  There 

was no evidence of overfitting at small sample sizes, mainly because models were restricted to using very 

few predictor variables (Fig. S9, panels A and B).  Prediction performance of GLMs generally increased 

with sample size (Fig 5 in the main text), despite the evidence of possible overfitting at intermediate 

sample sizes suggested by Fig. S9.  More careful model selection and control of overfitting in GLMs, for 

example by selecting the final model terms using cross-validation, could increase the prediction 

performance of models trained with moderate sample sizes even further.  However, this would not change

our main findings, and in fact would strengthen the pattern of prediction performance increasing with 

sample size (Fig. 5).  Therefore, we do not think the evidence of some overfitting in GLMs affects the 

main conclusions of this study, namely that prediction performance of species distribution models is 
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affected more strongly by sample size and species distribution modelling method than by spatial sampling 

bias.  

We limited boosted regression tree species distribution models to using fewer than 30,000 trees.  

However, most models fit with fewer than 10,000 trees (Fig. S10), and prediction performance was 

unrelated to the number of trees used, as long as number of trees was above about 2,000 (Fig. S11).  

Boosted regression trees failed to fit models for some species, especially when sample sizes were small 

(Fig. 4 of main text), perhaps because we abandoned model fitting if models did not successfully fit with 

30,000 or fewer trees.  It is possible that given more computation time and larger numbers of trees, 

boosted regression trees could successfully fit models to more species.  However, our assessment of the 

prediction performance of models was based only on models that did successfully fit.  For those models 

that fit, we saw no indication that the prediction performance was limited by permitting models to use 

only up to 30,000 trees (Fig. S11).  Rather, the majority of models fit with far fewer than 30,000 trees, 

(Fig. S10), and prediction performance was generally constant for models with numbers of trees from 

about 2,000 to 30,000 (Fig. S11).  Any practical species distribution modelling will be done within the 

constraints of available computational resources.  We do not think that increasing the maximum 

permissible number of trees for boosted regression trees above 30,000 would change the main conclusions

of this study, namely that prediction performance of species distribution models is affected more strongly 

by sample size and species distribution modelling method than by spatial sampling bias.  

Small community simulation

Results from the small community simulation were qualitatively similar to results from the large 

community simulation (Fig. S12).  Prediction performance was similar when models were trained with 

data showing no spatial bias or low spatial bias.  Prediction performance was lower when models were 
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trained with data with median or severe spatial bias, at least for GLMs (Fig. S12).  In the small 

community simulation, inverse distance-weighted interpolation appeared to be less affected by spatial bias

than it was in the large community simulation.  Despite this, GLMs trained with severely spatially biased 

data still outperformed the best inverse distance-weighted interpolation models (Fig. S12).  
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