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Supplementary texts 

1 Evaluation of estimation ability in discrete coverage depth by continuous 
distribution 

If the angle is considered discrete, either the normalization constraint  should 

be adjusted such that  and  

or the probability mass function of the truncated depths should be calculated such 

that , where  is a minute interval of the angle 

satisfying . However, these procedures require extensive computational 

resources, as n matches the size of the input sequence. Therefore, continuous 
distribution was directly employed to reduce the use of resources required for 
estimation. We evaluated the possible error which this procedure may cause in the 
model by fitting the model to a simulation dataset (Supplementary Fig. 2; see 
Methods for the procedure). As the error rates of our model were similar to those of 
the normalized model, we concluded that this procedure did not affect the final 
results. 
 

2 Relationship between peak-trough ratio of coverage depth and probability 

Transformation of the coverage depth into probability by expectation implies that 
only considering the ratio of maximum to minimum depth does not yield a properly 
estimate of the bias, as follows: 
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where imax and imin are defined as the positions that assume maximum or minimum 
probability, respectively. Due to observation errors represented by the variance of 

the distribution , the position with the maximum raw 

coverage depth cannot be the position with the highest probability. However, an 
accurate estimate could be achieved by reducing this variance, as was done using 
the moving median filter in previous studies. 
 

3 Determination of filtering threshold for peak noise elimination 

The threshold employed to remove peak noise was determined using a statistical 
distribution. We constructed a model where the coverage depth  of the overall 
genome sequence followed a discrete probability distribution P with parameter set 

 (i.e., ). This approach assumes that the peak noise is located as an 
outlier in the depth distribution throughout the WGS. When we compared the 
probability distributions for multiple data sets, the zero-inflated negative binomial 
distribution had the best score (Supplementary Table 5). We determined the top 1% 
to be the threshold based on the cumulative density function score as well as a 
previous study (Brown et al., 2016). We evaluated the validity of the procedure to 
remove the top 1% of the coverage depth. First, we evaluated the effect of removing 
data that did not contain noise coverage. For this purpose, we fitted the 
zero-inflated negative binomial distribution to a coverage depth of L. gasseri 
(ERR969426). We visually confirmed that this sample did not contain significant 
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noise. Next, we quantified the position of the actual top 1% of coverage depth in the 
fitted distribution. It was confirmed that the actual top 1% of coverage was located 
at 98.9% in the cumulative distribution function, which was equivalent to the 
expectation multiplied by 2.57 times the rooted variance. This result implies that 
the removal procedure affected a small portion of coverage on the noise-free 
distribution. Second, we verified the effect of removing noise. For this purpose, we 
constructed a coverage depth with noise by inserting 100 copies of part of the 
reference sequence (1,000 nt) into the sequence reads of L. gasseri. Next, four types 
of binned coverage were created by applying only the moving median filter or top 
1% removal, followed by the moving median filter, to the original or noisy coverage, 
respectively. Next, a von Mises distribution was fitted to each dataset. Finally, the 
distance between the probability distributions was calculated. The results 
confirmed that the probability distribution obtained by applying the top 1% noise 
reduction was similar to the original distribution. It was also confirmed that the 
effect of removing the top 1% coverage from noiseless data was smaller than the 
noise itself. Thus, we concluded that removing the top 1% has a slight effect on the 
noise-free distribution and provides noise reduction. 

4 Estimation of noise fraction in coverage depth 

In the performance evaluation, we confirmed that a large amount of noise affects 
our statistical model based on a circular distribution. When we conducted the 
evaluation using the dataset, the error rate was positively correlated with the noise 
coverage fraction for all coverage depths (Pearson r = 0.84, n = 3,600); 
(Supplementary Fig. 10a). This finding indicates that the main reason for the 
worsening of the estimate was that the noise broke the random sampling premise. 
In an actual situation, the proportion of noise is unknown and must be estimated. 
The noise contamination is particularly important for low-coverage datasets, 
because it is difficult to visually detect noise for a low-coverage dataset. 
Additionally, a low-coverage dataset may be relatively sensitive to noise. For this 
purpose, we focused on a rate at which the coverage depth is 0. First, as this 
phenomenon was modeled in previous studies (Lander & Waterman, 1988; Roach, 
1995), we confirmed the effect of replication on the model. As the PTR increased, the 
theoretical score deviated from the score assuming uniform probability, but the 
difference decreased when the average coverage depth was small (Supplementary 
Fig. 11). Second, when we verified the theoretical score in the less than 5.0× 
coverage dataset of E. coli, E. faecalis, and L. gasseri WGS reads (n = 101), the 
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zero-coverage fraction fitted the theoretical score with an error rate of 16.3% 
(Supplementary Figs. 10b and c; Supplementary Table 6). The samples with 
artificial coverage noise departed from the theory as the amount of the noise 
increased (Supplementary Figs. 10d and e). As we could confirm the correlation 
with the fold change of log-transformed zero coverage fraction with the theoretical 
model and the noise fraction (Supplementary Fig. 10f), we evaluated the 
performance to use it as a marker of noise contamination (Supplementary Figs. 10g 
and h). Resultingly, we confirmed that 81% of the invalid coverage depth 
distribution for our model could be detected when the threshold of the fold change 
was set at 0.56. 

5 Creation of artificial coverage depth 

To validate our model, we generated an artificial coverage depth from our model. 
We used von Mises, cardioid, wrapped Cauchy, Jones-Pewsey, and linear cardioid 
distributions as the circular distributions of the model. The length of the genome 
sequence was set to 1,000,000 nt. The location parameter of the circular 
distributions was set to be exactly in the middle of the discrete angle, and the 
concentration parameter was set such that the PTR became 2.0 (von Mises: 0.34657, 
cardioid: 0.16666, wrapped Cauchy: 0.17157, Jones-Pewsey: 0.34657, linear 
cardioid: 0.1061). The shape parameter of the Jones-Pewsey distribution was set to 
0.5, so that the probability density function would be different from those of the von 
Mises distribution (which matches that of a Jones-Pewsey distribution when the 
shape parameter is 0), wrapped Cauchy distribution (1.0), and cardioid distribution 
(-1.0). Finally, we randomly sampled the angles with a multinomial distribution 
according to the probability density function of the circular distribution so that the 
average coverage depth became 20.0. 

6 Effect of moving median filter parameter on the correlation between the 
growth estimates and experimental growth rate 

We evaluated the effect of the moving median filter on the growth rate estimates by 
changing both the window size, which represents the range of each processed data 
point, and the stride length, which represents the interval of the window. We 
observed that the correlation between the estimates and experimental growth rate 
remained greater than 0.5 when both lengths were less than 100 bp 
(Supplementary Fig. 4). The purpose of the filter is to reduce the variance in the 
coverage depth and outliers. As such, if filtering is performed, ideally, the average 
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depth will be maintained, and the variance will decrease. We checked these 
statistics on the filtered data when both parameters were more than 100 nt and 
observed that the filter failed to maintain the average for a portion of the data. 
Resultingly, the ratio of the coefficient of variance decreased when the window 
length was less than or equal to 100 nt. However, it increased in samples from one L. 
gasseri NOX culture, one E. faecalis NOX culture, 12 E. coli OX cultures, and nine E. 
coli NOX cultures when the size was greater than 100 nt (Supplementary Fig. 5). 
We therefore concluded that the correlation coefficient between the growth rate 
estimates and the experimental growth rate is valid in cases with less than or equal 
to 100 nt of filtered data. When we evaluated the moving median filter with a large 
window size, the coefficient of variation of the coverage depth indicated that some 
samples did not reduce the variance, but rather increased it. This behavior is 
probably due to the filter converting the window depth to 0 when the coverage was 
low. In such cases, the shape of the original distribution was not preserved, 
preventing accurate estimation. Although a large window size is helpful for 
smoothing outliers, it necessitates checking the coverage depth statistics after 
filtering. Moreover, the smaller stride length of the filter probably provides better 
results as it passes large amounts of data for estimation; however, it requires large 
amounts of memory and computational time for estimation as the volume of data 
increases. Accordingly, this parameter should be changed depending on the 
expected precision. 
 

7 Effect of coverage depth decrease at the edge of the genome 

We evaluated the effects of the decrease in coverage depth observed at the edge of 
the genome. Ordinally, the FASTA file format stores template genome sequences in 
a linear form, and most sequence aligners will not convert the linear sequence into a 
circular form. Thus, the coverage depth decreases at the edge of the linear genome 
sequence when the reads are directly aligned to the sequence. Two experiments 
were performed to quantify the effect on growth rate estimation. First, growth rate 
estimates were computed and compared with the results obtained from a 
circularized sequence file. The circularized file was constructed by combining the 
head and tail portions in a FASTA file. Second, growth rate estimates were 
compared between Bowtie2 and vg, which can align a sequence on a graph, while 
also considering the circular structure of the genome. Both results showed 
significantly higher correlations; hence, we concluded that these procedures are 
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unnecessary to practically compute pPTR (Pearson r = 1.0, p-value < 0.001) 
(Supplementary Fig. 6). 
 

8 Distribution of the maximum continuous zero coverage size in the IBD 
dataset 

To estimate the maximum deletion size of the entire genome sequence in the human 
intestinal WGS reads relative to the reference sequence database, we quantified the 
size of the region in which the coverage depth was continuously 0. First, we aligned 
the WGS reads of the IBD dataset (Franzosa, 2018) to the complete genome 
sequence database using Bowtie2 and calculated the coverage depth with SAMtools. 
To distinguish between the coverage depths due to deletion and those due to an 
insufficient read amount, we focused only on the samples with average coverage 
depths greater than 10. Finally, we calculated the size of the maximum area in 
which the coverage depth was continuously 0. 
 

9 Approximation of zero coverage fraction with replication effects 

In previous studies, the zero coverage fraction has been modeled with the average 

coverage depth as a random variable, i.e., , where  is the rate 

of nucleotides with zero coverage depth, Nr is the number of reads, and other 

symbols follow those of our model (Roach, 1995). When the probability  is 

uniform, the function can be approximated as , where x is the 

average coverage depth, in low average coverage and uniform probability (Lander & 
Waterman, 1988; Roach, 1995; Wendl & Waterston, 2002). We also investigated an 
approximation model to express the zero coverage fraction under the replication 
effect. Although it is not an analytical model, the theoretical zero-coverage fraction 
assuming the replication effect was approximated with the following equation with 

a minimum R2 score of 0.98: , where a and b are shape 

parameters of the function (Supplementary Fig. 11c). The theoretical score under 
the replication effects was calculated with the probability generated from the von 
Mises distribution. Then, we set 10,000 nt as sequence size I. 

Ε( f!)= 1
I

1− pi( )Nr
i=1

I

∑ f!
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E( f!)≈ exp(−x)

E( f!) ≈ exp(−bax+1)
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10 Simulation dataset to evaluate the performance of skewness detection 

To evaluate the robustness of the extended model and asymmetricity to noise, we 
fitted the model to a simulated dataset and compared estimates of the model and 
p-values with the true parameter used to generate the data. For this purpose, a 
pseudo-coverage depth was constructed from InvMIAE von Mises and multinomial 
distributions. The length of the genome sequence was 1,000 nt, and depth was 
generated such that the total was 10,000. The skewness parameter was 0 for 
symmetric data and 0.5 for asymmetric data. Peak noise was generated at  
with a length of 10 and depth of 0–45 coverage. For each peak noise, data were 
independently generated 10 times and fitting was performed. Although the 
estimate was slightly affected by noise due to the likelihood improvement, the 
asymmetry in the invMIAE model was properly inferred (Supplementary Figs. 16a 
and b). Next, robustness was examined in detail, where a dataset with artificial 
noise and a dataset with an artificial mutation in the 5,000 nt block size were used 
to verify the PTR robustness. Although the noise at the peak suppressed error with 
the optional procedure of excluding the top 1% depth (Supplementary Fig. 16c), it 
was sensitive to template sequence mutations (Supplementary Fig. 16d). 
 

11 Determination of applicable threshold for asymmetric extended model 

The robustness of the asymmetric extended model was determined based on the 
parameter , which represents the probability of obtaining a non-zero in the 
zero-inflated negative binomial distribution. We quantified the probability in the 
previous dataset, as well as in the artificially mutated datasets. The parameter 
values estimated for both the L. gasseri and the E. coli datasets were greater than 
0.99; however, it was estimated to be 0.896 in the E. faecalis dataset, and 0.952 and 
0.859 for the L. gasseri datasets with 5% and 10% mutations, respectively 
(Supplementary Fig. 18a). Based on the evaluation of the robustness of the 
InvMIAE model (Supplementary Fig. 16d), it was decided that a q value greater 
than 0.95 is necessary to apply the asymmetric extended model. 
 

−2 / π
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