Supplementary material to " GISA: Using Gauss

Integrals to identify rare conformations in protein

structures”

C. Grgnbak, T.Hamelryck, P.Rggen

June 2, 2020

Contents

1 Overview

2 Method

2.1
2.2
2.3
2.4
2.5

Writhe and mutual writhe by example: 1bpi
Digression on an approximation to the writhe
The recursion algorithm
Recursion for higher order invariants
GISA’s scan methods: scoring and more
2.5.1 Flavour: rarO,
2.5.2 Flavour: rarl
2.5.3 Flavour: rar2

3 Results

3.1
3.2
3.3
3.4
3.5
3.6

3.7

Kinemage top100, restricted search
Kinemage top100, unrestricted search
Kinemage top8000, restricted search
Kinemage top8000, unrestricted search
Pisces sets, restricted and unrestricted search
Results from GISA scans.
3.6.1 Basicscan (rar0)
3.6.2 Advanced scans, rarl andrar2
Computational performance

1 Overview

We first provide more details on our new recursive algorithm, GISA, for the
computation of the Gauss Integral invariants [11]. Very first we give a walk-
through via a concrete example of how the first and fundamental invariant,
viz. writhe, is handled in GISA. Then, in higher generality, starting afresh
from the very definition of the invariants we provide a ”template equation”
for the recursion. From this a quite remarkable key feature of the algorithm
follows easily: it is possible to compute the invariants with only little extra
time consumption' in a recursion, which computes not only the invariants of
order 1, 2 and 3 on the full structure, but gives simultaneously the values of
invariants on all its sub-chains?. It is this ”richness” that allows the present
application (though in this work we focus on the writhe).

Below we explain the recursion method for the lowest order case (viz.
the writhe) and treat the higher order invariants by only giving the details
in two cases.

The final part of the methods section provides descriptions of the three
scan methods in GISA (rar0/1/2); this includes outlines on how they work
and definitions of the scoring methods. Thereafter we give a more compre-
hensive set of examples of the searches for ”links and pokes” than the few
found in the main paper. We show results from both the top100 set and
the top8000 set [7] as well as for the PiscesLoRes and PiscesHiRes sets [9],
including 3d-plots of conspicuous cases. We then turn to the rarity scans
with focus on the basic scan method (rar0) to check that it matches the
unrestricted search as desired. We deal with the two more advanced scan
methods, rarl/2, only briefly to describe a few tests. Finally, the computa-~
tionally performance of GISA is treated by some concrete examples.

2 Method

Before diving into a detailed exposition, let us start with a brief overview.
The 29 measures (or: invariants) introduced by [11], can be computed from
the 3d-structure of a fold by working out values of so called Gauss integrals.

1 As mentioned in the section on computational complexity of the main paper, in test
runs GISA ran at a pace comparable to the algorithm of [10]; the ratio in time consumption
was between 1 and 2.

2To get the order 2 GIs on all connected sub-chains, GISA must be run in order 3 or
order 2 ”full” mode. In order 2 and 3 additional sub-chain values of invariants of a relative
nature are had, but this is of no further relevance here. For more about the output of
GISA see the section Computational Performance

The computation of these integrals is made possible by the powerful Gauss-
Bonnet theorem [11]; representing the a-Carbon trace as a sequence of line
segments (a polygonal curve, a piece-wise linear curve), the measures can be
formulated in terms of sums of writhe-contributions for pairs of the segments
[11]. Also in [11], interpretation of the invariants can be found. We shall
adopt a similar notation.

We now turn to a walk-through of the notion of writhe and how it is han-
dled in GISA. The example is that of the small protein 1bpi, which contains
a really fine 1-link (Figure 2 in the Main text and Fig. S8b below). The
section could though be skipped; in section 2.3 on the recursion algorithm
in GISA we give an independent but formal treatment of the invariants.

2.1 Writhe and mutual writhe by example: 1bpi

Writhe is a geometric measure of how coiled a space curve is. Consider the
carbon alpha curve of a protein chain, or a fragment thereof, traversed in
the N-to-C direction. Look at the curve from one direction in space, or
mathematically project the curve onto a plane, and keep track of over and
under crossings. A crossing is called positive if the directions of traversal
at the crossing follow the right hand rule of electro-magnetic induction;
otherwise, it is called negative. The directional writhe is simply the sum of
the signs of the crossings seen from a given direction. This sum is a natural
notion of how coiled the planar curve with over and under crossings is. For
an unknotted curve, try the following: Put a belt on top of the planar
projection following the over and under crossings such that the width of
the belt is kept orthogonal to the plane. Now extend the belt fully while
keeping the width of the belt orthogonal to the plane at the two ends. You
now have a straight belt. It has no crossings and its directional writhe is
zero. Instead, the belt now makes a signed integer number of full twists
that equals the directional writhe of the original coiled curve. The number
of crossings and their signs may change if you observe the curve from another
direction. Hence, the directional writhe change depending on the direction.
By averaging the directional writhe over all directions, we get the average
signed number of crossings or the writhe of the curve. The writhe is by
the averaging independent of the directions used to define it. If the C-
to-N-direction was chosen, then the right hand rule preserves the signs of
crossings. Hereby a-helices are right handed independent of the direction
of traversal. For two closed non-intersecting curves that both have a chosen
direction of traversal the directional writhe can be shown to be constant,
i.e. independent of the chosen projection. This constant is called the linking

number and counts how many times the two curves are linked together. For
two almost closed loops we can in stead use the writhe, and still have a
good definition of a linking number. Writhe or linking number is most
effectively calculated using a so-called Gauss Integral (the geometric part
of the induction from a curve to itself or to another curve) and for a pair
of line segments, (s;,s;), there are explicit formulas for their contribution
w(i,j) to the writhe building on the Gauss-Bonnet formula, see e.g. [11].

Writhe matrix of 1bpi

Fﬂ 0.04
o) %0 1003
Re) =g
i,

€ 10 10,02
2 |
= 10.01
S 30 "
5
Q 9 1-0.01
© I 0.02
—1 10 1 -0.03

FﬂT 0.04

10 20 30 40 50

Line segment number

Figure S1: Writhe contributions w(i,j) between all line segment pairs s;
and s; with ¢ < j of protein 1bpi. All terms at the diagonal and right above
it (j =i+ 1) are automatically zero, and one has always w(i, j) = w(j,1)
(see also section 2.3).

In Fig. S1 the writhe contributions between all line segment pairs of
the protein 1bpi are shown. Note how the two terminal right-handed alpha
helices give large positive contributions near the diagonal. The turn between
the blue and the red curve segments in Fig.S8b (and Figure 2 in the Main

article) is also strongly right handed. There are also many strong negative
writhe contributions. These appear in a belt orthogonal to the diagonal in
Fig. S1. The most basic output of GISA is the writhe of all sub-chains
(segments) of the curve; for 1bpi this is shown in Fig. S2. For the sub-chain
bordered by line segments s,, and s, this is

Ia(m,n) = Y w(i,])

m<i<j<n

Segments starting at residues 20 to 45 and continuing to the C-terminus
all have similar right-handed writhe stemming from the C-terminal alpha
helix, see Fig. S2. The whole chain has almost zero writhe (the top left
element) and may therefore have folded with the N and C terminals fixed in
both position and rotation. The positive coiling of the two helices and the
right-handed turn is counterbalanced by negative coiling of the rest of the
backbone.

Writhe of segments of 1bpi

e gogs IO.6

w
o

| —

9 04
€ 40 -
c

e 7 O
S 30

& 1-02
o

w 20 0.4
o

£

|

—_
o

10 20 30 40 50
Line segment number

Figure S2: Writhe of sub-chains, I15(m,n), of protein 1bpi, where the axes
indicate the indices m and n of the bordering line segments.

Computationally, the writhe contribution of sub-chains s, = (a1, a2) and
sp = (b1, b2) , called the mutual writhe

mutual writhe(s,, sp) = Z Z w(i,j) (1)

a1 <i<ag by <j<ap
is simply equal to
Lia(a1,b2) — Lia(ar, by — 1) — Lia(ag + 1,b2) + I12(az + 1,01 — 1)

This identity was the key tool to reduce the complexity of calculating gen-
eralized Gauss Integrals in [11]. Here it serves as the template equation for
our recursive algorithm covering all the Gauss Integrals up to and including
order 3 (see section 2.3 equation 2). For the writhe it allows us to swiftly
compute the mutual writhe of any sub-chain pair: it just takes four look-ups
in the writhe table (Fig. S2) and then summing. For this computation and
the identity itself see also section 2.3.

Fig. S3 shows this mutual writhe of all pairs of 18-mers of 1bpi. If the
first segment starts after the first helix (e.g. at residue 10) and the last
segment ends before the last helix (e.g. starting at residue 28) then the
mutual writhe is approximately -1. The endpoints of each of these two sub-
chains are close in space (see Fig. S8b). Seen as (nearly) closed loops they
hereby are found to form a link with linking number -1.

We now digress briefly, whereafter we take up afresh the Gauss integral
invariants and how they are handled in GISA by a recursion.

2.2 Digression on an approximation to the writhe

In [3] [1] [2] an approximation of writhe is used to find the maximal writhe
between an almost closed loop and an arbitrary other sub-chain. Also the
writhe is there apparently recalculated for each pair of sub-chains, which we
here avoid using the mutual writhe formula (see section 2.3 or the explana-
tion above). We implemented the approximation of writhe used in [3] [1] [2]
and checked it using an ideal 1-link (Hopf link, Fig. S4) consisting of two
regular and planar n-gons. For large values of n the writhe approximation
converges nicely, but when using the long line segments of carbon alpha
curves a significant approximation error seems likely (Fig. S5).

2.3 The recursion algorithm

In this section we aim at explaining GISA’s recursive algorithm for comput-
ing the Gauss Integral invariants. To define these in general consider a par-
ticular fold represented as a polygonal curve in 3d-space. Fixing the notation

Mutual writhe of 18-mers 1bpi

B
N 35
b=
) 10
E 30
(@)]
T E 0.2
wn L
o
o 20 104
.8
‘5 12 0.6
()]
= 10
b7 08
=
w s

-1

5 10 15 20 25 30 35 40
First residue in segment 1

Figure S3: Mutual writhe of pairs of sub-chains (segments) of protein 1bpi.

Two Hopf Links
1

; P v
\
ol\

'OSA\ Ss—— /

\ —T
1 %g 05 1

2 15 - 05

Figure S4: Hopf links and n-gons.

Approximate Gauss Integrals

5 x
b= « |deal Hopf Link
£ * Offset Hopf Link
gl2 Offset and tilted
O *
S *x
O_ x*g_
E 1 *, x ¥ ***;¥§*W ------------------
(@] *
g o
®
> 08— : : :

0 10 20 30 40

n-Gon Hopf Link

Figure S5: Illustration of how the value of the linking number obtained by
the approximative formula deviates from the true value (4+1) as a function
of the number n of segments in the n-gon loops for three different spatial
arrangements of the link.

above, this consists in an ordered set of line segments, {s;}, i =1,..., L —1,
connecting neighbouring C-a’s, where L is the number of a-Carbon atoms
(C-a’s) in the protein’s back bone. The first, and fundamental, invariant is
the writhe of the curve [11] (as in the writhe-intro section 2.1 above)

Lp(LL-1) = Y w(ij)

1<i<j<L—1

where each w(i, j) is the writhe contribution for the pair of segments (s;, s;)
3. These contributions can be computed by means of the Gauss-Bonnet
theorem, cf. [11]. For our purpose it suffices to know that the w-terms (the
w(i,j)’s) can be computed using the coordinates of the end points of the
segments. Some additional notation is handy: we refer to the set of index
pairs {(i,j)|t < j;i,7 = m,...n} as the simplex below (m,n) or just the
simplez in case (m,n) = (1, L — 1); the elements in a simplex we refer to as
vertices. The reason why the summation above can be taken to be only over
the simplex is that w(i,i) = 0 and w(i,j) = w(j,) for all relevant values of
i and j (clearly, we also have w(i,i 4+ 1) = 0: two consecutive line segments
always sit in a plane).

We will consider the writhe of sub-chains too (as in the writhe-intro); for
the sub-chain consisting of the segments m to n we simply let

Lia(m,n) = Z w(i, j)

m<i<j<n

An absolute version of the writhe, denoted 19|, is defined by summing up
the absolute value of the writhe contributions, |w(i,j)|. While the writhe
computes a signed average crossing number, Ij19; computes its unsigned
companion, the average crossing number (see [11] for more on the interpre-
tation).

The recursion equation for the writhe, which is at the same time the
template for all the higher order cases, is arrived at by noting that I12(m,n)
satisfies a very simple decomposition illustrated here (Fig.S6) for a sub-chain
consisting of the segments from m = 50 to n = 90:

3The writhe referred to in the main text is defined as ﬁ

the normalization here and follow the notation of [11]

I12 as is customary; we omit

110 Sample simplex, recursion indications

100 1

90}

1 [3 /

80} 1
'[_ 2 | a

70} |

60 | / 1
50

30+ 1

20+ 1

ot]

-10 . \ . .
-10 0 10 20 30 40 50 60 70 80 90 100 110

Figure S6: Example of the simplex (all vertices within the green border) for
a chain of 100 segments.

10

In this example we can write

Iio(m =50,n =90) = Areal + Area2 + Area3 + Aread
= Areal + (Area2 + Aread) + (Area3 + Aread)
—Aread

The point with this is that the last three terms are writhe values of the
sub-chains corresponding to the areas (here the sub-chains 50-80, 60-90 and
60-80 respectively). In particular, if we just consider the sub-chains given
by removing the C-alpha at the beginning of the m — n sub-chain or at its
end, we have

Ilg(m, 77,) =

2
w(m,n)+Iia(m+1,n) + Lia(m,n —1) — I1a(m + 1,n — 1) @)

As this formula suggests, if we implement the computation of I;2(1, L — 1)
in a 2d for-loop over the simplex, moving backward in the values of m (from
L —1 and down to 1) and, for each such m, moving forward in the value of
n, from m to L — 1, we can compute I15(m,n) from w(m,n) and already
known values of I;2 (as indicated by the arrows). Indeed, the right-hand
side can be computed if we know a) ”the corner value” w(m,n) and b) the
values of I15 at vertices (i,7) prior to (m,n) in the sense that (i, 7) has been
passed in this 2d-loop when it arrives at (m,n) (that is, if i > m or if i = m
and j < n). We may sum this up by saying that the computation of I, at
any vertex (m,n) can be done in a recursion by prior vertices and measures
— regarding, with sense, w as a measure prior to I12. We notice that it is
clear that the same recursion formula and statements hold for /|15, though
we shall not make use of this here.

Importantly, we can here see how the ”richness” property alluded to
above emerges. We ultimately want to know the value of 115 on the whole
chain, i.e. the number I15(1, L—1). However, implementing the computation
of I15 as we have just outlined will provide us with the value of I12 on all
sub-chains of the given chain. Thus, the recursion fills out the simplex
with values of the invariant. This richness we shall exploit here to compute
swiftly the mutual writhe of any two given sub-chains of a larger chain. This
is the sum of writhe contribution stemming from segment pairs having one
segment from each chain (i.e. the "mixed” contributions, see also equation
1). For the searches that we are aiming for, the mutual writhe is exactly
what we need, since it amounts to the linking number of the two sub-chains.*

4While an ideal loop has zero writhe, this will conveniently also disregard any writhe
each sub-chain may have with itself.

11

Let us here understand this notion in the setting of Fig.S6: there the mutual
writhe of the sub-chains (50,60) and (80,90) is the sum of the w-terms in
Areal (including the boundary). In the equation right below the figure and
taking the areas appropriately without the boundary that now goes into
Areal, as we clearly may, the left-hand side is the writhe of a sub-chain and
on the right-hand side the last three summands are also writhe values of
sub-chains. What remains is Areal, which can therefore be obtained from
writhe values of sub-chains as a simple signed sum (as also mentioned in the
writhe-intro section 2.1; the four summands are exactly the expression below
equation 1).5 To recap this in general, we have for two segments s; = (k, 1)
and s9 = (m,n), with k<l <m<n

mutual writhe(sy, s2) =

3
Ilg(k,n)—flz(k,m — 1) - Ilg(l + 1,n) + Ilg(l + 1,m - 1) ()

2.4 Recursion for higher order invariants

While the recursion method does not improve on the performance of the
computation of the writhe, this is not the case for the higher order invariants.
However, since not the primary focus of our search method, we dwell on
them only briefly and give details in two cases. The higher order measures
are sums of products of w-terms, with the order referring to the number of
factors (w-terms) in the products. For instance [11]

Iizoeas(1, L —1) = Z w(a, c)w(b, flw(d, e)
1<a<b<c<d<e<f<L-1

defines an order 3 invariant (while the summation order is 6 it can be brought
down to 3; this follows from the present algorithm and is well-known [11]).
Following [12] we consider these invariants up to and including third order
and, as it turns out, all these fit into recursion formulas of the same shape
as that for the writhe. Suggestively, for invariant I we can write

I(m,n) = fct (lower order invariants at (m,n) or prior vertices) +
Im+1,n)+I(mn—1)—I(m+1,n—1)

where w will be understood as a lower order invariant for any given I. We
refrain from carrying out the detailed derivation, which for each invariant

®In [11] and [10] this was used to half the computational complexity of the higher order
Gauss Integrals.

12

reveals what the function term ”fct” is. For the sake of inspiration though
let us consider the simple order 2 invariant, [1423. By definition [11]

Tag3(m,n) = > w(i, j)w(a,b)

m<i<a<b<j<n
Then clearly
Iugs(myn) = > w(i,j)la(i+1,j-1)
m<i<j<n
So writing
wia23(i,7) = w(i,j) 20+ 1,5 = 1),

we see that Ii493(m, n) is a sum of the wigg3-terms over the simplex below
(m,n) (i.e. the simplex which has (m,n) as top-left corner) and since these
w1423’s only depend on these vertices the case is as with I19. It follows that
we have the recursion equation

Nasg(myn) = > wiazsl(i, j)
m<i<j<n

= w(m,n)li2(m+1,n—1)
+Il423(m + 1, TL) + 11423(m, n — 1) — 11423(m +1,n— 1)

We see that indeed the first summand, w(m, n)I12(m+1,n—1), is a ”function
of lower order invariants at (m,n) or prior vertices” and conclude that 1423
can be handled in the same 2d for-loop as Iyo.

The derivations of the recursion formulas (i.e. to arrive at transparent ”fct”-
terms) do not go quite as smoothly for all invariants, but at any rate they
are not very difficult to arrive at. In a few cases new measures playing
the role as fct-term pop up ("relative” invariants) and in a couple of cases
several such measures emerge, and a canceling out among these leads to
simpler expressions. The recursion formulas show that we can compute the
majority of the measures of order 1, 2 and 3 in a 2d for-loop. Unsurprisingly,
a handful of the order 3 measures though seem to be out of reach: they call
for a 3d-loop — or, put differently: they are polynomials in the w-terms of
an order strictly larger than 2.

13

To end this section let us pause to show how a relative measure shows up
in the recursion formula for I;234. By definition [11] we have

ligza(m,n) = Z w(, j)w(a,b)

m<i<j<a<b<ln

So clearly

Ti23a(1, L) = Z w(i, j) Z w(a,b)

1<i<j<L j<a<b<[L
= Y w(i,))h2(i+1,L)
1<i<j<L

The right-hand side here has the same shape as in the definition of I;5. So
if we write

wioza(a,bye) = w(a,b)12(b+1,c)

and define a relative version of I1934 by

Lioga(i, 5;1) = Z wi234(a, b; 1)
i<a<b<j

we have I1934(1, L) = I1234(1, L; L) along with the recursion formula

I1934(i, j; L) =
w234 (4, 55 L)+ Tiosa(t + 1,55 L) + Tho3a(i,5 — 1; L) — Tho3a(i+ 1,5 — 1; L)

2.5 GISA’s scan methods: scoring and more

This section is dedicated to the details of the rarity scan/detection functions
of GISA. As explained in the main paper, rar0/1/2 are functions for ranking
one or more structures (queries) by comparison to a background. The latter
is obtained by running the same scan on a preferably large set of PDB files.
In particular, this allows assessing to what extent the queries stand out
as "rare” on that background. The code allows running one or more sets
of queries against the data base without reloading the background (which
includes memory allocation for loading the GI’s for the complete background

14

PDB-set; for rarl/2 the ”dictionarying”, i.e. translation of the Gl-arrays
into words by binning the values; and sorting the values/words).

The following sections explain how each of the scans work, including
their scoring.

2.5.1 Flavour: rar0

In rar0 rank is decided by means of mutual writhe (possibly absolute value
thereof, but signed by default). The method is as follows (see also the
examples runs in the Github repository):

1. Create a ”data base” of the wanted Gauss numbers for pairs of windows
(only needed if using version B below)

2. Run the rarity scan with rar0: there are two methods of scoring avail-
able:

A Score by the maximal mutual writhe: for a given query (q) we
pick out the highest absolute mutual writhe among all the positive
(negative) writhe values in the structure, or, if running in ”un-
signed mode” we just keep the pair for which the absolute value
of the mutual writhe is highest (so that in this unsigned mode
there is one value, max-abs-mutual-writhe, for each q, while in
the signed case we consider the highest positive and the highest
negative). The obtained value is then held up against the distri-
bution of similarly obtained max mutual writhe values across the
structures in the (background) data base (signed: two distribu-
tions, one for positive writhes and one for negative; unsigned: a
single distribution of max-abs-mutual-writhe values). This pro-
vides directly a ”p-value” (and a score = —log(p)-value), viz. the
frequency of max (abs) mutual values in the data base more ex-
treme than the obtained value (in particular step 1 above is not
needed in this mode).

B Score by absolute mutual writhe above a set threshold: for a
given query (q) we run through all pairs of windows in q; for
each pair for which the absolute mutual writhe (amw) is above
a set threshold, T (e.g. 5), we find the probability that a pair
in the database has an absolute mutual writhe higher than this
absolute mutual writhe (amw) for the given pair of windows (i.e.
probability(abs mutual writhe > amw)). This is just a look-up

15

in the background distribution of absolute mutual writhes. The
final score for the query is then the sum of —log(p)-values in this
set of pairs

score(q) = — Y _ log(p)

where the sum is over all pairs in q with amw > T as just ex-
plained. The final score is now the average of this score, i.e.

> log(p)

#pairs in query

SCore — —

where # means size of). It is possible to use the non-averaged scored
as final score (average score is default).

A reason for using the average score (in B) is that the probability of
having some (rare) 3d-configuration should increase with the length of the
structure (here quadratically as the number of pair is quadratic as a function
of the length of the query). However, using the average score has some
disadvantages, e.g. a short structure with one rare window pair will get a
higher score than a longer structure with exactly the same odd pair and
no other particularities; on the other hand, such short structures ought to
appear more rare if "weird 3d-configurations” are distributed uniformly over
all pairs in the database. In addition version A allows getting the score based
on the most extreme pair rather than just an average consideration (and, in
addition, in the unsigned mode).

With version B, to obtain a final p-value corresponding to the obtained
score, it is necessary to first run rar0 with query set = data base and with
absMutValScorePValues b = 0 (i.e. to carry out step 1 above). This gen-
erates the background distribution of scores (and of amw’s); if we believe
that the data base consists of a representative set of structures (for a given
purpose), we can with reason score any query set against this background.
So when this run for a background is done, we run rarQ for the desired
query set now with absMutValScorePValues.b = 1. In version A, p-values
and corresponding scores are had directly (so, as mentioned, step 1 is not
needed).

The scoring method A scans for structures having one (or more) excep-
tional mutual writhe pairs and allows distinguishing between the positive
writhe pairs and the negative writhe pairs; the B version scans for struc-
tures having possibly several pairs of high absolute mutual writhe (above the
threshold) but maybe none of an exceptional level. With B a high threshold
on the mutual writhe should be used, e.g. 10.

16

2.5.2 Flavour: rarl

While rar0 only uses the mutual writhe, in the flavours rarl and rar2 it is
possible to use all invariants up to and including order two; therefore in
these flavours the GI values will be arrays/tuples of the individual GIs (the
length of the array is the number of GIs chosen for the scan).

In rarl each window pair of a query is scored by first translating its GI-
array into discretized versions — ”words” — by binning the individual GIs,
and then counting its matches in a likewise translated background (i.e. what
can be seen simply as a look-up of the word in a background dictionary).
Here a number of mismatches can be allowed. These can though only be
“one bin off”, i.e. in a mismatch only neighboring letters are allowed: if e.g.
three invariants are used, and a Gl-array is translated into ABC, AAC will
be an allowed mismatch (of one), while ABA is not since the last A is two
letters away from C.

In rarl only pairs of sub-chains are considered, so only ”mutual GIs” are
used. However, in order two the mutual value as computed in GISA will
in general depend on the chain between the sub-chains of the pair, which is
inappropriate for the word-matching. Therefore in rarl only the two first
order GIs should be used. As in rar0, a threshold on the absolute value
of the mutuals allows to focus on occurrence of "more rare words” (and to
lower computation time).

Here follows an outline of the method:

1. The data base is converted to a ”dictionary”: each data base element
is a tuple/array of Gauss numbers (in number as many as the desired
number of invariants for matching, and in any case limited the number
of invariants of order 1 or order 2); each of these tuples is converted
by binning the Gauss numbers into a tuple of integers (ie a ”word”);
after sorting these words lexicographically the data base has the guise
of a dictionary (though probably with many words repeated).

2. A given query is similarly translated, by the same binning, into a set
of words (one for each window pair); the window pairs are now looped
through and each is looked up in the data base dictionary (by setting a
threshold as mentioned, only pairs having a mutual writhe (or mutual
invariant) in absolute value above this threshold are considered).

In the matching a set number of mismatches can be allowed (as explained
above too). The look-up of the query ”word” in the data base gives a count
of the number of matches, entMatch, for each pair. The score is now the

17

average
cntMatch(pair)
Zpair in query ! (F#data base)

#pairs in query

Score = —

which is the same as

Score — — Z #p&il:é in query of word w o (#db—pairs of word W)

pairs in query #data base
word w

__ #pairs of word w
T #£pairs in query

Score = — Z Pq(w)log(pay(w)),

word w

db-pairs of word w
and pgy(w) = % P data base— We then

If we write pq(w)
have

a cross entropy that is, and also showing the resemblance to the Kullback-
Leibler relative entropy

KL= 3 pw)iog(2e)

word w Pdb (w)

i.e. only the ”qg-idiosyncratic” entropy term ”%" . p.(w)log(pe(w))” is
disregarded.

The rarl scoring method ranks the structures on their ”distribution of
words” as compared to that of the background, their significance increasing
with the score. One can also think of this as a way of determining whether a
query has an unusual set of fragment pairs as compared to the background.
The threshold allows to focus on occurrence of ”rarer words”.

2.5.3 Flavour: rar2

While rar0 and rarl only use pairs of sub-chains, rar2 is based on single sub-
chain (window) matching, but which can be added a pairs-based scoring.
The single window matching works by translating the Gl-arrays into words
as in the pairs case (rarl). The optional pairs matching is done based on the
single window matches: considering a window pair in the query structure,
the matches in the data base are those among the corresponding set of pairs
of matching single windows, for which the mutual GIs also match those of the
query. Here a number of invariants and a number of allowed mismatches
can be set both for the single and the pairs window matching; while the
single window matching can be done including order two GlIs, as in rarl it is
recommendable in the pairs matching to only use the order one invariants.
As with rar0/1 a threshold allows to focus on occurrence of "more rare
words” in the pairs matching part.

18

As in rarl the scoring in rar2 is done by means of a ”cross entropy”.
Here follows an outline of the method for the single window matching:

1. The data base is converted to a "list of words”: each data base element
is a tuple/array of Gauss number (in number as many as many as there
are invariants of the chosen order, ie 1 or 2); each of these tuples is
converted by binning the Gauss numbers into a tuple of integers (i.e. a
"word”); after sorting these words lexicographically the data base has
the guise of a dictionary (though with probably many words repeated).
As opposed to rarl this ”dictionarying” is based on the Gauss numbers
for the windows and not the window pairs.

2. A given query is similarly translated into a set of words (one for each
window); the windows are now looped through and each is looked up in
the data base dictionary (for a pairs-based scan see more right below).
In this matching, a pre-set number of mismatches can be allowed (as
in the rarl pairs-based version).This gives a count of the number of
matches, cntMatch, for each window.

Again, as in rarl, the look-up gives a count of the number of matches,
cntMatch, for each pair. The score is now the average

I entMatch(window)
Zwindow in query (#data base)

#windows in query

Score = —

which, just as in rarl, but with ”windows” rather than ”pairs” can be rewrit-
ten as

#db-windows of word w

g Z #windows in query of word w log()
core = — o)

e #windows in query J #data base

. _ #windows of word w __ #db-windows of word w
Iflwe }:VI‘lte Pq (w) = #windows in query and pdb(w) - #data base we
then have

Score = — Y py(w)log(pas(w)),
word w

a cross entropy that is, resembling the Kullback-Leibler relative entropy as
in rarl above.

If a scan based on the pairs is also wanted, the pairs of windows in a
query will subsequently be looped through (i.e. after all windows of the given
query have been looped through and the matches are found and recorded).
It is possible and desirable for speed to set a threshold so that only pairs
having a mutual writhe (or mutual invariant) value above this threshold are

19

considered). The scoring is verbatim the same as in the single window case,
simply replace window by window pair (or see rarl).

The rar2 scoring method scans for structures having a ”distribution of
words” significantly different from that found in the background distribu-
tion. One can also think of this as a way of determining whether a query has
an unusual set of fragments/fragment pairs as compared to the background.
The threshold allows to focus on occurrence of "more rare fragment pairs”
in the pairs-based matching.

3 Results

In this section we supply additional results from searching the top100 set
and the top8000 set [7] as well as for the PiscesLoRes and PiscesHiRes sets
[9] (see Main text on data material). For the restricted search we include
results from both links- and pokes-searching; for the unrestricted search
there is naturally no such distinction: the geometries/configurations are
rather output of the search.

Let us here mention that for all the ”3d-plotted” examples below (and
in the Main text), html-code can be found in the GISA Github repository
(www.github.com/ceegeeCode/GISA). This html-code uses the NGL viewer
[13][14]. Opening such a file in a standard internet browser yields an inter-
active plot (NGL viewer).

3.1 Kinemage topl00, restricted search

We have explained in the main text how to search for links of (almost)
closed loops by means of the mutual writhe and similarly for the pokes. The
intuition there is as mentioned to think of electromagnetic induction: For a
line segment placed in the magnetic field induced by an electric current in a
wire-loop, the change in magnetic potential along the segment is larger the
"purer” it pokes the loop. So it takes no work against the magnetic field
to move a little magnetic pole in the plane of the loop, while it takes the
most work to move in the direction perpendicular to the plane. Disregarding
the strength of the current and a physical constant, the change in magnetic
potential (work) can be measured by the (mutual) writhe, so we may think
of our search as one for cases of exceptional changes in magnetic potential.
In what follows we generally suppress the word mutual.

We first consider the top100 set. For the run we used the settings stated
in the main text: min and max loop lengths of 6 and 30, respectively, and
a distance of 7 Angstréom for defining ”closed”. In Fig.S7 is then first the

20

distribution of the writhe values for all potential links (i.e., pairs of closed
loops in each structure) and pokes.

Distribution of writhe values for potential links and pokes of length 10

4.0 Links 9 Pokes

35 8

3.0

N
n

g
=)

log(1+count)

=
5

1.0

0.5

%05 ~05 0.0 0.5 1.0 . . 0.0

writhe writhe

Figure S7: Distribution of writhe values for potential links (left) and pokes
(right) in the top100 set. For the pokes the distribution of the min-values
(max-values) is light blue (dark blue). Please note that the counts are
replaced by log(1 + count) for the links. The poke-length was set to 10;
other settings were as stated in the text.

As is apparent the writhe values for the links lie in a range bounded
below at about -0.9 and above at about 0.95. Quite remarkably, two cases 6
stand out, their writhe in absolute value being close to 1 (the value can di-
verge from 1 in either direction due primarily to other writhe contributions
stemming from the shapes not being ideal, i.e. the loops are not closed;
smoothing will not change the writhe except if one allows the end points
of the sub-chains to move). We visualize three different orientations in
each case to illustrate their three-dimensional nature. These two examples
(Fig.S8a S8b) and the similar 3d-plots to come are annotated as follows:

SWe disregard chains containing "holes”, i.e. chain segments of a length above thresh-
old, here set to 7 Angstrbm; the E chain of the 2er7 structure is disqualified for this reason,
but contains a 1-link in parts not containing the hole.

21

the title gives the protein’s name/the chain shown 7 next as two pairs of

integers, the bordering residue numbers of the high-lighted sub-chains (here
almost closed loops) and finally the writhe value (rounded). In the plots the
blue segment is ”first” and the red is ”"last”, i.e. the blue segment is the one
having the lowest index range (closest to the N-terminus); this coloring is
also used in the 3d-view at www.rcsb.org. Please note that the indication of
the segments in the tables is by their indices in the chains and not by their
residue numbers. Also, in the tables in the section on results from GISA’s
scan methods, the writhe values are as output by GISA; elsewhere here and
in the main paper the values are normalized by 47 (as is customary in the
definition of the linking number).

1difH/A; (16-37); (73-88); w:0.968

Figure S8a: A potential link (writhe ~ 0.968) in chain A of the 1dif protein.

Structure/chain Pair Mutual writhe | Type
1dif/A (15, 36);(72, 87) 0.97 link
1bpi/- (8, 20);(29, 46) -0.90 link
1dif/B (72, 87);(25, 35) 0.86 poke
1phb/- (49, 77);(281, 291) -0.85 poke
2cpl/- (83, 102);(119, 129) -0.82 poke

Table 1: Top 2 links and the three top ranking pokes not merely part of the
two links in the top100 set. Pair refers to the indices of the segments in the
chain bordering the two sub-chains.

77> means that in the PDB-file the chain id was left blank

22

1bpiH/>; (9-21); (30-47); w:-0.896

Figure S8b: A potential link (writhe ~ -0.896) in the rather small 1bpiH
protein (length just below 60).

Next let us consider the search for pokes. We have used a set poke-length
of 10 residues; we shall comment on this setting later. From Fig.S7 we see
that the range of the writhe is bounded above at slightly below 1 and below
at a little more than -1. Notably, the extreme cases are not as ”lonesome” as
with the links: the range is rather continuously occupied out to the highest
value. One should bear in mind that for pokes we are even only keeping
the highest and lowest value case for each closed loop, while for the links
we are considering all candidates. Top ranking are two pokes merely part
of the two links (and which are not shown in the table). Next is a poke
in the B chain of 1dif; this is actually part of a 1-link similar to the one
in the A chain and which the restricted search misses (but the unrestricted
search captures). The poke in 2cpl is also a a part of a configuration that
we show later. Here follows (Fig.S9) the poke in 1phb (there is one further
example in 1phb, but the closed loop only differs by two C-alpha’s from the
one shown here):

For a poke the size of the writhe (change in magnetic potential) depends
on the relative proportions of the poking piece and the loop, i.e. the ge-
ometry, while in an interlinking case (e.g. a 1-link) the proportions of the
two are unimportant. There it is rather the threading — or: topology —
which is crucial. This difference is also reflected in the distributions of writhe
values for the potential links and for the potential pokes shown above (the
outstanding link examples disconnected from the rest vs. the more continu-
ously occupied range among the potential pokes). The poke examples may
therefore not appear as ”shining” as the links, but in each case shown here

23

1phbH/>; (59-87); (291-301); w:-0.846

Figure S9: A potential poke (writhe ~ -0.846) in the 1phb protein.

one may with reason say that the poke-segment is placed in ”"poking posi-
tions” in the loop. Some ”sheeting” could occur, i.e. that the poke-segment
is ”parallel” to the loop, but this seems not to be a burden in our approach
8 (in [6] the authors apply a "sheet filter” to sift out cases of such nature).
While it is reassuring and satisfying to see that high (absolute) writhe val-
ues imply cases of truly linked loops and very qualified poke candidates, it
should also be checked that at lower values the linking or poking is much
weaker if at all present. Indeed, checking a few cases this appears to be the
case. Here follow, for potential links, a case of medium size negative writhe
(Fig.S10a), a case of writhe close to zero (Fig.S10b) and a case of medium
size positive writhe (Fig.S10c); then follow two cases of potential pokes with
low-to-medium writhe (in absolute value):

As expected, at a writhe close to zero the two loops are distant, while
higher values arise for loops in close proximity, though not inter-linking.
Next the two poke examples (Fig.S10d S10e) again substantiate that close
proximity leads to some amount of writhe, but far from exceptional values.

3.2 Kinemage top100, unrestricted search

This more free approach to identifying particular geometries consists simply
in looking for cases of rare writhe values. As explained in the Main text,
for a fixed sub-chain length we compute the mutual writhe of all pairs of
such sub-chains; to avoid rather massive amounts of output, we pick out

8We have noticed that if using the average crossing number, I |12, rather than the
writhe, 12, sheeting examples surface at the expense of ”true pokes” such as those shown
here.

24

1xicH/>; (222-248); (250-262); w:-0.257

&7

Y&,_‘-’\L,
%

0
£y 98

o
Y

Figure S10a: A potential link of writhe ~ -0.257 in the 1xicH protein. The
expectation here is that of ”no-linking” as indicated by the low mutual
writhe value, but probably some proximity.

losaH/>; (21-30); (94-103); w:0.001

Figure S10b: A potential link of writhe ~ 0.001 in the losaH protein. The
expectation here is that of "no-linking” as indicated by the very low mutual
writhe value, as well as very little proximity.

for each chain the case of lowest and the case of highest writhe value (the
lowest being in general negative). With every high writhe value there will
be several nearby sub-chains having almost the same high writhe, and to
tackle this we here proceed a little brutally as just described. In the dis-
tribution of these extreme values over e.g. the top100 set we then consider
the top-scoring cases. This implies of course that we will find at most two
conspicuous examples per structure. While not the final version of such a
search method, it should suffice for our purpose: to keep the search ”open”

25

1kapH/P; (359-375); (380-406); w:0.105

Figure S10c: A potential link of writhe ~ 0.105 in the 1kapH protein. The
expectation here is that of ”no-linking” as indicated by the low mutual
writhe value, but probably some proximity.

1cseH/l; (35-51); (59-69); w:-0.246

Figure S10d: A potential poke of writhe ~ -0.246 in the lcseH protein.
The expectation here is that of "no-poking” as indicated by the low mutual
writhe value, but probably some proximity.

while at the same time checking if we can re-discover the link examples we
found in the restricted search.

Here follow results for the top100 set; results for the other sets are placed
further down. First the distribution of the writhe values (Fig.S11):

We notice from these plots that the range (almost) sits within [—1, 1] for
length 15, while for length 30 there are a few cases outside this interval and

26

ldadH/>; (174-200); (136-146); w:0.308

Figure S10e: A potential poke of writhe ~ 0.308 in the 1dadH protein.
The expectation here is that of "no-poking” as indicated by the low mutual
writhe value, but probably some proximity.

one rather extreme outlier below -1.5. Rather as a curiosity one may also
observe that there are cases in which the maximal writhe value goes almost
as low as -1. The reason for this is that in some very short structures there
is only just enough room for two disjoint sub-chains of the set length and,
coincidentally, in a couple of these the writhe of this pair is very low. Indeed,
this phenomenon is seen for sub-chains of length 30, but not for length 15.

Let us go through the top-5 negative writhe value examples and then
the top-5 positive, first for a sub-chain length of 15 and thereafter for length
30; we shall only show the examples that we have not already met in the
restricted search above.

27

Distr. of extreme writhe values, unrestricted search
Sub-chains length 15 Sub-chains length 30

10 6
5, i
8l i
4l |
6 i
S S 3| 1
(o] (o]
(@) &)
4t i
2L 4
27 1 ‘
‘ 1N m |
0 | 0 L L
-1.0 -0.5 0.0 0.5 1.0 -1.5-1.0-0.50.0 0.5 1.0 1.5
writhe writhe

Figure S11: Distributions of extreme writhe values for pairs of sub-chains;
for each protein in the top100 set the highest (blue) and the lowest (possibly
negative, lightblue) value are kept. For the plot to the left the fixed sub-
chain length was set to 15; to the right the value was 30.

The first example (Fig.S12a) of length 15 is one of a ”sub-chain that
winds on itself”:

One may notice that, upon connecting the ends of the blue resp. the
red strand by straight line-segments, this example becomes a 1-link, i.e. a
"pseudo 1-link”. The next example is the link in 1bpiH that we found as top-
scoring in the restricted search. Then follows another example (Fig.S12b)
of two sub-chains winding on one another (i.e. another pseudo 1-link):

The last two examples of the top-5 negative writhe values is a self-poke
or pseudo-link (in 1lit of writhe about -0.85) and this (Fig.S12c):

28

Structure/chain Pair Mutual writhe Type
1dif/A (23,38);(71, 86) 1.02 link
1dif/B (23,38):(71, 86) 1.02 link
lkap/P (51,66);(108, 123) 0.93 pseudo-link
8abp/- (222,237);(237, 252) 0.76 self-poke
1lam/- (370,385);(385, 400) 0.75 self-poke
larb/A (152,167);(168, 183) -1.02 pseudo-link
1bpi /- (9, 24);(29, 44) -1.02 link
Trsa/- (71,86);(94,109) -0.94 pseudo-link
1ptx/- (0,15);(41, 56) -0.86 poke
1lit /- (92,107);(109, 124) -0.85 self-poke

Table 2: Top 5 positive and top 5 negative writhe cases from the unrestricted
search in the top100 based on sub-chains of lengths 15 (and implicitly step
size 1). Pair refers to the indices of the segments in the chain bordering the
two sub-chains. The type is determined by visual inspection

larbH/>; (153-168); (169-184); w:-1.022

Figure S12a: The geometry of the sub-chain pair in the larb protein of
highest negative writhe (~ -1.022) in the top100 set.

The top-5 positive values are headed by the highly similar 1-links in the
A and B chains of 1dif (the writhe value is similar too: about 1.022 here
and 0.968 above). Of these two the link in the A chain was found in the
restricted search above, while the one in the B chain was not (the reason
being that one of the two subchains does not qualify as almost closed). The
following case (Fig.S12d) is seemingly a pseudo-link:

The 4th and 5th place are held by rather weak cases (low writhe) in the

29

7rsaH/>; (72-87); (95-110); w:-0.94

Figure S12b: The geometry of the sub-chain pair of 3rd most negative writhe
(~-0.940) in the topl00 set, found in the 7rsa protein.

1ptxH/>; (1-16); (42-57); w:-0.86

Figure S12c: The geometry of pair of sub-chains of writhe ~ -0.860 in the
topl100 set, found the 1ptx protein.

8abp and 1llam structures.

So what emerges here is that we re-discover the cases found in the re-
stricted search while adding a true link and then some pseudo 1-links which
were not caught by the restricted method since the sub-chains do not qualify
as closed loops.

When moving to the length-30 version the geometries sometimes become
harder to decipher, but new interesting cases show up:

As above we start by the top-5 negative writhe value examples. Here
the first (Fig.S13a) is a case of a ”"double poke”; two almost-loops aligning

30

lkapH/P; (52-67); (109-124); w:0.929

Figure S12d: The geometry of the sub-chain pairs in the the lkap protein
making the 5th most positive writhe in (~ 0.929) the top100 set.

Structure/chain Pair Mutual writhe Type
1dif/B (14,44);(65, 95) 1.27 link
1dif /A (14,44);(65, 95) 1.26 link
lkap/P (50,80);(102, 132) 1.07 pseudo-link
2trx/A (9,39);(39, 69) 1.00 self-poke
20lb/A (351,381);(381, 411) 1.00 self-poke
2cpl/- (70,100);(102, 132) 1.75 double-poke
1nif/- (230, 260);(260, 290) 117 self-poke
1php/- (239,269);(269,299) -1.08 self-poke
20lb/A (245,275);(464, 494) 1,07 poke
Imla/- (126,156);(162, 192) -1.01 self-poke

Table 3: Top 5 positive and top 5 negative writhe cases from the unrestricted
search in the top100 based on sub-chains of length 30 (and implicitly a step
size of 1). Pair refers to the indices of the segments in the chain bordering
the two sub-chains. The type is determined by visual inspection.

— or "sheeting” — each poking through the other (also shown in the main
paper), while one sub-chain (blue) winds around the other (red). While not
possible here, turning this around for different views ? can help revealing

9By using the html-code for 2cpl or, maybe less easily, by running the accompanying
Python or Pymol scripts, plots allowing interactively rotating the structures can be had

31

that this is not a case of a knot. Below, searching in the top8000 set with
the GISA rar0Q scan tool, a whole series of highly similar double-pokes are
found, and of similar high writhe values too.

2cplH/>; (72-102); (104-134); w:-1.749

Figure S13a: The geometry of the lenght-30 sub-chain pair in the 2cplH
protein of highest negative writhe (~ -1.749) in the top100 set.

The next (Fig.S13b) shows a loop followed by a sub-chain that aligns
to the loop (i.e. another ”sheeting”); the largest contribution to the writhe
probably comes from the red poking through the blue (right ”after” the red
loop):

The following example appears to be a self-poke (in 1php), which we
skip, then follows a straight poke in 2olb and then this (Fig.S13c), which
could qualify as a 1-link while at the same time incorporating two short
aligned helices:

We may notice that the nice link in 1bpi was not found; this is can be
ascribed simply to the fact that we are searching for disjoint sub-chains of
length 30, for which there is then not enough room in such a small molecule
(1bpi has a length of 58; as we saw above, the link in 1bpi was found using
subchain length 15).

Turning now to the top-5 positive writhe value examples, the first are
the 1-links in the A and B chain of 1dif, following these comes an extension
(of writhe ~ 1.07) of the poke in the 1kapH found with sub-chain length 15
(which has writhe ~ 0.93). The final two cases are self-pokes in 2trx and
20lb.

To sum up on the unrestricted search in the top100 set, when moving to

32

1nifH/>; (238-268); (268-298); w:-1.176

Figure S13b: The geometry of the length-30 sub-chain pair of second highest
negative writhe (~ -1.176) in the top100 set, found in the 1nif protein.

Figure S13c: The geometry of the length-30 sub-chain pair in the lmla
protein of the 5th most negative writhe (~ -1.012) in the top100 set.

length-30 from length-15 (and from the restricted search in particular) we
see that most cases are retained while new ones with more intricate geom-
etry appear. So, as expected, the "heading or trailing pieces” of sub-chain
strands that are added when moving to length-30 do not appear to be blur-
ring the picture (as seen in these examples, e.g. in lkap, the actual writhe
values are not changed much by these additional pieces). Thus the advan-
tage of an unconditional search seems to come true: without ”prejudice” —
we do not need to specify a geometry that we are looking for — particular
shapes surface.

33

3.3 Kinemage top8000, restricted search

So far we have only shown concrete examples from the top100 set. In the
top8000 set 21 (52) cases having an absolute mutual writhe above 0.95 (0.9)
were found; of these 9 (21) were of positive mutual writhe, 12 (31) negative.
Here is the top5/top5 (Table 4):

Structure/chain Pair Mutual writhe | Type
1pqh/B (9,34);(52,76) 1.00 link
2qd6/A (15,36);(72,86) 0.99 link
lual/A (84,107);(115,139) 0.98 link
2egv/A (157,178);(186,212) 0.96 link
307b/A (142,161);(169,197) 0.96 link
3hms/A (3,31):(56,78) -1.01 link
3dap/A (159,174);(188,210) -1.00 link
3dqp/A (159,174);(182,203) -0.99 link
3fdr/A (10,37);(59,82) -0.99 link
3dqp/A (157,171);(188,210) -0.99 link

Table 4: Top 5 positive and top 5 negative writhe cases among the potential
links in the top8000 set. Pair refers to the indices of the segments in the
chain bordering the two sub-chains.

The remaining of the 21 cases of absolute mutual writhe above 0.95 were
found in (some containing several similar/overlapping links): 2egv, 3aia,
3m3q, 2ha8 (positive writhe) and 3fdr, 3dqp (negative). The three high
scoring cases look like this:

34

3hmsFH_A/A; (39-67); (92-114); w:-1.014

Figure S14a: A potential link of writhe ~ -1.014 in chain A of the 3hms
protein.

1pghFH_B/B; (10-35); (53-77); w:1.001

Figure S14b: A potential link of writhe ~ 1.001 in the B chain of the 1pdq
protein.

35

3dgpFH_A/A; (160-175); (189-211); w:-0.998

Figure S14c: A potential link of writhe ~ -0.998 in the B chain of the 3dpq
protein.

The two other links in 3dpq are very nearby in the chain, and there
are in fact more combinations of these subchains giving rise to links in this
structure. The same sub-chains give rise to several of the high-writhe pokes
in the top8000 set, which we now turn to. The highest scoring is a very clear
case which we show next (Fig.S15); as we shall see later it is in fact part of
a knot. Of the others only three appear merely as a part of one of the links
above, viz. 2qd6, lual and 3dqp, while the remaining are seemingly more
genuine pokes.

Structure/chain Pair Mutual writhe | Type
2i6d/B (174,196);(216, 226) 0.96 poke
2qd6/A (15,36);(76, 86) 0.95 poke
3m3g/A (26,54);(72,82) 0.95 poke
1j71/A (210,228);(290,300) 0.95 poke
lual/A (84,107);(126, 136) 0.94 poke
3dgp/A (159,174);(192,202) -1.05 poke
2jh1/A (169,199);(156,166) -1.04 poke
3dgp/A (157,171);(192,202) -1.03 poke
lknt/A (28,45);(10, 20) -1.00 poke
3dqp/A (153,169);(192,202) -1.00 poke

Table 5: Top 5 positive and top 5 negative writhe cases among the potential
pokes of length 10 in the top8000 set. Pair refers to the indices of the
segments in the chain bordering the two sub-chains.

36

2i6dFH_AJA; (174-196); (216-226); w:0.963

Figure S15: A potential poke of writhe ~ 0.963 in chain A of the 2i6d
protein.

As for the set poke-length it was also tried out to use a length of 5 and
one of 7. Regarding whether any of these lengths is to prefer over the other,
the distributions shed some light. To this end the top8000 results should be
considered simply for its size. Here follow (Fig.S16) the writhe distributions
for poke-length 5, 7 and 10:

37

Distribution of writhe values for potential pokes of length 5

9 Lower 100 i 900 All g Upper 100

8 800

7 700

6 600

5 500

4 400

3 300

2 200

1 100

—%.82 -0.78 -0.74 -0.70 —0,66—01.0 -05 00 05 1.0 (?,66 0.70 0.74 0.78

Distribution of writhe values for potential pokes of length 7

writhe

writhe

38

8 Lower 100 900 All 9 Upper 100
7 800 8
6 700 7
600
5
" 500
R
o
v 400
3
300
2 200
1 100
—%.95 -0.85 -0.75 —01.0 -05 00 05 1.0 0.76 0.80 0.84 0.88
writhe
Distribution of writhe values for potential pokes of length 10
1 Lower 100 900 All 8 Upper 100
800
10
700 6
8 600
" 500
56
o
© 400
300
200
100
Q 0,
-1.05 -095 -0.85 -0.75-15-1.0-0.5 0.0 0.5 1.0 0.82 0.86 0.90 0.94

0.98

Figure S16: Distributions of writhe for potential pokes of length 5 (top), 7
(mid) and 10 (bottom) in the top8000 set: in the middle the entire distri-
butions of cases of lowest (light-blue) and highest (dark-blue) writhe value
per chain. To the left and right a zoom-in on the tails.

With length-5 the top-scoring examples (in the left-hand tail) are rather
”lonely”: there is quite a gap down to the second best scoring and the
potential range [—1,1] is not filled out. With length-7 the range is closing
in on the theoretical one, but there is still a gap and the left-hand tail
is still ”thin”. With length-10 the situation is improved a notch further,
examples throughout the theoretical range show up, and the tails appear
more connected). This could hint at that using length 10 is less fragile than
the two other. On the other hand, among the top-10 examples of highest
writhe value, eight are shared by the length-5 case and nine are shared in
length-7 (the length-5 examples not found in length-10 are two clear pokes
in the 1ra9 protein and the additional length-7 example is a likewise clear
poke in lcus). So it cannot be said that the outcome is very sensitive to the
set poke-length, but still it seems most advisable to use a length of 10.

Regarding computation time, we have in the main text mentioned that
the performance of the base part of the algorithm, which computes the
invariants’ values, is only mildly affected by adding the searches. This also
goes for the unrestricted search method which we now turn to for top8000.
Further down, the section ”Computational performance” is devoted to a
closer look at the complexity and the time consumption.

3.4 Kinemage top8000, unrestricted search

In the same vein, in the top8000 set which we now turn to, some more
”interesting” geometries show up, in particular when searching with a sub-
chain length of 30. With sub-chain length 15 we only see simple wind cases,
the two sub-chains intertwining — a pseudo 1-link with maybe more than
one winding (the case in 3ecO could though be regarded rather as a straight
poke). This single sided nature of the highest writhe cases (and of any sign)
is somewhat remarkable. Here (Fig.S17) is an example:

39

3cryFH_A/A; (40-55); (67-82); w:-1.247

Figure S17: The geometry of the length-15 sub-chain pair in chain A of the
3cryFH protein, of 5th most negative writhe (~ -1.247) in the top8000 set.

Let us now focus on the search with a sub-chain length of 30 and consider
the top-10 there (Table 6):

Structure/chain Pair Mutual writhe Type
3onp/A (60,90);(106,136) 1.50 knot
2i6d/A (164,194);(195,225) 1.48 knot
lual/A (74,105);(105,135) 1.47 knot
1ns5/B (61,91);(92,122) 1.47 knot
307b/A (128,158);(161,191) 1.44 knot
3hms/A (0,30);(56,86) -1.84 double-poke
2r99/A (70,100);(102,132) -1.76 double-poke
2cmt/A (70,100);(102,132) 1.76 double-poke
2wij/A (78,108);(110,140) -1.76 double-poke
2cfe/A (69,99);(101,131) -1.76 double-poke

Table 6: Top 5 positive and top 5 negative writhe cases from the unrestricted
search in the top8000 based on sub-chains of length 30 (and implicitly step
size 1). Pair refers to the indices of the segments in the chain bordering the

two sub-chains. The type is determined by visual inspection.

40

The geometries/topologies found here are

e Double-pokes, like the one in 2cpl above. Negative writhe only.

e True knots: the two sub-chains are (almost) adjacent and build a
simple knot. Positive writhe only.

As we shall see below when considering the output from a rar0O scan in
the top8000 set, these characteristics extend further down the top ranking
(the top 10 positive writhe cases being knots, and by and large all in top 15
negatives being double-pokes and sharing the configuration).

Turning again to have a look at examples, the highest negative writhe

cases is this in 3hms, which appears to be something like a one-and-half
wind case:

3hmsFH_A/A; (36-66); (92-122); w:-1.84

Figure S18a: The geometry of the length-30 sub-chain pair in chain A of
the 3hms protein, of highest negative writhe (~ -1.84) in the top8000 set.

The following four cases are double-pokes, like this (Fig.S18b) and similar
to the one in 2cpl (Fig.S13a):

41

2r99FH_A/A; (208-238); (240-270); w:-1.759

Figure S18b: The geometry of the length-30 sub-chain pair in chain A of
the 2r99FH protein, of 2nd most negative writhe (~ -1.759) in the top8000
set.

The positive writhe cases are all knots (connect the two sub-chains if
they are not strictly adjacent); here the first two (Fig.S18c S18d):

3onpFH_A/A; (63-93); (109-139); w:1.502

Figure S18c: The geometry of the length-30 sub-chain pair in chain A of
the 3onpFH protein, being of 2nd highest positive writhe (~ 1.551) in the
top8000 set.

Do the links found in the restricted call still appear as rare in the un-
restricted search, if at all present? Considering the 21 link cases having
absolute mutual writhe above 0.95 (see text at Table 4), the answer is: yes,
they are still present and with high mutual writhe values, but their rareness
is somewhat shaken: of the 9 cases of positive writhe, six are placed in top
10 from the unrestricted search, 2qd6 is at rank 14, and only two are to be

42

2i6dFH_A/A; (164-194); (195-225); w:1.475

Figure S18d: The geometry of the length-30 sub-chain pair in chain A of the
2i6dFH protein of 5th most positive writhe (~ 1.475) in the top8000 set.

found further down the list, viz. 1pgh (writhe 14.01'°) and 3m3q (writhe
12.11). Of the 12 negative writhe cases, several are overlapping so only three
are essentially different; of these 3hms is right at the top of the list from
the unrestricted search, while 3dqp (writhe -14.92) and 3fdr (-12.63) are
placed much further down. So the two latter link cases are drowning in the
more elaborate configurations of higher negative writhe. Since the negative
writhe cases here are so few, let us consider all 31 from the restricted search
having absolute mutual writhe above 0.9. These make up some 9 additional
cases, of which four appear with with very high writhe in the unrestricted
search (2hq6, 2x7k, 2fu0, 2a2n), three have moderate writhe (1xlq, 1i7h,
2vve), one (2bt6) is of somewhat lower writhe (-8.80) and one (1taw) is too
short to contain two disjoint subchains of length 30. As for the 2bt6 case,
the link is made up by two (almost) adjacent subchains of length about 20,
why two subchains of length 30 will cover it less well and the unrestricted
search at length 30 therefore ascribes a lower writhe to it (and a run on a
lower subchain length should also be made). Altogether it appears that the
rareness is by and large retained for the positive writhe cases, while on the
negative side many cases of higher negative writhe appear and ”bury” the
link cases.

1011 this paragraph the writhe numbers are not normalized by 47

43

3.5 Pisces sets, restricted and unrestricted search

As stated in the Main article, we have considered two Pisces sets [9]: A
list of high resolution chains, PiscesHiRes, at the same time a subset of the
second, PiscesLoRes, containing also chains at lower resolution. To help the
comparison of the results from the top8000 and these two Pisces data sets,
we here include their length distributions and their intersections. This is
based on the pdb-files (ids) for which results from the basic GISA runs were
had when applying a window length of 30; so for instance structures/chains
of length less than 30 are not included.

[#top8000: 7514 [#PiscesHiRes: 4470

o [T

o 200 400 600 800 1000 o 200 400 600 800 1000
450 1.0
o e

N

PiscesHiRes

350 0.8 .
300 |-] 4
S50l 1 ost 1 E
200} 1 | s 1403 3060 3508 |

0.2 0.4 0.6 0.8 1.0

Figure S19: Distributions of the length of the chains in the top8000 and
Pisces data sets. Lower right: Venn-type intersection diagram.

The length distribution in the two Pisces sets appear similar, while the
top8000 set contains fewer low-length chains. Further, the intersection of the
Pisces sets and the top8000 set is quite small. It must though be noticed
that the sets are here considered as sets of PDB-ids; we have not taken
sequence similarity into account.

44

What here clearly stands out is the similarity of the writhe distributions
(Fig. S20). This suggests that these distributions are ”canonical” of large,
representative sets of protein chains. However, we cannot rule out that the
similarity between the distributions for top8000 and those for the Pisces
sets could be due to rather high sequence similarity (while the sets share
rather few pdb-id’s as we saw right above). What though talks against this
is that the length distributions of the sets are somewhat different and, more
importantly, that the writhe distributions of the two Pisces sets also appear
very similar.

Let us consider the most extreme cases in the PiscesLoRes set, as we did
for top8000 above. As for the links, there were 23 cases having an absolute
mutual writhe above 0.95; of these 10 were of positive mutual writhe, 13
negative. Here is the top5/topb (Table 7):

Structure/chain Pair Mutual writhe | Type
5b6c/B (3,29);(48,71) 0.99 link
dyqd/A (83,106);(114,138) 0.98 link
6jki/A (85,108);(117,140) 0.98 link
6jki/A (84,107);(117,140) 0.97 link
5h5f/A (96,114);(126,155) 0.96 link
2yil/E (3,26);(48,65) -1.08 link
2q46/A (182,205);(219,241) -1.02 link
2q46/A (182,205);(220,244) -1.01 link
3hms,/A (3,31);(56,78) “1.01 link
2q46/A (182,205);(213,240) -1.00 link

Table 7: Top 5 positive and top 5 negative writhe cases among the potential
links in the PiscesLoRes set. Pair refers to the indices of the segments in
the chain bordering the two sub-chains. The type is determined by visual
inspection.

The most conspicuous case here is maybe that of 2q46. While an en-
semble only the first of the included models is considered (this is how pdb’s
that are models are handled in GISA). The chain occurs three times in top
5 here, and in fact occupies nine of the 13 having a negative mutual writhe
below -0.95. This large count is apparently due to that several very tight
loops can be formed between segments 175 and 205 and between 210 and
245 of the model. This could seem peculiar, but we cannot judge whether

45

6 Restricted search 450 Unrestricted search

IS

log(1+count)
w
count

~

o_Muaanl
-2.0 -15 -1.0 -0.5 0.0
writhe writhe

6 Restricted search 250 Unrestricted search

log(1+count)
w IS
count

~

-1.0 -0.5 0.0 0.5 1.0
writhe writhe
6 Restricted search 500 Unrestricted search

IS

log(1+count)
w
count

N

-1.0 -0.5 0.0 -2.0 -15 -1.0 -05 0.0 05 1.0 15

writhe writhe

Figure S20: Distributions of mutual writhe values for potential links (left, re-
stricted search) and for pairs of sub-chains of length 30 (right, unrestricted
search) throughout the top8000 set (top), PiscesHiRes (mid) and Pisces-
LoRes (bottom). For the unrestricted search the light-grey/blue (dark-
grey/blue) bars show the distributidtf of the lowest (highest) writhe value
per chain (see also Main text, Fig.1).

the model is flawed (from its high resolution this does not seem likely).

Next the similar table for the unrestricted search (Table 8):

Structure/chain Pair Mutual writhe Type
To6d/A (58,38);(88,118) 1.52 knot
Sapg/A (29,59);(61,91) 1.51 knot
6iki/A (74,104);(104,134) 1.50 knot
deng/A (69,99);(99,129) 1.48 knot
4yqd/A (73,103);(104,134) 1.46 knot
3040/P (199,229):(301,331) 2,24 > double-wind
3hms/A (0,30);(56,86) -1.84 double-poke
1i8n/A (0,30)(48,78) -1.82 double-poke
2yil/E (78,108);(110,140) -1.82 double-poke
3mtv/A (119,149);(150,180) -1.79 double-poke

Table 8: Top 5 positive and top 5 negative writhe cases from the unrestricted
search in the PiscesLoRes set based on sub-chains of length 30 (and implicitly
step size 1). Pair refers to the indices of the segments in the chain bordering
the two sub-chains. The type is determined by visual inspection.

The positive writhe cases here all constitute knots (upon closing the

short gap between the two sub-chains, if any). This goes in fact not only
for top b, but at least as far as all cases in top 10.
The eye-catching case is though 3n40: More than two winds in a double helix
(for a 3d-plot see the Main text; alternatively use the html-code placed in
the GISA Github repository to look it up in a browser). The following three
negative writhe ”double-pokes” or "more than 1.5 times winds” are very
similar in structure.

To close this section let us address the question of whether the top-
writhe links were re-found in the unrestricted search. Of the 10 links of
mutual writhe above 0.95 (8 distinct cases), 9 appeared in top 10 of the
unrestricted search. Of the 13 having negative mutual writhe below -0.95
(only 5 distinct cases), only 2q46 did not appear in the unrestricted search’s
top 10, but was found further down the list (the sub-chain pair having a
mutual writhe of about -1.18). The situation seems then to be quite as for
top8000: the rareness is by and large retained for the positive writhe cases,
while on the negative side the link cases drown in the cases of even higher
negative writhe.

47

3.6 Results from GISA scans

We here focus on the basic scan method, rar0, of GISA, which amounts to
a formalized and slightly extended version of the unrestricted search. We
show a few results and include some checks of the two other methods, rarl
and rar2. Writhe numbers are in this section not normalized by 4.

3.6.1 Basic scan (rar0)

Let us first show the top 10 and the top 15 of the results from the rar(
scan of top8000 vs. itself, using only the cases of highest positive and the
highest negative mutual writhe per structure (excerpts of these top rankings
are shown in the main paper). We here expect to see the same cases as we
found right above in the unrestricted search through top8000 and in the
same order. That is indeed the case (Table 9).

Structure/chain Pair Mutual writhe | Rank
3onp/A (60,90);(106,136) 18.87 1
2i6d /A (164,194);(196,226) 18.49 2
lual/A (74,104);(104,134) 18.32 3
1ns5/B (62,92);(92,122) 18.19 4
307b/A (124,154);(162,192) 18.08 5
2egv/A (138,168);(178,208) 17.62 6
2ha8/B (58,88);(96,126) 17.33 7
3aia/A (112,142);(148,178) 17.22 8
3n4j/A (68,98);(98,128) 17.08 9
2qmm/A (104,134);(142,172) 17.03 10

Table 9: Top 10 structures in rar0 ranking of the top8000 set vs top8000 as
background, based on the highest positive mutual writhe pair per structure.
Pair refers to the indices of the segments in the chain bordering the two
sub-chains.

According to the KnotProt-server [8] [4] [5] [16] these 10 cases (Table
9) are all knots (we showed two examples above in Fig.S18c and S18d).
The negative writhe cases (Table 10) are not identified by the KnotProt-
server (which should probably also not be expected); all from rank 2 to
15 except the case in 2v25 are ”double-pokes” and, by visual inspection,
structurally very similar to the 2cpl case shown above (Fig.S13a) and in

48

the main paper (see also Fig.S18b).

little secondary structure (cf. the figures).

These 14 proteins belong to a family
of cis-trans isomerases. The shared configuration found here contains only

Structure/chain Pair Mutual writhe | Rank
3hms/A (0,30);(56,36) 23.13 1
2199/ A (70,100);(102,132) -22.10 2
2cmt/A (70,100);(102,132) -22.09 3
2wfj/A (78,108);(110,140) -22.08 4
2igv/A (78,108);(110,140) -22.04 5
2esl/A (74,104);(106,136) -22.01 6
276w/ A (70,100);(102,132) -22.01 7
3k2c/B (70,100);(102,132) 21.92 8
2v25/A (70,100);(162,192) -21.65 9
1x07/B (72,102);(104,134) -21.64 10
2a2n/C (70,100);(102,132) 21.52 11
2hq6/A (70,100);(102,132) -21.47 12
2cfe/A (70,100);(102,132) -21.26 13
1zke/A (70,100);(102,132) -21.16 14
3ich/A (76,106);(108,138) 21.12 15

Table 10: Top 15 structures in rar0 ranking of the top8000 set vs top8000 as
background, based on the highest negative mutual writhe pair per structure.
The sub-chain length was 30 and the step size 2. Pair refers to the indices
of the segments in the chain bordering the two sub-chains.

As is apparent from Table 10 these 14 cases (configurations) sit in very
similar places in the structures. We then made a multiple alignment of the
14 structures, using ClustalOmega 2.1 [15] for the purpose. In the resulting
alignment, both the complete sequences and the considered sub-sequences
appeared well aligned (i.e. the sub-sequence containing the two sub-chains
of the configuration). Of the about 60 residues in the sub-sequence, 20 were
fully conserved and some further 10 showed good but not perfect similarity.
So, overall, the sequence similarity is roughly 50 pct., which though does
not appear high considering the similarity of the folds in this region, which
is even of low secondary structure content.

To make a comparison with the unrestricted search in the topl00 set
(Table 3) , we list (Table 11) the top ranking structures from a rar0 scan of

49

the top100 set against top8000 as background.

Structure/chain Pair Mutual writhe | Probability
1dif/B (12,42);(64, 94) 15.77 2.31073
1dif/A (12,42);(64, 94) 15.70 2.51073
lkap/P (50,80);(102, 132) 13.48 841073
2cte/A (186,216);(244, 274) 11.33 471072
20lb/A (352,382);(382, 412) 10.99 6.51073
2cpl/- (70,100);(102, 132) -21.98 1.01073
Inif/- (230, 260);(260, 290) -14.78 1.81072
Iphp/- (240,270);(270,300) -13.09 4.21072
Imla/- (126,156);(162, 192) -12.71 4.91072
20lb/A (244,274);(464, 49 4) -12.57 5.41072

Table 11: Top 5 ranking positive and top 5 ranking negative writhe cases
from a rar0Q scan of the topl00 set against top8000 as background using
sub-chains of length 30 and a stepsize of 2. Pair refers to the indices of the
segments in the chain bordering the two sub-chains.

50

The rankings here (Table 11) are almost as from the unrestricted search
(Table 3) ; the top 3 are the same in the two lists, while the following e.g.
four are shared but come in different ordering (for the postive writhe 2ctc,
20lb, 2trx and 2tca are placed next, and for the negatives 1mla, 20lb, 1rcf,
1tta); the writhe values for these cases are quite similar, so these different
orderings are simply due to the different step sizes used (in the unrestricted
search the step size is 1, while we used a step size of 2 in the rar0 run).

Finally, we consider the results of a rar0 scan of the PiscesLoRes set
against the top8000 set. The topl0 positive writhe cases (Table 12) are the
same as the topl0 of the unrestricted search in PiscesLoRes, a couple of
the ranks though being different (as in the top100 case this is probably due
to that the rarQ scan was run with a step size of 2, giving rise to slightly
different writhe values).

Structure/chain Pair Mutual writhe | Probability
lo6d/A (58,88);(88,118) 19.15 1.3107%
6jkiA /A (74,104);(104,134) 18.85 2.5107*
SapgA/A (26,56);(62,92) 18.46 3.810~*
4yqd/A (74,104);(104,134) 18.25 511074
1v2x/A (76,106);(114,144) 18.22 511074
307b/A (124,154);(162,192) 18.08 6.5104
2egv/A (138,168);(178,208) 17.62 7.6107*
4eng/A (66,96);(102,132) 17.45 8.910~*
3aia/A (112,142);(148,178) 17.22 1.01073
5h5f/A (96,126);(140,170) 16.68 1.41073

Table 12: Top 10 ranking positive writhe cases from a rar0 scan of the
PiscesLoRes set against top8000 as background using sub-chains of length
30 and a stepsize of 2. Pair refers to the indices of the segments in the chain
bordering the two sub-chains.

The top10 negative writhe cases of the rar(Q scan (Table 13) are also the
same as in the unrestricted case except one (2jhl is rank 11 here and rank
10 in the unrestricted search). Again individual ranks and writhe values can
be different (due to the different step sizes used).

o1

Structure/chain Pair Mutual writhe | Probability
3n40/- (202,232);(300,330) -27.70 1.3107%
3hmsA /- (0,30);(56,86) -23.13 1.310~*
1i8nA /- (4,34);(56,86) -22.88 2.5107*
2yil/- (0,30);(48,78) -22.81 2.5107*
3zbdA/A (40,70);(74,104) -21.94 1.01073
6ive/A (42,72);(76,106) -21.92 1.11073
3mtv/A (120,150);(150,180) -21.88 1.11073
3v8x/A (182,212);(214,244) -21.77 1.11073
2x65/A (128,158);(160,190) -21.33 1.61073
5xbc/A (36,66);(70,100) -21.21 1.81073

Table 13: Top 10 ranking negative writhe cases from a rar0O scan of the
PiscesLoRes set against top8000 as background using sub-chains of length
30 and a stepsize of 2. Pair refers to the indices of the segments in the chain
bordering the two sub-chains.

3.6.2 Advanced scans, rarl and rar2

In this section we consider the rarl and rar2 scans briefly. To check the
sanity of the methods we carried out a few tests:

e Running rarl (rar2) normalized vs. unnormalized, using only the
writhe with no threshold (done with a negative threshold)

e Comparing the output from rarl (rar2) against that of rar0, using only
the writhe, unnormalized.

The first of these showed no differences between the normalized and
unnormalized results. For the second we here show scatter plots (Fig.S21)
of the scores from the three scans, used at comparative settings:

In the two left-most plots (of Fig.S21) rar0 is compared to rarl and rar2
respectively, using only the writhe; in the right-most plot rarl is compared
to rar2 using the writhe and average crossing number for rarl and the pairs
matching in rar2, and the first five invariants for the single window matching
in rar2. No mismatches were allowed in any of the runs.

Evidently, the scores correlate well. The expectation here is that the
scores from rarl will correlate better with those from rar0 than will those
from rar2 (since rarl operates directly on the pairs, while the scoring in rar2
goes via the single window matches) and that scores from rarl and rar2 will

52

vvvvvvvvv

Figure S21: Comparisons of the scores output by rar0, rarl and rar2 when
run on the top8000 set against itself. For the description of each plot see
the text.

be better correlated than those from rar0 (as their scoring methods are more
similar than to that of rar0). These overall tendencies are seen.

3.7 Computational performance
In brief

Below we show that the computational complexity of GISA’s base algorithm
for computing the GIs of order less than three is O(L?), while O(L3) in
order three (L being the length of the chain). This implies that getting the
additional local GI values does not result in a severe time consumption. In
test runs the performance of GISA compared well with that of the algorithm
in [10]. This is remarkable since when run in order three (or order two
7full” mode) the output of GISA even includes the GIs of order two on
all connected sub-chains. At these settings the output also includes order
three (resp. order two) invariants of relative nature for the sub-chains; these
invariants contain information about the sub-chain and how it sits in the
surrounding chain.

93

In anger

The recursion formulas clearly suggest that the computational complexity
of the base algorithm for computing the GIs of order less than three should
be O(L?), while O(L?) in order three (with L the length of the chain). To
show that this is indeed the case we have collected the average computa-
tion time per protein chain in the topl00 and in the top8000 set over 100
and over 20 repeated runs, respectively. The time consumption covers the
computation parts without invoking the search code (i.e. closed loops_b =0
and invValSubChainPairs_b = 0), and excludes the initial load of the struc-
tures and accompanying allocation of memory. The time estimates below
were obtained running a Windows-runnable version of the code on a com-
mon laptop (Intel Core i7-4510, 2.00 GHz/2.60GHz, 8GB RAM, hard disc
of SSD type; OS Microsoft Windows 10).

Clearly, for the GIs of order one and two a 2nd order polynomium gives
a good fit, while in order three the best fit is obtained with a 3rd order
polynomium (Fig.S22a S22b).

This complexity implies that getting the additional local GI values does
not result in a severe time consumption. Thus, in test runs the performance
of GISA compared well with that of the algorithm in [10] (which in order 2
and 3 only computes the GIs on the global structures). It is in its place here
to elobarate on the output of GISA. When run in (GI) order one (i.e. with
the parameter "order” set to 1), GISA produces the order one GIs on the
full chain as well as on all connected sub-chains. When run in (GI) order
two, GISA produces in addition the GIs of order two on the full chain along
with some new 2nd order invariants of relative type on all sub-chains. When
run in (GI) order two ”full” mode (i.e. with the parameter ”full_b” set to 1),
GISA produces in addition the GIs of order two on all sub-chains. Finally,
when run in order 3, GISA’s output contains in addition the order three
GIs on the full chain along with some new 3rd order invariants of relative
type on all connected sub-chains. The computational complexity in order
two full mode is the same as in (GI) order three, i.e. O(L?).

To examine the additional time spend on computations done for the
searches we ran repeats as above, but now with the search code invoked. The
time consumption shown is the expected (i.e. average) search time including
the time spend on computing the Gls, e.g., when the search is performed
on one out of many protein models and the one model is presently held in
memory. As writing the results to a file can be costly, we put write-out
thresholds so as to limit the print out to a few cases, if any. Clearly, the

54

05 Avg time consumption by length at varying order (top100)

= « Glorderl

— polyn. order = 2
— - polyn. order = 3
0.4 H. - Glorder2 ’
— polyn. order = 2
— - polyn. order = 3
* o Glorder3 ’

031 __ polyn. order = 2]

— - polyn. order = 3

time (s)

-0.1

0 100 200 300 400 500 600

length (nr of residues)

Figure S22a: Average computation time per chain over 100 repeated runs on
the top100 set. The computation returns invariant values at the indicated
order (GI order) across the full simplex (see more in the text). Dots indicate
observed data, while the dashed and full lines show best fit polynomiums
of the indicated order (obtained with Python Numpy.polyfit). Colors follow
the GI order.

95

Avg time consumption by length at varying order (top8000)

8
+ « Glorderl
— polyn. order = 2
2 polyn. order = 3 /"
+ =« Glorder 2 /
6 — polyn. order =2 f’ J
— - polyn. order = 3 %
5 + « Glorder3 }"
[| — polyn. order = 2 ¢)
— - polyn. order = 3 : &

time (s)

0 200 400 600 800 1000 1200 1400
length (nr of residues)

Figure S22b: As Fig.S22a but for 20 repeated runs on the top8000 set.

56

additional time consumption is small (Fig.S23a S23b):

Avg time consumption by length for different methods (top100)

0.08

+ « base

— polyn. order = 2
0.07 H+ » Restr 1

—— polyn. order = 2

+« =« Unrestr
006 H polyn. order = 2 71
0.05 + R

?-gi 0.04 | 1
0.03 - .
0.02 - 8
0.01 - .
0.00
0 100 200 300 400 500 600

length (nr of residues)

Figure S23a: Average computation time per chain over 100 repeated runs
on the topl100 set when invoking the searches or not (base). The compu-
tation returns the GIs of order one across the full simplex (i.e. on all con-
nected sub-chains). Dots indicate observed data, while full lines show best fit
polynomiums of the indicated order (obtained with Python Numpy.polyfit).
Colors follow the search method (none being the base case).

Roughly from these plots, an unrestricted search on top of a computation
of the GIs in order one adds less than 5 pct to the time consumption. As
expected the similar overhead is slightly lower for the restricted search. In
order two and three (not shown) this constant overhead is then even lower
compared to the base computation time.

To support this, the time for completing the 100 repeats of the base
computation on the topl00 set was 89 s, 101 s and 352 s, for GI order one,
two and three respectively. With the search code invoked (either one) the
similar numbers were 93 s, 105 s and 360 s. On the top8000 set the 20
repeats of the base computation took about 2214 s, 2542 s and 10993 s, for
GI order one, two and three respectively. With an unrestricted search the

o7

Avg time consumption by length for different methods (top8000)

time (s)

0.45

+ e+ base

— polyn. order = 2
040, . Restr

— polyn. order = 2
035 4+ = Unrestr 4

— polyn. order = 2
0.30 + R
0.25 R
0.20 + R
0.15 | |
0.10 R
0.05 + R
000 | I 1 1 | |

0 200 400 600 800 1000 1200 1400

length (nr of residues)

Figure S23b: As Fig.S23a but for 20 repeated runs on the top8000.

o8

same numbers were about 2344 s, 2681 s and 11059 s. (That the numbers do
not simply scale by a factor of about 16 between the two data sets, can be
ascribed to differences in the length distributions of the two sets; for instance
the average length in the top8000 set is about 235 residues compared to 185
in the top100 set.)

References

[1] Baiesi, M., Orlandini, E., Trovato, A., and Seno, F. (2016). Linking in domain-swapped
protein dimers. Scientific Reports, 6.

[2] Baiesi, M., Orlandini, E., Seno, F., and Trovato, A. (2017). Exploring the correla-
tion between the folding rates of proteins and the entanglement of their native states.
Journal of Physics A: Mathematical and Theoretical, 50(50), 504001.

[3] Baiesi, M., Orlandini, E., Seno, F., and Trovato, A. (2019). Sequence and struc-
tural patterns detected in entangled proteins reveal the importance of co-translational
folding. Scientific Reports, 9.

[4] Dabrowski-Tumanski, P., Rubach, P., Goundaroulis, D., Dorier, J., Sukowski, P.,
Millett, K., Rawdon, E., Stasiak, A., and Sulkowska, J. (2018). Knotprot 2.0: a
database of proteins with knots and other entangled structures. Nucleic Acids Research,
47.

[5] Jamroz, M., Niemyska, W., Rawdon, E., Stasiak, A., Millett, K., Sukowski, P., and
Sulkowska, J. (2015). Knotprot: A database of proteins with knots and slipknots.
Nucleic Acids Research.

[6] Khatib, F., Rohl, C., and Karplus, K. (2009). Pokefind: A novel topological filter for
use with protein structure prediction. Bioinformatics (Ozford, England), 25, 1281-8.

[7] Kinemage (2016). The topl00 and top8000 sets can be found under the ”"Databases”
tab page. kinemage.biochem.duke.edu.

[8] KnotProt (2019). https://knotprot.cent.uw.edu.pl/.
[9] Pisces (2020). http://dunbrack.fccc.edu/PISCES.php.

[10] Rggen, P. (2005). Evaluating protein structure descriptors and tuning gauss integral
based descriptors. Journal of Physics: Condensed Matter, 17, S1523-S1538.

[11] Rggen, P. and Bohr, H. (2003). A new family of protein shape descriptors. Mathe-
matical biosciences, 182, 167-81.

[12] Rggen, P. and Fain, B. (2003). Automatic classification of protein structures by
gauss integrals. Proceedings of the National Academy of Sciences of the United States
of America, 100, 119-24.

[13] Rose, A. and Hildebrand, P. (2015). Ngl viewer: a web application for molecular
visualization. Nucleic Acids Research, 43.

99

[14] Rose, A., Bradley, A., Valasatava, Y., Duarte, J., Prli, A., and Rose, P. (2018). Ngl
viewer: Web-based molecular graphics for large complexes. Bioinformatics (Ozford,
England), 34.

[15] Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R.,
McWilliam, H., Remmert, M., Sding, J., Thompson, J. D., and Higgins, D. G. (2011).
Fast, scalable generation of high-quality protein multiple sequence alignments using
clustal omega. Molecular Systems Biology, 7(1), 539.

[16] Sulkowska, J.I., Rawdon, E. J., Millett, K. C., Onuchic, J. N., and Stasiak, A. (2012).
Conservation of complex knotting and slipknotting patterns in proteins. Proceedings of
the National Academy of Sciences, 109(26), E1715-E1723.

60

