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Assumptions
The change over the study period, r, is the parameter of inferential interest: it is the fraction of the
initial population remaining at the end of the study period. The null hypothesis of interest is that of
no change over the study period H0 : r = 1, which is equivalent to a nill null hypothesis (on a log
scale): H0 : log r = 0. To perform Monte Carlo simulations, a data-generating mechanism wherein
the parameter r intervenes, must be specified. We made the following assumptions.

1. Monitoring relies on a temporal sampling scheme having a total of T (T ≥ 3) sampling occa-
sions evenly spaced at times t ∈ [1 : T ];

2. each sampling occasion yields an abundance/density estimate ŷt with an upper bound for the
magnitude of their coefficient of variation (CV) cvyt;

3. the response variable is the ratio p̂t = ŷt
ŷ1

for all t ∈ [1 : T ];

4. the observed values p̂t follow a log-normal distribution; and

5. the true values are pt = r
t−1
T−1 .

Methods
With the above specification of the data-generating mechanism for pt, it can be checked that (for
r > 0):{

t = 1 , p1 = r
1−1
T−1 = r0 = 1

t = T , pT = r
T−1
T−1 = r1 = r

We, thus, assumed that data ŷt are collected on each sampling occasion t: these data may be (relative)
biomass, abundance, or density. The ratio of each datum to the first datum is then computed, and the
dimensionless fractions p̂t resulting from these simple computations will be used to infer a trend.

Taylor series expansion
Let pt be a ratio of random variables:

∀ t, pt =
yt
y1

(1)

In practice p̂t =
ŷt
ŷ1

where ŷt are estimates of yt. y1 is a reference value: it is the abundance estimate

at the beginning of the study period. By definition, p1 = p̂1 = 1.

The variance of a ratio R of random variables n and d such that r = n
d

can be approximated by:
V[R] = E[n]2

E[d]2 ×
(

V[n]
E[n]2 − 2Cov(n,d)

E[n]E[d] +
V[d]
E[d]2

)
= E[R]2 ×

(
cv2n + cv2d − 2Cov(n,d)

E[n]E[d]

)
= E[R]2 × (cv2n + cv2d − 2× cor(n, d)× cvn × cvd)

(2)

where cvn is the CV of the numerator and cvd that of the denominator. The term Cov(n, d) is the
covariance between the numerator and the denominator, and can be expressed as a function of a
correlation cor(n, d). This correlation is bounded between −1 and 1. The abundance at times t
depends on the abundance at the previous time step t − 1, and on the method to estimate abundance
(e.g. distance sampling; ). A positive correlation is expected because of (i) population dynamics (e.g.

2



abundance at time t depends on abundance at time t− 1) and (ii) methodology (e.g. the same method
was used to produce an abundance estimate at times t−1 and time t). The correlation between any two
true abundances will result from intrinsic population dynamics: in the case of declining or increasing
populations, this correlation is expected to decay the further apart in time the two abundances are.
Using the same measurement method is also expected to result in a positive correlation between any
two abundance estimates. We can expect (i) a positive correlation between abundance estimates, and
(ii) a decay in this correlation over time. This pattern of a decaying correlation over time can be
emulated with a chi-square (χ2) random walk (Chudzicki, 2013).

Figure 1: Modelling correlation decay between successive pt over time. The four panels corresponds
to different study length T ∈ 3, 10, 20, 30. Each line corresponds to a realization of random walk of
χ2(ν = 2) variates. A thousand realizations are depicted on each panel. The correlation between p1
and p2 is arbitrarily set to lie between 0.70 and 0.95 to ensure an initial large correlation. Correlation
decay is on average linear (lower panels, T = 20, 30) but can be very dramatic over short time-series
(upper panels, T = 3, 10).

The CV of the ratio is:

cvR =

√
V[R]
E2[R]

=
√

cv2n + cv2d − 2× cor(n, d)× cvn × cvd

Thus,

cvp̂t =

{
0 , if t = 1√

cv2ŷt + cv2ŷ1 − 2× cor(ŷt, ŷ1)× cvŷt × cvŷ1 , if t > 1
(3)

The CV of all p̂t depends on the CV of the reference value ŷ1 and its correlation with the successive
estimates ŷt.
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Log-normal distribution
As in previous studies (Gerrodette, 1987; Taylor et al., 2007; Jewell et al., 2012), we assume the ratio
of abundance/density estimates to follow a log-normal distribution:

pt ∼ logN (µt, σt) (4)

By definition,

 E[pt] = eµt+
σ2t
2

V[pt] = e2µt+σ
2
t ×

(
eσ

2
t − 1

)
= E[pt]2 ×

(
eσ

2
t − 1

)
Thus, 

cv2pt = eσ
2
t − 1 ⇔ σt =

√
log
(
1 + cv2pt

)
E[pt] = eµt+

σ2t
2 ⇔ µt = log pt√

1+cv2pt

(5)

The above formulation (eq. 3-6) allows to simulate data easily: no distributional assumption on
yt nor the values of ŷt are actually needed; only the range of their CVs cvŷt are required in order to
compute the CV of p̂t (eq. 3). Then the value of r is needed to simulate a trend (eq. 6), with the sign
of log r = β determining the direction of the trend. For example, with T = 3 and r = 0.5, the true
values of pt are 1, 0.75 and 0.5. However, the estimated p̂t are observed with an error that is related
to the CV of the initial abundance estimates. The coefficient of variation cvp̂t can be computed with
eq. 3, then plugged in eq. 5 to simulate observed data.

Simulation Scenarii
We assume that the true values of pt, the proportions of the population at time t relative to the baseline
at t1, is given by the following model:

pt = r
t−1
T−1 (6)

The parameter r is represents the fraction of the initial population remaining at time T > 1. For
example, r = 1

2
means the halving of the initial population, or a 50% decrease over the study period.

Taking the logarithm transform of equation 6 yields:

log pt = log r
t−1
T−1 =

t− 1

T − 1
× log r = xt × β (7)

where
{
xt = t−1

T−1

β = log r
. The model in eq. 7 is a linear regression with a null intercept: starting from 0

at t = 1, it assumes a linear trend over the study period. The parameter r is related to a trend sensu
Link & Sauer (1997): "the percentage change [in abundance] over a specified time period".

We did not assume any relationship between true abundance and CV as in Gerrodette (1987,
1991) or Taylor et al. (2007). CVs may be under the control of researchers during the planning
of a survey targeting a single species. However, some surveys may collect data on several species
groups to augment cost-effectiveness (Lambert et al., 2019): in this setting it becomes more difficult
to jointly achieve a desired precision across a broad panel of species with e.g. different behaviour. In
this setting, which is encouraged for cost-effective sampling of the marine environment, although
a focal species may be a particular interest, data on other species will also be collected and the
associated CVs of their estimated abundances may be viewed as random variables. Accordingly
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to this view, we generated CVs for abundance estimates ŷt randomly from a uniform distribution.
Coefficients of variation smaller than 0.1 are not common in the literature on marine mammals (Taylor
et al., 2007), and we considered this lower bound to be the best precision to be realistically attainable
with line transect surveys. CVs for marine mammal abundances can be large (Taylor et al., 2007).
To assess the impact of the precision of estimates on detecting a trend, we varied the upper bound
between 0.1 and 0.5 by 0.1 increment when simulating data. Thus 5 scenarios relating to data quality
(abundance/density estimates with CVs of exactly 0.1, between 0.1 and 0.2; between 0.1 and 0.3;
between 0.1 and 0.4; and between 0.1 and 0.5) were investigated.

We varied the value of r, the parameter of inferential interest, between 0.5 (halving of the pop-
ulation over the study period T ) and 0.99 (a 1% population decrease over the study period T ). We
did not consider declines larger than 50% as these are more readily detected (Taylor et al., 2007), and
we focused on ambiguous cases. Finally, the length of the study period varied between 3 and 30 by
increment of 1. There were 5 × 28 × 38 = 5, 320 different scenarii. For each of these, 10, 000 data
sets were simulated according to the following R code snippet:

make_data <- function(n, beta, upper_cv, rho = TRUE) {
p <- seq(1, beta, length.out = n)
cv <- runif(n, 0.1, upper_cv)
### correlation between measurements
if(rho) {

rho_start <- runif(1, 0.70, 0.95)
eps <- rchisq(n - 1, df = 2)
eps <- rev(cumsum(eps))/sum(eps)
eps <- c(1, rho_start * eps)

}
else { eps <- rep(0, n) }
cv_p <- sqrt(cv[1] * cv[1] + cv * cv - 2 * cv[1] * cv * eps)
sigmalog <- sqrt(log(1 + cv_p^2))
mulog <- log(p / sqrt(1 + cv_p^2))
return(data.frame(t = (1:n - 1) / (n-1),

p_hat = c(1, rlnorm(n - 1, mulog[-1], sigmalog[-1])),
se = c(0.001, sigmalog[-1])
)

)
}
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Priors
The informative prior was chosen to cover a priori a range associated with the halving or doubling
of the population over the study period: we chose a symmetric normal prior (on a logarithmic scale)
centered on 0, and set the scale parameter to log(2)/2. For a normal distribution, 95% of the proba-
bility mass is between µ− 2σ and µ+ 2σ, where µ and σ are the location and scale parameters. The
weakly-informative prior was the skeptical prior of Cook et al. (2011). The latter uses the Cauchy
distribution (a Student-t distribution with 1 degree of freedom) instead of the normal distribution (a
Student-t distribution with +∞ degrees of freedom) for robust inference (see also Chapter 17 in Gel-
man et al., 2014 for a discussion of robustness) and embodies the idea that the null (no decline) is
assumed a priori true. The location parameter of the Cauchy distribution was accordingly set to 0

and the scale parameter was set to − log(2)

tan(π(ξ − 1
2
))

where ξ is a small (skeptical) probability that

β (log β) is different from 1 (0; Cook et al., 2011, page 336). This weakly-informative prior with
ξ = 0.025 favours the hypothesis of no decline with an odds-ratio of 39 : 1.

Null hypothesis
The null hypothesis of interest is also a nill hypothesis: H0 : β = 0. This null hypothesis corresponds
to a test of no trend over the study period, or equivalently, of a stable ratio of the proportion of the
initial population at the value 1. To test H0, both R functions glm and bayesglm return a two-sided
p value.

# unregularized approach
unreg <- glm(log(p_hat) ~ -1 + x,
family = gaussian, data = data,
epsilon = 1e-7, maxit = 500
)
# regularization with informative prior
strong <- arm::bayesglm(log(p_hat) ~ -1 + x,

family = gaussian, data = data,
prior.mean = 0,
prior.scale = log(2) / 2,
prior.df = Inf,
epsilon = 1e-7, maxit = 500
)
# regularization with weakly-informative prior
weak <- arm::bayesglm(log(p_hat) ~ -1 + x,
family = gaussian, data = data,
prior.mean = 0,
prior.scale = -log(2) / tan(pi * (0.025 - 0.5)),
prior.df = 1,
epsilon = 1e-7, maxit = 500
)
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Difference in regularization of estimates between the Informative
and Weakly-informative Priors
When we investigated type-M errors with the different regularized approach, we reported an exag-
geration of effect sizes with the informative prior: estimates were too large when the true decline
was also large. ’Large’ in our setting means a halving of the population over the study period. The
informative prior strongly penalizes estimate of r = eβ that are smaller than a halving (or larger than
a doubling) of the population (Figure 2). The weakly-informative prior in contrast penalizes estimates
in the neighbourhood of r ≈ 1 (that is β = 0), but not much large decline (or increase). This be-
haviour explains the slight underestimation of a trend with the weakly-informative prior in our Monte
Carlo study.
The regularization induced with the informative prior for values of r (β) between 0.5 and 2 (log(1

2
)

and log(2)) is strong: this informative prior is pulling the trend estimate toward zero. Therefore,
achieving statistical significance in this setting amounts to selecting the most biased estimates, that is
those estimates β̂ that remain far from 0. Statistical significance results in an exaggeration of effect
sizes as it selects estimates that more biased compared to the unregularized approach or the regular-
ized approach with a weakly-informative prior. This explains the higher type-M error rates of the
regularized approach with an informative prior.

Figure 2: Log-probability density function (log-PDF) of the informative and weakly-informative
priors used in regularized regression approaches. PDF are shown either on a logarithmic (left panel)
or natural scale (right panel).

7



Case Study on the Vaquita
We illustrate our proposal using abundance data on the vaquita taken from Parsons 2018 (Table S1).

Year t Abundance estimate ŷt p̂t xt
1997 1 567 1.000 0.000
2008 12 245 0.432 0.579
2015 19 59 0.104 0.947
2016 20 30 0.053 1.000

Table 1: Abundance estimates of the vaquita (Phocoena sinus) in the Sea of Cortez, Mexico.

The values p̂t are derived from dividing abundance estimates ŷt by the first estimate available ŷ1.
The values xt are obtained with the formula xt = t−1

T−1
, where T is the span of the study and equals 20

years for the vaquita. The following code snippet allows to obtain three estimates of the trend: one
unregularized and two regularized one.

# data
vaquita = data.frame(year = c(1997, 2008, 2015, 2016),

y = c(567, 245, 59, 30)
)
vaquita$x <- with(vaquita, (year - min(year))/diff(range(year)))
vaquita$p_hat <- with(vaquita, y/y[1])

# unregularized approach
unreg <- glm(log(p_hat) ~ -1 + x,
family = gaussian,
data = vaquita,
epsilon = 1e-7, maxit = 500
)
# regularization with informative prior
strong <- arm::bayesglm(log(p_hat) ~ -1 + x,

family = gaussian,
data = vaquita,
prior.mean = 0,
prior.scale = log(2) / 2,
prior.df = Inf,
epsilon = 1e-7, maxit = 500
)
# regularization with weakly-informative prior
weak <- arm::bayesglm(log(p_hat) ~ -1 + x,
family = gaussian,
data = vaquita,
prior.mean = 0,
prior.scale = -log(2) / tan(pi * (0.025 - 0.5)),
prior.df = 1,
epsilon = 1e-7, maxit = 500
)

The different estimates of β can then be accessed by calling the function print.
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# unregularized estimates
print(unreg, digits = 3)
# Coefficients:
# x
# -2.49
#
# Degrees of Freedom: 4 Total (i.e. Null); 3 Residual
# Null Deviance: 14.5
# Residual Deviance: 0.574 AIC: 7.59

# regularization with informative prior
print(strong, digits = 3)
# Coefficients:
# x
# -2.22
#
# Degrees of Freedom: 4 Total (i.e. Null); 3 Residual
# Null Deviance: 14.5
# Residual Deviance: 0.747 AIC: 8.64

# regularization with weakly informative prior
print(weak, digits = 3)
# Coefficients:
# x
# -2.42
#
# Degrees of Freedom: 4 Total (i.e. Null); 3 Residual
# Null Deviance: 14.5
# Residual Deviance: 0.585 AIC: 7.66

The p value associated with the null hypothesis H0 : β = 0 can be retrieved by calling the R
function summary.

# unregularized regression
round(summary(unreg)$coefficients, 3)
# Estimate Std. Error t value Pr(>|t|)
# x -2.494 0.293 -8.521 0.003

# regularization with informative prior
round(summary(strong)$coefficients, 3)
# Estimate Std. Error t value Pr(>|t|)
# x -2.215 0.315 -7.037 0.006

# regularization with weakly-informative prior
round(summary(weak)$coefficients, 3)
# Estimate Std. Error t value Pr(>|t|)
# x -2.424 0.291 -8.321 0.004

In the case of the vaquita data, the standard error of the estimated β̂ with regularized regression
with an informative prior is actually larger than that of the unregularized approach. This feature
betrays a prior-data conflict: the prior tries to pull the estimate back to 0 whereas the data clearly
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suggest a very large decrease of more than 50% (see also Figure 2). In contrast, the standard error of
the estimated β̂ with regularized regression with a weakly-informative prior is similar to, or slightly
smaller than that of the unregularized approach: the prior in this case gives way to the data and the
resulting regularized estimate is much closer to the unregularized one. This ability of the weakly-
informative prior to let the data speak for themselves is attractive. Note that in all cases, the null
hypothesis is clearly rejected both at 20% or 5% significance level.

Finally, to obtain an estimate of r̂, and of the annual rate of change r̂a, we used the approach of
King et al. (2000). Specifically, we used the estimated β̂ from a regularized approach with a weakly-
informative prior: we extracted the point estimate, its associated standard error and the residual de-
grees of freedom in order to approximate the posterior distribution of β̂ with a Student-t distribution.
We then generated 106 random values from this Student distribution, exponentiated them and took the
median to estimate r̂.

# regularization with weakly-informative prior
beta_hat <- sn::rst(1e6,

xi = summary(weak)$coefficients[1],
omega = summary(weak)$coefficients[2],
nu = nrow(vaquita) - 1
)
### overall change over the study period
r_hat <- round(exp(beta_hat), 3)
round(median(r_hat), 3)
# 0.089
### 80% confidence interval
round(quantile(r_hat, probs = c(0.1, 0.9)), 3)
# 10% 90%
# 0.055 0.143
### 80% Highest Probability Density interval
round(coda::HPDinterval(coda::as.mcmc(r_hat), prob = 0.80), 3)
# lower upper
# 0.045 0.127

### annual change averaged over the study period
r_a <- (r_hat)^(1/diff(range(vaquita$year)))
round(median(r_a), 3)
# 0.880
### 80% confidence interval
round(quantile(r_a, probs = c(0.1, 0.9)), 3)
# 10% 90%
# 0.858 0.903
### 80% HPD interval
round(coda::HPDinterval(coda::as.mcmc(r_a), prob = 0.80), 3)
# lower upper
# 0.858 0.901
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