
Semantic priming and schizotypal personality: 1 

reassessing the link between thought disorder and 2 

enhanced spreading of semantic activation  3 

 4 

Javier Rodríguez-Ferreiro12, Mari Aguilera1, Robert Davies3 5 

1 Grup de Recerca en Cognició i Llenguatge, Departament de Cognició, Desenvolupament i 6 

Psicologia de l’Educació, Universitat de Barcelona, Barcelona, Spain 7 

2 Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain 8 

3 University of Lancaster, United Kingdom  9 

  10 

Corresponding Author: 11 

Javier Rodríguez-Ferreiro 12 

Campus Mundet, psg de la Vall d’Hebron, 171, Barcelona, 08035, Spain 13 

Email address: rodriguezferreiro@ub.edu 14 

  15 

mailto:rodriguezferreiro@ub.edu


Abstract 16 

The term schizotypy refers to a group of stable personality traits with attributes similar to 17 

symptoms of schizophrenia, usually classified in terms of positive, negative or cognitive 18 

disorganization symptoms. The observation of increased spreading of semantic activation in 19 

individuals with schizotypal traits has led to the hypothesis that thought disorder, one of the 20 

characteristics of cognitive disorganization, stems from semantic disturbances. Nevertheless, it is 21 

still not clear under which specific circumstances (i.e., automatic or controlled processing, direct 22 

or indirect semantic relation) schizotypy affects semantic priming or whether it does affect it at 23 

all. We conducted two semantic priming studies with volunteers varying in schizotypy, one with 24 

directly related prime-target pairs and another with indirectly related pairs. Our participants 25 

completed a lexical decision task with related and unrelated pairs presented at short (250 ms) and 26 

long (750 ms) stimulus onset asynchronies (SOAs). Then, they responded to the brief versions of 27 

the Schizotypal Personality Questionnaire and the Oxford-Liverpool Inventory of Feelings and 28 

Experiences, both of which include measures of cognitive disorganization. Bayesian mixed-29 

effects models indicated expected effects of SOA and semantic relatedness, as well as an 30 

interaction between relatedness and directness (greater priming effects for directly related pairs). 31 

Even though our analyses demonstrated good sensitivity, we observed no influence of cognitive 32 

disorganization over semantic priming. Our study provides no compelling evidence that 33 

schizotypal symptoms, specifically those associated with the cognitive disorganization 34 

dimension, are rooted in an increased spreading of semantic activation in priming tasks.  35 

  36 



Sensitivity analyses 37 

Our models were specified according to a number of assumptions. We motivated our 38 

assumptions by reasoning that proceeded from the implications of the study design, and the 39 

features of the data collection method, to develop a statistical account of the cognitive processes 40 

that could generate the responses recorded in the lexical decision task. Our reasoning is 41 

explained in the main article but we acknowledge that other researchers might make different 42 

decisions about the most appropriate analysis than those we adopted, in addressing the same 43 

research questions (Goodman, Fanelli, & Ioannidis, 2016) or, indeed, in examining the same data 44 

(cf. Silberzahn et al., 2018). We share our data and analysis code to facilitate methods 45 

reproducibility (Goodman et al., 2016), enabling other researchers to reproduce the results we 46 

present in our report. In sharing our data and code, in addition, we seek to enable other 47 

researchers to address the same questions, with the same data, supposing different analytic 48 

choices. This is because we think reasonable people may differ, on decisions pertaining to an 49 

analysis, in response to the study design or data collection method we have described (as 50 

demonstrated e.g., by Silberzahn et al., 2018), and we embrace this potential diversity as a means 51 

to establish the generalizability of empirical findings. We follow Gelman and Hennig (2016), 52 

therefore, by seeking to account for our assumptions or decisions in the main article and, here, by 53 

conducting an analysis of the stability of estimates given potential variation in approach. For our 54 

purposes (of course, other researchers may differ even in this), our sensitivity analyses were done 55 

to examine how effects estimates might vary given different decisions about the likelihood 56 

function, or about the Bayesian priors (see, also, Depaoli and van de Schoot, 2017). (We offer 57 

readers one caveat: one reason why we did not base our results on frequentist models of the data, 58 

using, for example, the lme4 library (Bates et al., 2019) is that we found that models with similar 59 

random effects specifications did not converge; see Supplemental Article S3.) 60 

 61 

Likelihood functions and posterior predictive checks 62 

If a model is a good fit then we should be able to use it to generate data similar to the data we 63 

observed (Gabry, 2017; Gabry, Simpson, Vehtari, Betancourt, & Gelman, 2019). To generate the 64 

data used for such posterior predictive checks (PPC), we simulate them from the posterior 65 

predictive distribution. This is the distribution of the outcome variable implied by a model after 66 

using the observed data to update our beliefs about unknown model parameters. 67 



 68 

We explained that the reaction time distributions for tasks like lexical decision are typically 69 

observed to be skewed towards longer latencies (see Supplemental Article S1) and this form has 70 

been argued to be well described as an ex-Gaussian distribution (e.g., Matzke & Wagenmakers, 71 

2009; van Zandt, 2000). (The density plots depicting the distribution of observed reaction times 72 

in our study can be seen in Supplemental Fig. S3.) We opted, therefore, to assume an ex-73 

Gaussian likelihood function at the core of the Bayesian models fitted to the data in our study. 74 

Assuming an ex-Gaussian likelihood meant that we did not have to suppose that observed 75 

latencies had a normal distribution despite the skew clearly indicated in Figure S3 but we could 76 

have assumed a Gaussian likelihood. A comparison of the PPC plots in Figure S4 shows that, in 77 

fact, with models that assumed an ex-Gaussian likelihood (plots in left and center panels), there 78 

was an excellent fit for the observed latencies. Figure S4 presents overlaid density plots, showing 79 

for each model the distribution of observed latencies (dark blue, labelled “y”) overlaid with 80 

outcomes simulated from the posterior predictive distribution (light blue, labelled “y_rep”), 81 

given the model. 82 

 83 

[Figure S4 about here] 84 

Figure S4. Posterior predictive check plots for key model variants 85 

 86 

It is in striking contrast that, if one were to assume a Gaussian likelihood function, while the 87 

MCMC-sampling was efficient and the parameter estimates were similar to those we report, the 88 

posterior predictive check showed a marked discrepancy between the distribution of model 89 

predicted response latencies and the distributed of observed latencies (Figure S4, right-most 90 

panel). 91 

 92 

Variation in priors and variation in estimates 93 

In analyzing the study data, we were aware that there would be reasonable latitude about the 94 

assumption of prior probability distributions for model parameters. We opted to assume 95 

regularizing or weakly informative priors (see Nicenboim & Vasishth, 2016, for discussion) 96 

expressing the assumption that parameter estimates (e.g., the coefficients of effects) would be 97 

found to occur, with potential variation in value, according to a probability distribution identified 98 



as a Gaussian, broadly spread, probability distribution centered on zero. We assumed this 99 

because effects of variables like SOA or relatedness could conceivably be positive or negative 100 

but were unlikely to take extreme values. Beyond these assumptions, we supposed that 101 

reasonable people might differ on the most appropriate prior probability distributions for model 102 

parameters, including fixed effects coefficients or random effects variances. Therefore, we 103 

evaluated what impact our choice versus alternate choices of priors would have on the posterior 104 

distributions of parameters, conducting an analysis thereby to examine the sensitivity of 105 

estimates to the choice of priors (e.g., Depaoli & van de Schoot, 2017; Vasishth et al., 2018), in 106 

other words, to examine the stability of estimates (Gelman & Hennig, 2016). 107 

 108 

In the main article, we report the posterior distributions of parameters found with models 109 

assuming priors for fixed effects or random effects variances centered on a mean of zero with a 110 

standard deviation of 10 (𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,10); 𝑆𝐷 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,10)), expressing the belief that 111 

the parameter values would lie between −20 and +20 with 95% probability. However, it is 112 

possible that other researchers would regard prior distributions of 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1); 𝑆𝐷 ∼113 

𝑁𝑜𝑟𝑚𝑎𝑙(0,1) or 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,100);𝑆𝐷 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,100) as more appropriate. Therefore, 114 

we fitted a series of models with the same fixed and random effects structures but varying prior 115 

probability distributions. In half of the model variants, we fitted models assuming a prior 116 

probability distribution for intercepts of 𝛽0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1000). However, we understood that 117 

this prior distribution would allow, unrealistically, for intercepts of negative RT. We also 118 

understood that because the response interval was limited to 2000ms it was more reasonable, 119 

perhaps, to suppose a prior of 𝛽0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1000,500). 120 

 121 

We plot the variation in estimates (the posterior distribution mean) of the effects of SOA, 122 

relatedness, directness and the directness by relatedness interaction (Figure S5). The plots 123 

indicate how parameter estimates vary with alternate choices of likelihood function (Gaussian 124 

vs. ex-Gaussian), intercept prior (𝛽0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1000) vs. 𝛽0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1000,500)), and 125 

fixed effects or random effects variance priors (SDs of 1, 10, or 100). Figure S5 presents a 126 

separate grid of plots for each effect: relatedness, directness, directness x relatedness, and SOA. 127 

In each grid, we present (on separate rows) plots showing effects estimates (coefficient values) 128 

for SPQ-B versus sO-LIFE models, and (in separate columns) plots showing effects estimates 129 



from models assuming ex-Gaussian versus Gaussian likelihood functions. In each plot, we 130 

present point estimates (points correspond to the mean of the posterior) along with credible 131 

intervals (95% lower vs. upper bounds) for effects given variation (on the x-axis) of priors 132 

(N(0,1), N(0,10), N(0,100), where N stands for Normal). In each plot, also, we show the 133 

estimates that derive from models assuming different priors on intercepts, either 𝛽0 ∼134 

𝑁𝑜𝑟𝑚𝑎𝑙(0,1000) or 𝛽0 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1000,500). 135 

 136 

Figure S5 shows that, for the effects about which we can have reasonably high certainty (the 137 

effects of SOA, relatedness, and the directness x relatedness interaction), variation in the spread 138 

(SD) of the prior probability distributions (N(0,1) vs. N(0,10) vs. N(0,100)) is associated with 139 

limited variation in the magnitude of effects but no variation in the direction of effects. In this 140 

comparison, with narrowly spread priors (𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0,1)), estimates for the effects of 141 

relatedness, SOA, and of the directness x relatedness interaction are smaller (the tight priors, 142 

centered on 0, pull estimates towards them more strongly) but it remains clear that the evidence 143 

shows that the effects are present in the data with the signs (positive or negative) we report 144 

irrespective of likelihood function, or prior choice, among the choices we examined. In 145 

comparison, for effects for which we have relatively weak evidence in this study (the effects of 146 

directness and of SPQDis, OLIFEDis variation, Figure S6), parameter estimates vary markedly 147 

with respect to the width of credibility intervals but not with respect to the point estimates (the 148 

values of the most probable estimates for the coefficients of the effects). 149 

 150 

[Figures S5 and S6 about here] 151 

Figure S5. Variation in relatedness, directness, directness x relatedness, and SOA effects 152 

estimates by model variants 153 

Figure S6. Variation in SPQDis and OLIFEDis effects estimates by model variants 154 

 155 

Conclusions 156 

We conclude that the estimates derived from our models for the experimental effects of, 157 

especially, relatedness, directness, SOA, and the directness x relatedness interaction are stable 158 

across a range of model variants, fitted with alternate assumptions.  159 

 160 



The full dataset and code for the analyses are available at OSF: https://osf.io/j29fn/. 161 

 162 
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