Recalibrating Probability Estimates Used to Compute
Mapping Quality Scores

The Github repository at https://github.com/bioinfo2019/qual-recal contains programs,
scripts and data for investigating the effects of mapping-quality score recalibration on
variant detection in low-coverage, whole-genome DNA sequencing data.

The resources in the repository allow for the simulation of diploid plant genomes
implanted with variants such as SNP, INDEL and various structural variants. Simulated
paired-end reads can be generated from these simulated genomes with the ART read
simulation tool. Mapping the simulated reads with Bowtie2 back to their original
reference genomes will create BAM files needed for the analysis pipeline described
below.

Software

All software is run in Linux (Ubuntu 18.04). The pipeline here IS NOT a production-ready
tool. These are scripts and programs written to answer a particular research question.
Development of a high-performance version of these scripts and programs is underway.

The C++ folder in this repository contain programs to perform functions for extracting
features from SAM (sequence/Alignment Map) files to use in training machine learning
models to detect incorrectly aligned reads. The two files in the bamlib subfolder depend
on the SegAn sequence analysis C++ library.

https://www.seqan.de/

Those two files should be compiled as a shared object library using the C++14 dialect.
The files in the recal subfolder should be compiled as an application that links to the
bamlib shared object. The main routine can be found in the file nrmap.cc.

A GPU is used to compute the tens of millions of least squares lines and correlations of
the base call quality scores vs. position in read. A CUDA compute level 6.1 GPU must
exist with the CUDA 10.1 libraries installed.

The programs in the Python folder train models, implement data sampling schemes and
make predictions on unseen samples.

Besides the resources here, a few external tools are needed. The VarSim diploid genome
simulation package is available below:

https://github.com/bioinform/varsim/releases/download/v0.7.1/varsim-0.7.1.tar.gz

https://github.com/bioinfo2019/qual-recal
https://www.seqan.de/
https://github.com/bioinform/varsim/releases/download/v0.7.1/varsim-0.7.1.tar.gz

Setup VarSim as described in the user manual. VarSim utilizes the ART Illumina read
simulator. Get the latest (Mount Rainier) version here:

https://www.niehs.nih.gov/research/resources/software/biostatistics/art/index.cfm

Bowtie2 version 2.3.5.1 is used as the read mapper, and Samtools and HTSLib version 1.9
needs to be installed as well.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.htslib.org/download/

Variant calling was performed with both FreeBayes version 1.3.0 and Bcftools version 1.9
(part of the Samtools suite). They can be obtained from here:

https://github.com/ekg/freebayes
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
Data

Data needed to replicate the results in our paper include the tomato (S. lycopersicon)
genome assembly version SL2.50, pepper (C. annuum) version 1.55 and rice (Oryza
sativa L. ssp.indica) version ASM465v1:

ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/assembly/build_2.50/S_lycop
ersicum_chromosomes.2.50.fa.gz

ftp://ftp.solgenomics.net/genomes/Capsicum_annuum/C.annuum_cvCM334/assemblies/
Pepper.v.1.55.total.chr.gz

https://www.ncbi.nlm.nih.gov/assembly/GCA_000004655.2/

VCF files containing the SNPs and INDELS used for simulating the tomato genomes can
be found here:

ftp://ftp.solgenomics.net/genomes/tomato_150/150_VCFs_2.50/RF_002_SZAXP1009284-
57.vcf.gz.snpeff.vcf.gz

ftp://ftp.solgenomics.net/genomes/tomato_150/150_VCFs_2.50/RF_037_SZAXPI008747-
46.vcf.gz.snpeff.vcf.gz

https://www.niehs.nih.gov/research/resources/software/biostatistics/art/index.cfm
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.htslib.org/download/
https://github.com/ekg/freebayes
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/assembly/build_2.50/S_lycopersicum_chromosomes.2.50.fa.gz
ftp://ftp.solgenomics.net/genomes/Solanum_lycopersicum/assembly/build_2.50/S_lycopersicum_chromosomes.2.50.fa.gz
ftp://ftp.solgenomics.net/genomes/Capsicum_annuum/C.annuum_cvCM334/assemblies/Pepper.v.1.55.total.chr.gz
ftp://ftp.solgenomics.net/genomes/Capsicum_annuum/C.annuum_cvCM334/assemblies/Pepper.v.1.55.total.chr.gz
https://www.ncbi.nlm.nih.gov/assembly/GCA_000004655.2/
ftp://ftp.solgenomics.net/genomes/tomato_150/150_VCFs_2.50/RF_002_SZAXPI009284-57.vcf.gz.snpeff.vcf.gz
ftp://ftp.solgenomics.net/genomes/tomato_150/150_VCFs_2.50/RF_002_SZAXPI009284-57.vcf.gz.snpeff.vcf.gz
ftp://ftp.solgenomics.net/genomes/tomato_150/150_VCFs_2.50/RF_037_SZAXPI008747-46.vcf.gz.snpeff.vcf.gz
ftp://ftp.solgenomics.net/genomes/tomato_150/150_VCFs_2.50/RF_037_SZAXPI008747-46.vcf.gz.snpeff.vcf.gz

VCF files containing the structural variants for tomato can be found in the SV folder, and
VCF files containing SNPs and INDELs for rice, pepper and cucumber are also located in
the VCF folder. VCF files for structural variants, SNPs and small INDELs were used as
input to the VarSim program to create the simulated tomato genome, while only SNPs
and INDELs were used in the simulated genomes of pepper and rice.

The genome assemblies and variants referenced above were used to create the various
simulated genomes used in the paper. The final model was also tested on real cucumber
data.

Sequence reads for the Chinese Long cucumber variety were obtained from the NCBI
Sequence Read Archive, accession number PRINA339498. The reads are 101bp in length
and were generated by the Illumina HS2000 sequencer, the same model sequencer that
is simulated in this study. The cucumber data was used to test on real-world data the
models developed with simulated data. This data can be obtained from the link below.

https://www.ncbi.nlm.nih.gov/bioproject/PRJINA339498

Analysis Pipeline Overview

Simulate genome and reads

Align reads to reference with Bowtie2

Extract features from BAM file for model training and misalignment prediction

Train a ML model to detect misaligned reads and collect stats (Brier score, F1

score, Average Precision Score)

5. Predict misaligned reads — Outputs CSV file with read names and updated MAPQ
score

6. Create new BAM file with updated MAPQ scores

Call SNPs on original and updated BAM files using FreeBayes and Bcftools

8. Compare VCF files from the SNP calling step and collect stats (True and False

positive raw totals, Precision, Recall)

A=

~

A few Python 3 and Bash shell scripts drive each of the steps listed above. These scripts
have dependencies that are listed in earlier sections. Once those dependencies have
been met, the scripts should run with no problems.

Model training can take substantial amounts of time. Grid search is used to hyper-
parameter optimization. This is not very efficient, but generally yields good results. It is

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA339498

trivial to change this to a randomized approach that does not exhaustively search the
parameter space. Training the AdaBoost and SVM models takes anywhere from 7 to 14
hours depending on the computer used and the parameter grid size.

The scripts also expect a certain directory structure. The following directories should be
created anywhere on the filesystem that is convenient.

misc

—— freebayes

— nrmap

models

PythonProgs

varsim run

— alignments

— ILRT

art_bin MountRainier
I— Illumina profiles
— input vcfs

— log

— out

— reference

— stats

— wvariant_calls

— work

All Python scripts should be placed into the PythonProgs folder. Bash scripts go in the
varsim_run folder. Extracted features and trained models will be saved into the models
directory. VarSim and its utilities should be unpacked into the varsim_run folder. Use the
latest version of ART, not the one supplied with VarSim, and unpack it into the
varsim_run folder. The C++ program compiled in the steps above should be named
nrmap and placed into the nrmap folder. A binary version of the program and its
companion shared library are available in the GitHub repository for this project. Note
this is for Linux AMD64 systems with a CUDA 6.1 capable GPU installed and the Cude
10.1 libraries on your system.

FreeBayes should be unpacked into the misc subfolder. Bcftools and Samtools can be
anywhere on the system, but be sure they are in the system PATH variable.

Fasta genome sequences and their .fai indexes need to be in the varsim_run/reference
folder as do their Bowtie2 indexes. The VCF files containing variants to be implanted
into the reference genomes should be placed into varsim_run/input_vcfs.

Simulated reads produced by VarSim will be saved into varsim_run/out and variants
called by the pipeline scripts will be saved into varsim_run/variant_calls. Totals and
statistics output by the scripts will be saved to the varsim_run/stats folder.

At the top of each of the bash shell scripts is a variable called BASE_DIR can be set that
specifies the folder under which the above directory structure was created. You can set
its value like

BASE_DIR=/top/level/path

The bash script, mapping.sh, drives the process of

« Simulating genomes and reads
e Mapping reads
o Extracting features

Another bash script, recal.sh, handles

« Generating a recalibrated BAM file
« Calling SNPs with the original and recalibrated BAM files
o Comparing the resulting VCF files

The bash script downsample.sh takes care of

e Mapping the 41x coverage cucumber reads to the reference genome
e Calling SNPs to be used as “ground truth”

e Downsampling the 41x coverage BAM file to 3x coverage (14 times)
e Extracting features

e Predicting bad reads

e Recalibrating the BAM file

e Calling SNPs on the 3x subsets

e Comparing SNP calls before and after MAPQ score recalibration

e Writing out the statistics for each of the 3x subsets

The various Python scripts are themselves called from the bash shell scripts. They are
quite straightforward and have only a couple of command line parameters.

ModelTraining.py is used to train ML and isotonic regression models. They are saved to
disk using the Python pickle method. This script takes the following command line
parameters:

--base-dir the top-level directory holding the folders described above
--ml-model the machine learning model to be trained.
--features a comma separated list of features to be used for training

--feats-file the text file containing the feature vectors

The list of models that can be trained and features that can be specified available in the
mapping.sh bash script.

Model.Training.py should be run before either mapping.sh or recal sh.

ModelPredict.py is called by the bash script recal.sh. It has the same parameters as
ModelTraining.py. ModelPredict.py predicts misaligned reads from features extracted
from the BAM alignment files and writes out a simple CSV file with each row containing
a read name and an updated MAPQ score. This is used by the C++ program, nrmap, to
create a new BAM file with the update MAPQ scores.

The Python script snp_stats.py prints to screen and writes out to a CSV files the raw
true/false positive totals, precision and recall for SNP calls made before and after MAPQ
score recalibration. It also outputs the percentage change in both precision and recall
after recalibration. It takes only one command line parameter:

--base-dir the top-level directory holding the folders described above

Basically, the bash scripts drive the entire process and there shouldn’t be any need to
use the Python scripts, or other programs, directly to duplicate the research in our

paper.

