
Why to Use the KL Divergence to Compare the Distance of
Multivariate Normal Distributions Described by Covariance or

Correlation Matrices

The entropy of random variable X over a discrete universe Ω is the expected number of
bits needed to express outcomes from this distribution. For example, a uniform distribution
over two outcomes ’true’ and ’false’ would have an entropy of 1, because we need one bit
to represent the result. If there are four outcomes the entropy would be 2 (as two bits are
needed), and so on. If the distribution is not uniform, the expected numbers of bits we
need to describe the result decrease, because we can assign representations (usually called
codes) using less bits (i.e., shorter codes) to more likely outcomes and longer codes to less
likely outcomes.

The entropy can be seen as describing the ’lack of information’ we have about X.
Scientific progress is equal to reduction of entropy in the random variables in the real
world. The more we understand the world, the better we can predict future outcomes. In a
normally distributed variable X, entropy is in a 1:1 relation with the variance. If a covariate
explains more variance, that means the residual variance, and hence the entropy, is smaller,
and we know more about the outcome.

The entropy H can be computed as

H(X) = −
∑
ω∈Ω

P (X = x) log(P (X = x))

Note that this is also the expected logarithm of the probability, E(log(P (X)).

If X is continuous (over real numbers), the bits we need to code outcomes of X depend
on how precisely we round X (since more precise round requires more bits to represent
all digits). The entropy in this case is defined as the number of bits needed to code the
outcome, rounded to a small precision ε, minus the number of bits needed to code ε itself.
This number actually converges to a fixed value as ε becomes smaller and smaller.

For example, if we round X to steps of 1
4 , the bits we need to code the outcomes

approximately is the (continuous) entropy plus two; if we round to a precision of 1
8 , we need

three bits more, and so on. So the entropy still reflects our intuition that more entropy
means less knowledge about the variable.

Computationally, it is easy to show that the entropy of a continuous random variable
X is again the expected log density E(log(f)) if f is the density. This can be written as

H(X) = −
∫ ∞
x=−∞

f(x) log(f(x))dx

If we assume a wrong distribution g instead of the true distribution f , more bits are
needed to code the outcomes of X. This loss, i.e., the number of additional bits we need if
a wrong distribution g is assumed instead of f , is the Kullback-Leiber (KL) divergence of f
and g. It can be computed as the difference of the expected log density g and the expected
log density f ,

KL(f, g) =

∫ ∞
x=−∞

f(x)(log(g(x))− log(f(x))



Intuitively, the KL describes how much information we loose because we assume a wrong
model for X. If f = g, the KL divergence is zero. Note that the KL divergence can be
negative, too, if log(f(X)) is in expectation higher than log(g(X)). For example, if the
true distribution f(X) has very low variance even though we prepared the code for a high-
variance distribution g, we may in fact use less bits than anticipated before. Nevertheless, of
course, we would have used even less bits if we prepared the code for the correct distribution
f .

Note that the KL divergence is not symmetrical; if the true model is g but we wrongly
assume f , the costs may differ from the inverted case. Therefore, one often uses the average
of both directions (sometimes termed the symmetrical KL divergence) as the expected
number of bits lost if, uniformly chosen, one density is wrongly used for the other:

KLsym(f, g) =
1

2
(KL(f, g) +KL(g, f))

If f and g both follow a normal distribution with equal means, then the KL divergence
depends only on the covariance matrices of both distributions (or equivalently, on their
correlation matrices), since the normal distribution is fully determined by these (cf. Tum-
minello, Lillo, & Mantegna, 2007). So the KL divergence, via the underlying distribution,
also serves as a distance measure between covariance or correlation matrices. However, in
this case the KL divergence still retains all properties above - it is still a comparison of
distributions (the underlying normal distributions), and it still describes a lack of knowl-
edge about the outcome, or in other terms, the scientific error we make when assuming a
normal distribution with one covariance matrix if the other covariance matrix is the true
underlying distribution.

Computationally, the KL divergence of two normal distributions f and g with covariance
matrix Σ1 and Σ2 (both with K variables) and equal means is given by

H(f, g) =

∫ ∞
−∞

f(x) log

(
g(x)

f(x)

)
dx

=

∫ ∞
−∞

f(x) log

(
|Σ2|
|Σ1|

)
− xT (Σ2 − Σ1)xdx

= log

(
|Σ2|
|Σ1|

)
−
∫ ∞
−∞

f(x)xT (Σ2 − Σ1)xdx

= log

(
|Σ2|
|Σ1|

)
− Tr

(
(Σ2 − Σ1)Σ−1

1

)
= log

(
|Σ2|
|Σ1|

)
− Tr

(
Σ2Σ−1

1

)
+K

and consequently the symmetrical KL divergence by

1

2
(H(f, g) +H(g, f)) = K − 1

2

(
Tr
(
Σ2Σ−1

1

)
+ Tr

(
Σ1Σ−1

2

))
Here, we used the natural logarithm instead of the base 2 logarithm, i.e., the result is in
nats rather than in bits, where 1 nat = 1.44 bits. We can easily check that the result is
symmetrical, and zero if both covariance matrices are identical.



We again should keep in mind that although this is an expression in the covariance
matrices, the KL still is between two normal distributions (with same mean and the two
covariance matrices as parameter). Therefore, if we are interested in describing how ’wrong’
we are when using one distribution where really the other should have been used, the KL is
the best choice of a metric. Its result (when adding the rounding precision) can directly be
interpreted in terms of bits of information that we loose when choosing the wrong covariance
matrix in the normal distribution.
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