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Abstract 16 

The term schizotypy refers to a group of stable personality traits with attributes similar to 17 

symptoms of schizophrenia, usually classified in terms of positive, negative or cognitive 18 

disorganization symptoms. The observation of increased spreading of semantic activation in 19 

individuals with schizotypal traits has led to the hypothesis that thought disorder, one of the 20 

characteristics of cognitive disorganization, stems from semantic disturbances. Nevertheless, it is 21 

still not clear under which specific circumstances (i.e., automatic or controlled processing, direct 22 

or indirect semantic relation) schizotypy affects semantic priming or whether it does affect it at 23 

all. We conducted two semantic priming studies with volunteers varying in schizotypy, one with 24 

directly related prime-target pairs and another with indirectly related pairs. Our participants 25 

completed a lexical decision task with related and unrelated pairs presented at short (250 ms) and 26 

long (750 ms) stimulus onset asynchronies (SOAs). Then, they responded to the brief versions of 27 

the Schizotypal Personality Questionnaire and the Oxford-Liverpool Inventory of Feelings and 28 

Experiences, both of which include measures of cognitive disorganization. Bayesian mixed-29 

effects models indicated expected effects of SOA and semantic relatedness, as well as an 30 

interaction between relatedness and directness (greater priming effects for directly related pairs). 31 

Even though our analyses demonstrated good sensitivity, we observed no influence of cognitive 32 

disorganization over semantic priming. Our study provides no compelling evidence that 33 

schizotypal symptoms, specifically those associated with the cognitive disorganization 34 

dimension, are rooted in an increased spreading of semantic activation in priming tasks.  35 

  36 



Explanation of analysis approach 37 

The use of mixed-effects models to estimate potential effects on lexical decision response 38 

latencies is warranted by the design of the study. Because we recorded multiple observations for 39 

each participant and each stimulus, and because all participants were presented with the same 40 

stimuli, we cannot assume that observed responses were independent (Baayen, Davidson, & 41 

Bates, 2008). This ruled out the use of linear models (ANOVA or regression analyses) which 42 

assume observations are independent. Moreover, because response data can be grouped by 43 

sampled participant or by sampled stimulus (prime or target), we must take into account the ways 44 

in which response latencies may have varied according to random differences between 45 

participants or between stimuli in average reaction time (random intercepts), when controlling 46 

for experimental effects, as well as the ways in which the impact of experimental factors may 47 

have varied according to random differences (random slopes) between participants or between 48 

stimuli. Taking these random effects into account in an analysis has been demonstrated to ensure 49 

more accurate estimation of the effects of interest, here, the effects of priming or SOA conditions 50 

(McElreath, 2018). In all analyses, models were fitted with maximal random effects structures 51 

(Barr, Levy, Scheepers, & Tily, 2013; Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017), 52 

corresponding to critical interaction effects (see the explanation following), to control for the risk 53 

of false positive (Type I) or negative (Type II) errors. 54 

 55 

In our analyses, we used the brms library (Bayesian regression models using ‘Stan’; Bürkner, 56 

2017, 2019; Carpenter et al., 2017) to fit Bayesian mixed-effects models. This is, in part, because 57 

Bayesian models have been found to converge essentially irrespective of model complexity 58 

whereas frequentist models may sometimes fail to converge (Eager & Roy, 2017; Matuschek et 59 

al., 2017) in situations where random effects structures are complex relative to available data. 60 

Bayesian models virtually always converge to accurate values of the parameters and produce 61 

accurate values of credible intervals for any sample (Liddell & Kruschke, 2018). It is also, in 62 

part, because Bayesian methods permit flexibility, not readily afforded under alternative 63 

approaches, to assume realistic models for the data generating processes hypothesized to underlie 64 

the production of observed responses (Martin & Williams, 2017; Nicenboim & Vasishth, 2016). 65 

In the current study, we were able to assume that response latencies were compatible with an ex-66 

Gaussian likelihood function. The ex-Gaussian has been shown to furnish an accurate 67 



representation of the skewed distribution typical of reaction time data (Matzke & Wagenmakers, 68 

2009; van Zandt, 2000). As will be seen, posterior predictive checks demonstrated that this 69 

assumption enabled us to fit models that effectively captured the distribution of the reaction 70 

times observed in our study. 71 

 72 

In general, Bayesian models are scientifically advantageous because they yield accurate 73 

representations of the posterior distribution (see e.g., Nicenboim & Vasishth, 2016; Vasishth et 74 

al., 2018, for tutorial introductions). For each parameter (including each fixed and random 75 

effect), we assumed that coefficient estimates may vary in sign and magnitude. Bayesian models 76 

yield a posterior probability distribution representing the differing probabilities of each potential 77 

value of an effect, given the observed evidence and prior expectations about likely effects. This 78 

means that, for each effect, we are able to report the most probable value of the estimate for the 79 

effect, while the spread of the posterior distribution directly indicates our uncertainty about the 80 

effect estimate. We report credible intervals (CrI) to summarize that uncertainty. In line with 81 

intuition, credibility intervals indicate the range within which we can suppose with a certain 82 

probability that the “true value” of a parameter lies given the data and the model. 83 

 84 

The specification of model parameters reflected the features of our study design and the 85 

attributes of data collection in the sub-studies. We explain, in the following, how design or data 86 

collection features mapped to model specification choices. In particular, critical to the 87 

specification of random effects structures, we outline how experimental variables were 88 

manipulated or varied with respect to sample grouping variables (i.e., within- or between- 89 

participants or stimuli). We checked how our assumptions might potentially modulate the effects 90 

estimates in sensitivity analyses presented in supplementary materials (see Supplemental Article 91 

S2). 92 

 93 

We recorded the latency of responses to word or pseudoword target stimuli in a lexical decision 94 

task. Each target was presented following a word prime stimulus, and our analysis focused on the 95 

latency of responses to word targets; we excluded responses to pseudowords. In each trial, the 96 

response interval lasted for 2000ms from target stimulus offset so that we only recorded lexical 97 

decisions if response onset had been less than 2000ms. We excluded observations corresponding 98 



to latencies faster than 300ms, non-responses within the 2000ms interval, and target 99 

classification errors. Given the skew typical of response latencies in word recognition tasks, we 100 

assumed a priori that response latencies would be adequately described by an Ex-Gaussian 101 

function (see the discussion following), and that response latencies would be distributed in the 102 

range 300-2000ms (we checked the impact of varying this assumption, Supplemental Article S2). 103 

 104 

The study design required the manipulation of prime-target relatedness, the directness of the 105 

prime-target relation, and prime-target stimulus onset asynchrony, in addition to the observation 106 

of participants’ scores on the SPQ-B and sO-LIFE measures of variation in schizotypy 107 

dimensions. We manipulated the directness of the relation between prime and target in two 108 

separate sub-studies. As different groups of participants were recruited to different sub-studies, 109 

this means that the directness of prime-target relatedness was manipulated between-participants. 110 

The first and second sub-studies were identical in the composition of the prime stimulus set but 111 

differed in the target stimulus set so that directness was manipulated within-primes but between-112 

targets. All participants saw each prime and target under both SOA and both relatedness so that 113 

SOA and relatedness were manipulated within-participants, within-primes and within-targets. 114 

 115 

We fitted models that took into account the features of study design and data collection just 116 

outlined. We sum-coded the effects of the categorical variables: prime-target relatedness; SOA; 117 

and directness of prime-target relatedness. We standardized participants’ scores on the 118 

schizotypy dimensions. We fitted separate models including the effects of participant variation 119 

on each dimension of one set of schizotypy scales (sO-LIFE or SPQ-B) only. Models were 120 

structured to estimate effects of these variables as well as the effects of all interactions up to and 121 

including the potential four-way interaction between the effects of directness, schizotypy 122 

dimension, SOA and relatedness. We can express this as: 123 

 124 

RT ~ directness x schizotypy dimensions x SOA x relatedness 125 

 126 

where the four-way interaction stands for all effects of each variable as well as all lower-order 127 

two-way interactions (including, e.g., interactions between directness and relatedness, or 128 

between schizotypal disorganization and relatedness) and all three-way interactions (including 129 



interactions between SOA, disorganization and relatedness). While the distinction between fixed 130 

and random effects is inconsistent (Gelman & Hill, 2007), and arguably does not have force in 131 

Bayesian analyes (Nicenboim & Vasishth, 2016), we continue to use it because of its wide 132 

adoption in presentations of mixed-effects models in the literature (Meteyard & Davies, 2020). 133 

In these terms, we fitted models that included parameters corresponding to random effects 134 

associated with: 135 

(1.) unexplained differences between sampled participants in intercepts (random intercepts) and 136 

in the within-participant effects of SOA, relatedness and the SOA x relatedness interaction 137 

(random slopes); as well as correlations between random intercepts and random slopes; 138 

(2.) unexplained differences between sampled primes or targets in intercepts (random intercepts) 139 

and in the within-stimulus effects of participants’ variation in schizotypy dimensions, and in the 140 

effects of SOA, relatedness and the SOA x relatedness interaction (random slopes); as well as 141 

differences in the within-prime effect of directedness; along with correlations between random 142 

intercepts and random slopes. 143 

 144 

Bayesian models require the specification of prior probability distributions, in addition to the 145 

likelihood, and the fixed and random effects structure. In the present article, we report the 146 

posterior distributions of parameter estimates yielded by models assuming weakly informative 147 

priors for fixed effects coefficients or random effects variances: Gaussian (normal) probability 148 

distributions centered on a mean of zero with a standard deviation of 10 (𝛽 ∼149 

𝑁𝑜𝑟𝑚𝑎𝑙(0, 10); 𝑆𝐷 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10)). This assumption of priors expresses the belief that the 150 

parameter values would lie between −20 and +20 with 95% probability. This range results from 151 

the fact that 95% of the probability in a Normal distribution lies within the interval 𝜇 ± 2𝜎 (see, 152 

e.g., Vasishth et al., 2018, for a discussion). However, we acknowledge that other researchers 153 

would regard alternate prior distributions as more appropriate. Therefore, we fitted a series of 154 

models with the same fixed and random effects structures but varying prior probability 155 

distributions. We report our observations on the variation in parameter estimates, in association 156 

with variation in priors, in the supplementary report on sensitivity analyses (Supplemental 157 

Article S2). In all models, we assumed the LKJ(2) prior for the correlations between random 158 

effects because it assumes that extreme values (i.e., approaching 𝑟 ± 1) are implausible 159 

(Vasishth et al., 2018). We also assumed that because the response interval was limited to 160 



2000ms and, based on our experience of observing word recognition latencies, it was reasonable 161 

to suppose a prior of 𝛽0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1000,500) for intercepts, that is, supposing that the 162 

intercept would lie between 0-2000ms (i.e., 𝜇 ± 2𝜎) with 95% probability. (Our sensitivity 163 

analyses examined, also, the impact of this choice compared to at least one alternate, 164 

Supplemental Article S2.)  165 

 166 

We report the estimates derived from the fitted models in the main manuscript. We describe, 167 

here, however, the distribution of observed response latencies (Supplemental Fig. S3) because 168 

the form of the distribution relates to the reasonableness of our assumption of an ex-Gaussian 169 

likelihood function in modeling the lexical decisions recorded in our sub-studies. Fig. S3 shows 170 

that the distributions of observed RTs for each sub-study have similar forms, with peaks between 171 

500-700ms, with variation in the shorter RTs appearing to conform to a Gaussian (normal) 172 

distribution, and longer RTs presenting a marked skew appearing to conform to an exponential 173 

modification of the Gaussian. The observed RT distribution is typical for a word recognition task 174 

and it is congruent with the assumption, implemented in our models, that reaction times are 175 

generated by a process that can be described by defining an ex-Gaussian likelihood function. Our 176 

intention, in choosing the ex-Gaussian, was simply to arrive at a good description of observed 177 

latencies but alternate likelihood functions are available, including those that correspond to the 178 

lognormal (e.g. Nicenboim & Vasishth, 2016), shifted lognormal (Vasishth et al., 2018), or skew 179 

normal (Martin & Williams, 2017). We share our data and analysis code to enable readers to 180 

examine the impact on parameter estimates of varying the likelihood function; we report our own 181 

examination of this question in the sensitivity analyses.  182 

 183 

The full dataset and code for the analyses are available at OSF: https://osf.io/j29fn/. 184 

 185 

  186 
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