#Supplemental 8: Data used by Curtis & Larson to create figures and estimate biomass loss ##Fig3A Code: cray<-read.csv("C:/Users/ loss over time.csv", header=TRUE) ##Read in Supplemental3_Data used in Fig 3A .csv file library(ggplot2) library(drc) model.drm<-drm(loss~day, data=cray, fct=MM.2()) mm1<-data.frame(day=seq(0, max(cray$day, length.out=30))) mm1$loss<-predict(model.drm, newdata=mm1); ggplot(cray, aes(x=day, y=loss))+theme_bw()+xlab("Day")+ylab("% Loss in Biomass")+geom_point(alpha=0.5)+geom_line(data=mm1, aes(x=day, y=loss))+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_line(colour = "black"))+theme(axis.text=element_text(size=12), axis.title=element_text(size=14,face="bold")) summary(model.drm) ##Modified x-axis from day to date of sampling using Adobe Editor #Fig3B Code: ##Read in Supplemental4_Data used in Fig 3B .csv file craywt<-read.csv("C:/Users/craywt.csv", header=TRUE) #To fix the order of the x-axis use the relevel function here craywt2<-with(craywt, relevel(Time, "Initial")) p1<-ggplot(craywt, aes(x=craywt2, y=Wt))+xlab("Time")+ylab("Mass (g)")+geom_boxplot() p1+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_line(colour = "black"))+theme(axis.text=element_text(size=12), axis.title=element_text(size=14,face="bold")) #To calculate means and standard errors of the weights: ##Read in Supplemental5_Data_to_estimate_decay_enclosures craywt3<-read.csv("C:/Users/craywt3.csv", header=TRUE) library(pastecs) #weight before deployment stat.desc(craywt3$B) #weight after deployment stat.desc(craywt3$A) #t-test; testing assumptions hist(craywt3$A) qqplot(craywt3$A) pl<-lm(B~Initial, data=craywt3) gvlma(pl) qqplot(B~Initial, data=craywt3) shapiro.test(craywt3$B) boxplot(B~Initial, data=crayw3t) shapiro.test(craywt3$B) shapiro.test(craywt3$A) t.test(craywt3$B, craywt$A, paired=TRUE) #t-value= 14.318; df=11; p=1.858E-08 boxplot(B~Initial, data = craywt3) #Overall biomass loss ##Read in Supplemental6_Data_to_estimate_biomassloss.csv craywt4<-read.csv("C:/Users/craywt4.csv", header=TRUE) library(pastecs) stat.desc(craywt4$initial) stat.desc(craywt4$final) #Fig4 code: ##Read in Supplemental7:Data used to create Fig4 here cq<-read.csv("cray_cq.csv", header=TRUE, stringsAsFactors = FALSE) as.numeric(cq[,2]) as.numeric(cq[,1]) sample<-sample(c("100zg", "100fg", "10fg", "1fg", "100ag", "10ag", "1ag", "1pg")) df<-df%>%mutate(positon=factor(standard), positon=factor(standard, levels=rev(levels(standard)))) cq1<-ggboxplot(cq, x = "standard", y = "Cq", color="sample", palette = c("royalblue4", "cyan3")) cq1+aes(x=reorder(standard, desc(standard)), y=Cq)+scale_y_continuous(name="Cq", limits=c(10, 40))+scale_color_manual(values = c("#999999","#000000"))+theme(axis.text=element_text(size=16), axis.title=element_text(size=20,face="bold"))+theme(legend.position = c(0.9, 0.9))+theme(legend.key=element_blank())+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black") , axis.title = element_text(size=16))