Case Study III: Model Selection Uncertainty

jfieberg

2020-01-09

Objective

This example demonstrates how the bootstrap can be used to explore model uncertainty.

Load R libraries

```r
library(knitr)
library(rms)  # for validate function
library(MASS) # for stepAIC
```

Setting the seed of the random number generator

Use the `set.seed()` function in R to initialize the random number generator.

```r
set.seed(2041971)
```

Modeling abundance of longnose dace

Read in the data:

```r
dace <- read.csv("data/longnosedace.csv")
```

Predictors

- acreage = area (in acres) drained by the stream
- do2 = the dissolved oxygen (in mg/liter)
- depth = the maximum depth (in cm) of the 75-meter segment of stream
- no3 = nitrate concentration (mg/liter)
- so4 = sulfate concentration (mg/liter)
- temp = water temperature on the sampling date (in degrees C).

Fit a model using all 6 predictors, then use stepAIC to implement backwards selection to choose a “best” model.

```r
fullmod.lm <- lm(longnosedace ~ acreage + do2 + maxdepth + no3 + so4 + temp, data=dace)
stepAIC(fullmod.lm)
```

```
## Start: AIC=511.82
## longnosedace ~ acreage + do2 + maxdepth + no3 + so4 + temp
##
## Df Sum of Sq RSS AIC
## - so4 1 0.2 102787 509.82
## - do2 1 2165.8 104952 511.24
## <none> 102787 511.82
## - temp 1 4432.8 107219 512.69
## - maxdepth 1 6638.2 109425 514.08
## - no3 1 11876.0 114663 517.26
## - acreage 1 14230.1 117017 518.64
##
## Step: AIC=509.82
```
Bootstrap validation

Validate will use the bootstrap to calculate “honest” measures of model fit. We can also visualize “model uncertainty” in the “best model” by using bw=T (which tells R to use backwards selection to choose the best model). The *** below indicate, which variables are included in the “optimal model” for each bootstrap replicate.

After applying a backwards model selection algorithm, we end up with a model containing only acreage and no3. The R^2 of this model = 0.24, which describes the variance in longnosedace explained by these two predictors. If we were to apply this same model to a new data set, we would expect the amount of variance that would be explained to be much lower. We can obtain a more “honest” measure of the variance by: a) creating 2 bootstrap data sets (one for model training and one for model testing); b) applying our model selection algorithm to the training data set and calculating the resulting R^2; c) use the same model to predict the response in the bootstrap test data set and use these predictions to calculate a second R^2; d) calculate a measure of “optimism” by subtracting the average R^2 from part c from the average R^2 in part b; e) subtract this estimate of optimism from the R^2 obtained from our original data set. The validate function will do this for us!
fullmod.ols<-ols(longnosedace~acreage+do2+maxdepth+no3+so4+temp, data=dace, x=T, y=T)
validate(fullmod.ols, bw=T, B=100)

Backwards Step-down - Original Model
##
Deleted Chi-Sq d.f. P Residual d.f. P AIC R2
so4 0.00 1 0.9911 0.00 1 0.9911 -2.00 0.314
do2 1.29 1 0.2565 1.29 2 0.5253 -2.71 0.300
temp 1.75 1 0.1859 3.04 3 0.3860 -2.96 0.280
maxdepth 3.60 1 0.0579 6.63 4 0.1566 -1.37 0.239

Approximate Estimates after Deleting Factors
##
Coef S.E. Wald Z P
Intercept -2.861457 1.053e+01 -0.2717 0.7858203
acreage 0.002325 6.502e-04 3.5754 0.0003497
no3 9.012197 2.767e+00 3.2573 0.0011246

Factors in Final Model
##
acreage no3

R-square 0.2394 0.3383 0.1361 0.2022 0.0372 100
MSE 1675.9166 1454.3732 1903.4649 -449.0918 2125.0084 100
g 25.0102 29.4901 22.9498 6.5403 18.4698 100
Intercept 0.0000 0.0000 7.6855 -7.6855 7.6855 100
Slope 1.0000 1.0000 0.8254 0.1746 0.8254 100

Factors Retained in Backwards Elimination
##
acreage do2 maxdepth no3 so4 temp
Conclusions

1. We see that the different bootstrap samples result in different models being chosen as optimal. The number of predictor variables included ranges from 1 (in 6 models) to 6 (in 1 model).

2. We see that our original estimate of R^2 (0.24) is likely quite optimistic (our estimate of optimism = 0.20). Thus, we end up with a corrected estimate of $R^2 = 0.037$ (quite depressing!).
locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] splines stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] MASS_7.3-51.4 rms_5.1-3.1 SparseM_1.77
[4] Hmisc_4.2-0 Formula_1.2-3 survival_2.44-1.1
[7] mgcv_1.8-28 nlm_3.1-140 gmodels_2.18.1
[10] geepack_1.2-1 boot_1.3-22 ggfortify_0.4.7
[13] mosaic_1.5.0 Matrix_1.2-17 mosaicData_0.17.0
[16] ggformula_0.9.2 ggstance_0.3.3 ggplot2_3.2.1
[19] lattice_0.20-38 dplyr_0.8.3 knitr_1.25

loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-2 tools_3.6.1 backports_1.1.5
[4] utf8_1.1.4 R6_2.4.0 rpart_4.1-15
[7] lazyeval_0.2.2 colorspace_1.4-1 nnet_7.3-12
[10] withr_2.1.2 tidyselect_0.2.5 gridExtra_2.3
[13] leaflet_2.0.2 compiler_3.6.1 quantreg_5.51
[16] cli_1.1.0 htmlTable_1.13.2 sandwich_2.5-1
[19] ggdendro_0.1-20 labeling_0.3 mosaicCore_0.6.0
[22] scales_1.0.0 checkmate_1.9.4 mvtnorm_1.0-11
[25] polspline_1.1.16 readr_1.3.1 stringr_1.4.0
[28] digest_0.6.22 foreign_0.8-71 rmarkdown_1.18
[31] base64enc_0.1-3 pkgconfig_2.0.3 htmltools_0.4.0
[34] fastmap_1.0.1 highr_0.8 htmlwidgets_1.5.1
[37] rlang_0.4.1 rstudioapi_0.10 shiny_1.4.0
[40] generics_0.0.2 zoo_1.8-6 crosstalk_1.0.0
[43] tools_3.8.1 acepack_1.4.1 magrittr_1.5
[46] Rcpp_1.0.2 munsell_0.5.0 fansi_0.4.0
[49] lifecycle_0.1.0 multcomp_1.4-10 stringi_1.4.3
[52] yaml_2.2.0 grid_3.6.1 gdata_2.18.0
[55] promises_1.1.0 ggrepel_0.8.1 crayon_1.3.4
[58] hms_0.5.2 zeallot_0.1.0 pillar_1.4.2
[61] codetools_0.2-16 glue_1.3.1 packrat_0.5.0
[64] evaluate_0.14 latticeExtra_0.6-28 data.table_1.12.6
[67] vctrs_0.2.0 httpuv_1.5.2 MatrixModels_0.4-1
[70] gtable_0.3.0 purrr_0.3.3 tidyr_1.0.0
[73] assertthat_0.2.1 xfun_0.10 mime_0.7
[76] xtable_1.8-4 broom_0.5.2 later_1.0.0
[79] tibble_2.1.3 tinytex_0.17 cluster_2.1.0
[82] TH.data_1.0-10