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Appendix S15

Marxan Terminology6

Description of some terms used in Marxan analysis. Text marginally modified7

from the Marxan Manual (v1.8.2): Ball, I. R., & Possingham, H. P. (2000).8

MARXAN (V1. 8.2). Marine Reserve Design Using Spatially Explicit Annealing,9

a Manual.10

Calibration The objective of calibration is to ensure that the set of solutions11

Marxan produces are close to the “lowest cost” or optimum. Common user set-12

tings to explore in calibration are setting the “Species Penalty Factor”, “Number13

of Iterations”, and “Boundary Length Modifier”. Those user settings, however,14

can have a large impact on solution efficiency (Fischer and Church, 2005).15

Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: a16

critical review. Environmental Modeling & Assessment, 10(3), 215-228.17

Species Penalty Functions The Penalty component of the Marxan objective18

function is the penalty given to a reserve system for not adequately representing19

conservation features. It is based on the principle that if a conservation feature is20

below its target representation level, then the penalty should be an approximation21

of the cost of raising that conservation feature up to its target representation22

level.23

Number of Iterations The number of iterations set has a substantial bearing24

on how long each run takes. In general, the number of iterations determines how25

close Marxan gets to the optimal solution (or at least a very good solution). The26

number should start high (e.g. 1000000) and then be increased (e.g. 10 million or27

more is commonly applied on large scale datasets) until there is no substantial28
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improvement in score as iterations continues to increase. At some point, the29

extra time required by a higher number of iterations will be better spent doing30

more runs than spending a long time on each run. Choose an acceptable trade-off31

between solution efficiency (score, or number of planning units) and execution32

time (number of iterations).33

Boundary Length Modifiers The variable, “BLM” (Boundary Length Mod-34

ifier), is used to determine how much emphasis should be placed on minimising35

the overall reserve system boundary length. Minimising this length will produce36

a more compact reserve system, which may be desirable for a variety of pragmatic37

reasons. Emphasising the importance of a compact network will mean that your38

targets are likely to be met in a smaller number of large reserves, generally39

resulting in an overall larger and more expensive reserve system. Thus, the BLM40

works counter to the other major goal of Marxan, to minimise the overall cost of41

the solution. BLM can be thought of as a relative sliding scale, ranging from42

cheaper fragmented solutions (low BLM) to a more compact expensive ones43

(high BLM). Because this will have a large influence on the final solutions, some44

work is needed to ensure an appropriate value (or range of values) is found.45
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Appendix S246

Integer programming formulation47

We will begin by recalling fundamental concepts in systematic conservation48

planning. Conservation features describe the biodiversity units (e.g. species,49

communities, habitat types) that are used to inform protected area establishment.50

Planning units describe the candidate areas for protected area establishment51

(e.g. cadastral units). Each planning unit contains an amount of each feature52

(e.g. presence/absence, number of individuals). A prioritisation describes a53

candidate set of planning units selected for protected establishment. Each54

feature has a representation target indicating the minimum amount of each55

feature that ideally should be held in the prioritisation (e.g. 50 presences, 20056

individuals). Furthermore, prioritisations that are costly to implement are not57

desirable, and prioritisations that are excessively spatially fragmented are not58

desirable. Thus we wish to identify a prioritisation that meets the representation59

targets for all of the conservation features, with minimal acquisition costs and60

spatial fragmentation.61

We will now express these concepts using mathematical notation. Let I denote the62

set of conservation features (indexed by i), and Ti denote the conservation target63

for each feature i ∈ I. Let J denote the set of planning units (indexed by j), and64

Cj denote the cost of establishing planning unit j as a protected area. Let Rij65

denote the amount of each feature in each planning unit (e.g. presence or absence66

of each feature in each planning unit). To describe the spatial arrangement of67

planning units, let Ej denote the total amount of exposed boundary length of68

each planning unit. Also let Ljk denote the total amount of shared boundary69

length between each planning unit j ∈ J and k ∈ J (where j and k are not70

equal). Furthermore, to describe our aversion to spatial fragmentation, let p71
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denote a spatial fragmentation penalty value (equivalent to the “boundary length72

modifier” parameter in the Marxan decision support tool). Higher penalty values73

indicate a preference for less fragmented prioritisations.74

We will consider the following example to explain the spatial Ej and Ljk variables75

in further detail. Imagine three square planning units (P1, P2, P3) that are each76

100 × 100 m in size and arranged left to right in a line. These planning units77

each have a total amount of exposed boundary length of 400 m (i.e. E1 = 400,78

E2 = 400, E3 = 400). Additionally, P1 and P2 have a shared boundary length of79

100 m (i.e. L1,2 = 100, L2,1 = 100); P2 and P3 have a shared boundary length80

of 100 m (i.e. L2,3 = 100, L3,2 = 100); and P1 and P3 have a shared shared81

boundary length of 0 m (i.e. L1,3 = 0 and L3,1 = 0). Note that planning units82

do not share any boundary lengths with themselves (i.e. L1,1 = 0, L2,2 = 0,83

L3,3 = 0).84

We use the binary decision variables Xj for planning units j ∈ J (eqn 1a), and85

Yjk for planning units j ∈ J and k ∈ J (eqn 1b).86

Xj =


1, if j selected for prioritisation,

0, else
(eqn 1a)

Yjk =


1, if both j and k selected for prioritisation,

0, else
(eqn 1b)

The reserve selection problem can be formulated following:87
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minimize
∑
j∈J

XjCj +

∑
j∈J

pEj

−
0.5×

∑
j∈J

∑
k∈J

pYjkLjk

 (eqn 2a)

subject to
J∑
j

Rij ≥ Ti ∀i ∈ I

(eqn 2b)

Yjk −Xj ≤ 0 ∀j ∈ J

(eqn 2c)

Yjk −Xk ≤ 0 ∀k ∈ J

(eqn 2d)

Yjk −Xj −Xk ≥ −1 ∀j ∈ J, k ∈ K

(eqn 2e)

Xj ∈ {0, 1} ∀j ∈ J

(eqn 2f)

Yjk ∈ {0, 1} ∀j ∈ J, k ∈ K

(eqn 2g)

The objective function (eqn 2a) is the combined cost of establishing the selected88

planning units as protected areas and the penalized amount of exposed boundary89

length associated with the selected planning units. Constraints (eqn 2b) ensure90

that the conservation targets (Ti) are met for all conservation features. Addi-91

tionally, constraints (eqns 2c–2e) ensure that the Yjk variables are calculated92

are correctly (as outlined in Beyer et al. 2016). Finally, constraints (eqns 2f and93

2g) ensure that the decision variables Xj and Yjk contain zeros or ones.94
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Table S195

Table S1: List of species that were used as features in our analysis.

Species Code Common Name Scientific Name

amegfi American Goldfinch Spinus tristis
amekes American Kestrel Falco sparverius
amerob American Robin Turdus migratorius
annhum Anna’s Hummingbird Calypte anna
baleag Bald Eagle Haliaeetus leucocephalus
barswa Barn Swallow Hirundo rustica
brdowl Barred Owl Strix varia
belkin1 Belted Kingfisher Megaceryle alcyon
bewwre Bewick’s Wren Thryomanes bewickii
bnhcow Brown-headed Cowbird Molothrus ater
bkhgro Black-headed Grosbeak Pheucticus melanocephalus
brebla Brewer’s Blackbird Euphagus cyanocephalus
brncre Brown Creeper Certhia americana
batpig1 Band-tailed Pigeon Patagioenas fasciata
bushti Bushtit Psaltriparus minimus
cangoo Canada Goose Branta canadensis
chbchi Chestnut-backed Chickadee Poecile rufescens
cedwax Cedar Waxwing Bombycilla cedrorum
chispa Chipping Sparrow Spizella passerina
coohaw Cooper’s Hawk Accipiter cooperii
comrav Common Raven Corvus corax
amecro American Crow Corvus brachyrhynchos
dowwoo Downy Woodpecker Dryobates pubescens
eucdov Eurasian Collared-Dove Streptopelia decaocto
eursta European Starling Sturnus vulgaris
evegro Evening Grosbeak Coccothraustes vespertinus
norfli Northern Flicker Colaptes auratus
foxspa Fox Sparrow Passerella iliaca
gockin Golden-crowned Kinglet Regulus satrapa
haiwoo Hairy Woodpecker Dryobates villosus
houfin House Finch Haemorhous mexicanus
houspa House Sparrow Passer domesticus
houwre House Wren Troglodytes aedon
hutvir Hutton’s Vireo Vireo huttoni
macwar MacGillivray’s Warbler Geothlypis tolmiei
moudov Mourning Dove Zenaida macroura
norhar1 Hen Harrier Circus cyaneus
orcwar Orange-crowned Warbler Oreothlypis celata
olsfly Olive-sided Flycatcher Contopus cooperi
osprey Osprey Pandion haliaetus
pacwre1 Pacific Wren Troglodytes pacificus
pinsis Pine Siskin Spinus pinus
pilwoo Pileated Woodpecker Dryocopus pileatus
pasfly Pacific-slope Flycatcher Empidonax difficilis
purfin Purple Finch Haemorhous purpureus
purmar Purple Martin Progne subis
rebnut Red-breasted Nuthatch Sitta canadensis
rebsap Red-breasted Sapsucker Sphyrapicus ruber
redcro Red Crossbill Loxia curvirostra
rocpig Rock Pigeon Columba livia
rethaw Red-tailed Hawk Buteo jamaicensis
rufhum Rufous Hummingbird Selasphorus rufus
rewbla Red-winged Blackbird Agelaius phoeniceus
savspa Savannah Sparrow Passerculus sandwichensis
sora Sora Porzana carolina
sonspa Song Sparrow Melospiza melodia
spotow Spotted Towhee Pipilo maculatus
stejay Steller’s Jay Cyanocitta stelleri
swathr Swainson’s Thrush Catharus ustulatus
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Species Code Common Name Scientific Name

towwar Townsend’s Warbler Setophaga townsendi
treswa Tree Swallow Tachycineta bicolor
daejun Dark-eyed Junco Junco hyemalis
yerwar Yellow-rumped Warbler Setophaga coronata
varthr Varied Thrush Ixoreus naevius
vigswa Violet-green Swallow Tachycineta thalassina
warvir Warbling Vireo Vireo gilvus
whcspa White-crowned Sparrow Zonotrichia leucophrys
westan Western Tanager Piranga ludoviciana
wilsni1 Wilson’s Snipe Gallinago delicata
wlswar Wilson’s Warbler Cardellina pusilla
wooduc Wood Duck Aix sponsa
yelwar Yellow Warbler Setophaga petechia
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Figure S196
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Figure S1: Study area.98
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Figure S299
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Figure S2: Percent cost increase of SA solutions compared to ILP solutions,101

across targets, number of features and number of planning units. Simulated102

annealing (i.e. Marxan) parameters used are: number of iterations > 100,000;103

species penalty factor 5 or 25. Not all Marxan scenarios generated yielded104

feasible solutions (where all targets were met), which is why e.g. there is only105

one observation for 37,128 planning units and 10 features.106
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Figure S3107
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Figure S3: Cost profile for Gurobi solver across targets, number of features109

and number of planning units.110

11



Figure S4111
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Figure S4: Cost profile for SYMPHONY solver across targets, number of113

features and number of planning units.114
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Figure S5115
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Figure S5: Cost profile for Marxan using Simulated Annealing across targets,117

number of features and number of planning units.118
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Figure S6119
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Figure S6: Time to solution comparisons between SYMPHONY and Gurobi121

across targets, number of features and number of planning units.122
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Figure S7123
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Figure S7: Time to solution comparisons between Marxan using Simulated125

Annealing and Gurobi across targets, number of features and number of planning126

units.127
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Figure S8128
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Figure S8: Time to solution profile for Gurobi solver across targets, number of130

features and number of planning units.131
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Figure S9: Time to solution profile for SYMPHONY solver across targets,134

number of features and number of planning units.135
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Figure S10136
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Figure S10: Time to solution profile for Marxan using Simulated Annealing138

across targets, number of features and number of planning units.139
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Figure S11140

141

Figure S11: Compactness of solutions. Shown are the solutions for a 10%142
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target. The numbers represent BLM values.143
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