setwd("D:\\Data\\JDM\\WGCNA") # Load the WGCNA package library(WGCNA) ######################################################input data########################## # The following setting is important, do not omit. options(stringsAsFactors = FALSE) #Read in the female liver data set fpkm = read.table("input.txt",header=T,sep="\t")#########file name can be changed#####数据文件名,根据实际修改,如果工作路径不是实际数据路径,需要添加正确的数据路径 # Take a quick look at what is in the data set colnames(fpkm)=gsub("\\.","-",colnames(fpkm)) dim(fpkm) names(fpkm) datExpr0 = as.data.frame(t(fpkm[,-1])) names(datExpr0) = fpkm$ID; rownames(datExpr0) = names(fpkm[,-1]) ##################check missing value and filter #################### #datExpr0 ##check missing value gsg = goodSamplesGenes(datExpr0, verbose = 3) gsg$allOK if (!gsg$allOK) { # Optionally, print the gene and sample names that were removed: if (sum(!gsg$goodGenes)>0) printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", "))) if (sum(!gsg$goodSamples)>0) printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", "))) # Remove the offending genes and samples from the data: datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes] } ##filter meanFPKM=0.5 ####the threshold can be changed n=nrow(datExpr0) datExpr0[n+1,]=apply(datExpr0[c(1:nrow(datExpr0)),],2,mean) datExpr0=datExpr0[1:n,datExpr0[n+1,] > meanFPKM] # for meanFpkm in row n+1 and it must be above what you set--select meanFpkm>opt$meanFpkm(by rp) filtered_fpkm=t(datExpr0) filtered_fpkm=data.frame(rownames(filtered_fpkm),filtered_fpkm) colnames(filtered_fpkm)=gsub("\\.","-",colnames(filtered_fpkm)) names(filtered_fpkm)[1]="sample" head(filtered_fpkm) write.table(filtered_fpkm, file="filter.xls",row.names=F, col.names=T,quote=FALSE,sep="\t") ###############################Sample cluster############################## sampleTree = hclust(dist(datExpr0), method = "average") # Plot the sample tree: Open a graphic output window of size 12 by 9 inches # The user should change the dimensions if the window is too large or too small. sizeGrWindow(12,9) pdf(file = "1_sampleClustering.pdf", width = 12, height = 9) par(cex = 0.6) par(mar = c(0,4,2,0)) plot(sampleTree, main = "Sample clustering to detect outliers", sub="", xlab="", cex.lab = 1.5, cex.axis = 1.5, cex.main = 2) ###############input trait data############### #Loading clinical trait data traitData = read.table("design.txt",row.names=1,header=T,comment.char = "",check.names=F)########trait file name can be changed###### dim(traitData) names(traitData) # remove columns that hold information we do not need. allTraits = traitData dim(allTraits) names(allTraits) # Form a data frame analogous to expression data that will hold the clinical traits. fpkmSamples = rownames(datExpr0) traitSamples =rownames(allTraits) traitRows = match(fpkmSamples, traitSamples) datTraits = allTraits[traitRows,] rownames(datTraits) collectGarbage() # Re-cluster samples sampleTree2 = hclust(dist(datExpr0), method = "average") # Convert traits to a color representation: white means low, red means high, grey means missing entry traitColors = numbers2colors(datTraits, signed = FALSE) # Plot the sample dendrogram and the colors underneath. #sizeGrWindow(12,12) pdf(file="2_Sample dendrogram and trait heatmap.pdf",width=12,height=12) plotDendroAndColors(sampleTree2, traitColors, groupLabels = names(datTraits), main = "Sample dendrogram and trait heatmap") dev.off() ################################## save(datExpr0, file = "fpkm_forAnalysis.RData") save(datTraits, file="trait_forAnalysis.RData") #############################network constr######################################## # Allow multi-threading within WGCNA. At present this call is necessary. # Any error here may be ignored but you may want to update WGCNA if you see one. # Caution: skip this line if you run RStudio or other third-party R environments. # See note above. enableWGCNAThreads() # Choose a set of soft-thresholding powers powers = c(1:30) # Call the network topology analysis function sft = pickSoftThreshold(datExpr0, powerVector = powers, verbose = 5) # Plot the results: #sizeGrWindow(9, 5) pdf(file="3_Scale independence.pdf",width=18,height=5) par(mfrow = c(1,2)) cex1 = 0.9 # Scale-free topology fit index as a function of the soft-thresholding power plot(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n", main = paste("Scale independence")); text(sft$fitIndices[,1], -sign(sft$fitIndices[,3])*sft$fitIndices[,2], labels=powers,cex=cex1,col="red"); # this line corresponds to using an R^2 cut-off of h abline(h=0.9,col="red") # Mean connectivity as a function of the soft-thresholding power plot(sft$fitIndices[,1], sft$fitIndices[,5], xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n", main = paste("Mean connectivity")) text(sft$fitIndices[,1], sft$fitIndices[,5], labels=powers, cex=cex1,col="red") dev.off() ######chose the softPower softPower =sft$powerEstimate adjacency = adjacency(datExpr0, power = softPower) ##### Turn adjacency into topological overlap TOM = TOMsimilarity(adjacency); dissTOM = 1-TOM # Call the hierarchical clustering function geneTree = hclust(as.dist(dissTOM), method = "average"); # Plot the resulting clustering tree (dendrogram) #sizeGrWindow(12,9) pdf(file="4_Gene clustering on TOM-based dissimilarity.pdf",width=12,height=9) plot(geneTree, xlab="", sub="", main = "Gene clustering on TOM-based dissimilarity", labels = FALSE, hang = 0.04) dev.off() # We like large modules, so we set the minimum module size relatively high: minModuleSize = 30 # Module identification using dynamic tree cut: dynamicMods = cutreeDynamic(dendro = geneTree, distM = dissTOM, deepSplit = 2, pamRespectsDendro = FALSE, minClusterSize = minModuleSize); table(dynamicMods) # Convert numeric lables into colors dynamicColors = labels2colors(dynamicMods) table(dynamicColors) # Plot the dendrogram and colors underneath #sizeGrWindow(8,6) pdf(file="5_Dynamic Tree Cut.pdf",width=8,height=6) plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut", dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05, main = "Gene dendrogram and module colors") dev.off() # Calculate eigengenes MEList = moduleEigengenes(datExpr0, colors = dynamicColors) MEs = MEList$eigengenes # Calculate dissimilarity of module eigengenes MEDiss = 1-cor(MEs); # Cluster module eigengenes METree = hclust(as.dist(MEDiss), method = "average") # Plot the result #sizeGrWindow(7, 6) pdf(file="6_Clustering of module eigengenes.pdf",width=14,height=12) plot(METree, main = "Clustering of module eigengenes", xlab = "", sub = "") MEDissThres = 0.2###### # Plot the cut line into the dendrogram abline(h=MEDissThres, col = "red") dev.off() # Call an automatic merging function merge = mergeCloseModules(datExpr0, dynamicColors, cutHeight = MEDissThres, verbose = 3) # The merged module colors mergedColors = merge$colors # Eigengenes of the new merged modules: mergedMEs = merge$newMEs pdf(file="7_merged dynamic.pdf", width = 9, height = 6) plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors), c("Dynamic Tree Cut", "Merged dynamic"), dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05) dev.off() # Rename to moduleColors moduleColors = mergedColors # Construct numerical labels corresponding to the colors colorOrder = c("grey", standardColors(15)) moduleLabels = match(moduleColors, colorOrder)-1 MEs = mergedMEs ##############################relate modules to external clinical triats###################################### # Define numbers of genes and samples nGenes = ncol(datExpr0) nSamples = nrow(datExpr0) moduleTraitCor = cor(MEs, datTraits, use = "p") moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples) #sizeGrWindow(10,6) pdf(file="8_Module-trait relationships.pdf",width=10,height=6) # Will display correlations and their p-values textMatrix = paste(signif(moduleTraitCor, 2), "\n(", signif(moduleTraitPvalue, 1), ")", sep = "") dim(textMatrix) = dim(moduleTraitCor) par(mar = c(6, 8.5, 3, 3)) # Display the correlation values within a heatmap plot labeledHeatmap(Matrix = moduleTraitCor, xLabels = names(datTraits), yLabels = names(MEs), ySymbols = names(MEs), colorLabels = FALSE, colors = greenWhiteRed(50), textMatrix = textMatrix, setStdMargins = FALSE, cex.text = 0.5, zlim = c(-1,1), main = paste("Module-trait relationships")) dev.off() ######## Define variable weight containing all column of datTraits ###MM and GS # names (colors) of the modules modNames = substring(names(MEs), 3) geneModuleMembership = as.data.frame(cor(datExpr0, MEs, use = "p")) MMPvalue = as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples)) names(geneModuleMembership) = paste("MM", modNames, sep="") names(MMPvalue) = paste("p.MM", modNames, sep="") #names of those trait traitNames=names(datTraits) geneTraitSignificance = as.data.frame(cor(datExpr0, datTraits, use = "p")) GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples)) names(geneTraitSignificance) = paste("GS.", traitNames, sep="") names(GSPvalue) = paste("p.GS.", traitNames, sep="") ####plot MM vs GS for each trait vs each module ##########example:royalblue and CK abs(geneTraitSignificance[moduleGenes, traitColumn], xlab = paste("Module Membership in", module, "module"), ylab = paste("Gene significance for ",trait), main = paste("Module membership vs. gene significance\n"), cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module) ###### for (trait in traitNames){ traitColumn=match(trait,traitNames) for (module in modNames){ column = match(module, modNames) moduleGenes = moduleColors==module if (nrow(geneModuleMembership[moduleGenes,])) pdf(file=paste("9_", trait, "_", module,"_Module membership vs gene significance.pdf",sep=""),width=7,height=7) par(mfrow = c(1,1)) verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]), abs(geneTraitSignificance[moduleGenes, traitColumn]), xlab = paste("Module Membership in", module, "module"), ylab = paste("Gene significance for ",trait), main = paste("Module membership vs. gene significance\n"), cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module) dev.off() } } } ##### names(datExpr0) probes = names(datExpr0) #################export GS and MM############### geneInfo0 = data.frame(probes= probes, moduleColor = moduleColors) for (Tra in 1:ncol(geneTraitSignificance)) { oldNames = names(geneInfo0) geneInfo0 = data.frame(geneInfo0, geneTraitSignificance[,Tra], GSPvalue[, Tra]) names(geneInfo0) = c(oldNames,names(geneTraitSignificance)[Tra], names(GSPvalue)[Tra]) } for (mod in 1:ncol(geneModuleMembership)) { oldNames = names(geneInfo0) geneInfo0 = data.frame(geneInfo0, geneModuleMembership[,mod], MMPvalue[, mod]) names(geneInfo0) = c(oldNames,names(geneModuleMembership)[mod], names(MMPvalue)[mod]) } geneOrder =order(geneInfo0$moduleColor) geneInfo = geneInfo0[geneOrder, ] write.table(geneInfo, file = "10_GS_and_MM.xls",sep="\t",row.names=F) ####################################################Visualizing the gene network####################################################### nGenes = ncol(datExpr0) nSamples = nrow(datExpr0) # Transform dissTOM with a power to make moderately strong connections more visible in the heatmap plotTOM = dissTOM^7 # Set diagonal to NA for a nicer plot diag(plotTOM) = NA # Call the plot function #sizeGrWindow(9,9) pdf(file="12_Network heatmap plot_all gene.pdf",width=9, height=9) TOMplot(plotTOM, geneTree, moduleColors, main = "Network heatmap plot, all genes") dev.off() nSelect = 400 # For reproducibility, we set the random seed set.seed(10) select = sample(nGenes, size = nSelect) selectTOM = dissTOM[select, select] # There's no simple way of restricting a clustering tree to a subset of genes, so we must re-cluster. selectTree = hclust(as.dist(selectTOM), method = "average") selectColors = moduleColors[select] # Open a graphical window #sizeGrWindow(9,9) # Taking the dissimilarity to a power, say 10, makes the plot more informative by effectively changing # the color palette; setting the diagonal to NA also improves the clarity of the plot plotDiss = selectTOM^7 diag(plotDiss) = NA pdf(file="13_Network heatmap plot_selected genes.pdf",width=9, height=9) TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot, selected genes") dev.off() ####################################################Visualizing the gene network of eigengenes#################################################### #sizeGrWindow(5,7.5) pdf(file="14_Eigengene dendrogram and Eigengene adjacency heatmap.pdf", width=5, height=7.5) par(cex = 0.9) plotEigengeneNetworks(MEs, "", marDendro = c(0,4,1,2), marHeatmap = c(3,4,1,2), cex.lab = 0.8, xLabelsAngle= 90) dev.off() #or devide into two parts # Plot the dendrogram #sizeGrWindow(6,6); pdf(file="15_Eigengene dendrogram_2.pdf",width=6, height=6) par(cex = 1.0) plotEigengeneNetworks(MEs, "Eigengene dendrogram", marDendro = c(0,4,2,0), plotHeatmaps = FALSE) dev.off() pdf(file="15_Eigengene adjacency heatmap_2.pdf",width=6, height=6) # Plot the heatmap matrix (note: this plot will overwrite the dendrogram plot) par(cex = 1.0) plotEigengeneNetworks(MEs, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2), plotDendrograms = FALSE, xLabelsAngle = 90) dev.off() ###########################Exporting to Cytoscape all one by one ########################## # Select each module for (mod in 1:nrow(table(moduleColors))) { modules = names(table(moduleColors))[mod] # Select module probes probes = names(datExpr0) inModule = (moduleColors == modules) modProbes = probes[inModule] modGenes = modProbes # Select the corresponding Topological Overlap modTOM = TOM[inModule, inModule] dimnames(modTOM) = list(modProbes, modProbes) # Export the network into edge and node list files Cytoscape can read cyt = exportNetworkToCytoscape(modTOM, edgeFile = paste("CytoscapeInput-edges-", modules , ".txt", sep=""), nodeFile = paste("CytoscapeInput-nodes-", modules, ".txt", sep=""), weighted = TRUE, threshold = 0.02, nodeNames = modProbes, altNodeNames = modGenes, nodeAttr = moduleColors[inModule]) }