Objective
This simulation example demonstrates how to conduct a permutation-based test for a partial regression coefficient in a multiple linear regression model.

Document Preamble

```
# Load Libraries
library(knitr)
laborary(mosaic)
laborary(ggplot2)
laborary(MASS)

# Set knitr options
opts_chunk$set(fig.width = 6, fig.height=5)

# Clear Environment (optional)
remove(list=ls())

# Set seed
set.seed(314159)
```

Simulation Example
Here we will consider a simple simulation where a response variable, \(y \), is related to two predictor variables, \(x_1 \) and \(x_2 \). The predictors are themselves correlated. We will illustrate a simple permutation-based test for the effect of \(x_1 \), adjusted for \(x_2 \).

Steps:
1. Fit a linear regression model relating \(x_1 \) to \(x_2 \).
2. Add the residuals from this model to the original data set.
3. Create the permutation distribution by shuffling these residuals.
4. Determine the p-value by comparing the t-statistic from the fit to the original data set to the permutation-based distribution of this same statistic.

Simulation parameters
- \(\Sigma \) (variance/covariance matrix of \(x_1 \) and \(x_2 \)).
- We will assume mean of \(x_1 \) and \(x_2 \) =0
- \(\beta \) = vector of regression parameters (with intercept=0)

\[
\Sigma \leftarrow \text{matrix}(c(10, 3, 3, 2), 2, 2)
\]

\[
\beta \leftarrow c(0.2, -0.5)
\]

Create correlated predictors
\[
X \leftarrow \text{mvnrnorm}(n = 100, \text{rep}(0, 2), \Sigma)
\]
\[
\text{cor}(X)
\]
Form response variables:
\[y <- X \ast \% Beta + \text{rnorm}(100, 0, 2) \]

\[\text{Mydata} <- \text{data.frame}(y = y, x1 = X[,1], x2 = X[,2]) \]

Fit regression model to the data:
\[\text{lmsim} <- \text{lm}(y \sim x1 + x2, \text{data = Mydata}) \]

```
# Call:
# lm(formula = y ~ x1 + x2, data = Mydata)
#
# Residuals:
# Min     1Q Median     3Q    Max
# -4.9605 -1.3618  0.1088  1.2206 5.3751

# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.05740  0.21377  -0.269  0.78888
# x1           0.18488  0.08781   2.105  0.03783 *
# x2          -0.66629  0.20420  -3.263  0.00152 **
# ---
# Signif. codes:  *** 0.001 ** 0.01 * 0.05 . 1

# Residual standard error: 2.134 on 97 degrees of freedom
# Multiple R-squared: 0.09913, Adjusted R-squared: 0.08056
# F-statistic: 5.337 on 2 and 97 DF,  p-value: 0.006326
```

Step 1: capture the part of \(x1 \) that is not related to \(x2 \):
\[\text{lmi} <- \text{lm}(x1 \sim x2, \text{data = Mydata}) \]
\[\text{Mydata} <- \text{Mydata} \%\% \text{mutate}(x1resid = lmi$\text{resid}) \]

Demonstrate that using the residuals here results in the same coefficient, standard error, t-statistic and p-value for \(x1 \) as in our original regression (lmsim):

\[\text{lmsim2} <- \text{lm}(y \sim x1resid + x2, \text{data = Mydata}) \]

```
# Call:
# lm(formula = y ~ x1resid + x2, data = Mydata)
#
# Residuals:
# Min     1Q Median     3Q    Max
# -4.9605 -1.3618  0.1088  1.2206 5.3751

# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.04442  0.21377  -0.208  0.8358
# x1resid      0.18488  0.08781   2.105  0.0378 *
# x2          -0.40599  0.16252  -2.498  0.0142 *
```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. ' 0.1 ' ' 1

Residual standard error: 2.134 on 97 degrees of freedom
Multiple R-squared: 0.09913, Adjusted R-squared: 0.08056
F-statistic: 5.337 on 2 and 97 DF, p-value: 0.006326

Store the t-statistic for x1 from this model

```r
tstat <- summary(lmsim)$coefficients[2, 3]
```

```r
[1] 2.105456
```

Step 2: create the permutation distribution

```r
randsims <- do(10000) * {
    lmrand <- lm(y ~ shuffle(x1resid) + x2, data = Mydata)
    summary(lmrand)$coefficients[2, 3]
}
```

```r
head(randsims)
```

```r
## result
## 1 -0.3195885
## 2 1.6825919
## 3 1.2424042
## 4 -0.5098583
## 5 -0.5584336
## 6 0.4883965
```

Plot the randomization distribution with our original statistic

```r
histogram(~ result, data = randsims, v = tstat, col = "gray")
```
Determine our p-value

```r
prop(-1(abs(result) >= tstat), data=randsims)
```

```
## prop_TRUE
## 0.036
```

Conclusions

The permutation-based approach allows us to relax the Normality assumption. Our randomization-based p-value is really similar to the p-value of the original t-test. This result is not surprising given that the assumptions of linear regression (constant variance, normality, linearity) all hold in the simulation example.
Random number generation:
RNG: Mersenne-Twister
Normal: Inversion
Sample: Rounding

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] splines stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] MASS_7.3-51.4 rms_5.1-3.1 SparseM_1.77
[4] Hmisc_4.2-0 Formula_1.2-3 survival_2.44-1.1
[7] mgcv_1.8-28 nlme_3.1-140 gmodels_2.18.1
[10] geepack_1.2-1 boot_1.3-22 ggfortify_0.4.7
[13] mosaic_1.5.0 Matrix_1.2-17 mosaicData_0.17.0
[16] ggformula_0.9.2 ggstance_0.3.3 ggplot2_3.2.1
[19] lattice_0.20-38 dplyr_0.8.3 knitr_1.25

loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-2 tools_3.6.1 backports_1.1.5
[4] utf8_1.1.4 R6_2.4.0 rpart_4.1-15
[7] lazyeval_0.2.2 colorspace_1.4-1 nnet_7.3-12
[10] withr_2.1.2 tidyselect_0.2.5 gridExtra_2.3
[13] leaflet_2.0.2 compiler_3.6.1 quantreg_5.51
[16] cli_1.1.0 htmlTable_1.13.2 sandwich_2.5-1
[19] gg dendro_0.1-20 labeling_0.3 mosaicCore_0.6.0
[22] scales_1.0.0 checkmate_1.9.4 mvtnorm_1.0-11
[25] polspline_1.1.16 readr_1.3.1 stringr_1.4.0
[28] digest_0.6.22 foreign_0.8-71 rmarkdown_1.18
[31] base64enc_0.1-3 pkgconfig_2.0.3 htmltools_0.4.0
[34] fastmap_1.0.1 highr 0.8 htmlwidgets_1.5.1
[37] rlang_0.4.1 rstudioapi_0.10 shiny_1.4.0
[40] generics_0.0.2 zoo_1.8-6 crosstalk_1.0.0
[43] gtools_3.8.1 acepack_1.4.1 magrittr_1.5
[46] Rcpp_1.0.2 munsell_0.5.0 fansi_0.4.0
[49] lifecycle_0.1.0 multcomp_1.4-10 stringi_1.4.3
[52] yaml_2.2.0 grid_3.6.1 gdata_2.18.0
[55] promises_1.1.0 ggrepel_0.8.1 crayon_1.3.4
[58] hms_0.5.2 zeallot_0.1.0 pillar_1.4.2
[61] codetools_0.2-16 glue_1.3.1 packrat_0.5.0
[64] evaluate_0.14 latticeExtra_0.6-28 data.table_1.12.6
[67] vctrs_0.2.0 httpuv_1.5.2 MatrixModels_0.4-1
[70] gttable_0.3.0 purrr_0.3.3 tidyr_1.0.0
[73] assertthat_0.2.1 xfun_0.10 mime_0.7
[76] xtable_1.8-4 broom_0.5.2 later_1.0.0
[79] tibble_2.1.3 tinytex_0.17 cluster_2.1.0
[82] TH.data_1.0-10