1 SUPPLEMENTARY METHODS

1.1 Conventional performance measures

Several conventional measures are used to evaluate the performance of the CNN models. The proposed
predictive models can be thought of a binary classifier by assigning a decisive threshold over their
probabilistic outputs. Traditional measures for binary classification task are precision, recall, F1-score
and accuracy. We define true positives (TP) as correctly predicted GSS, false positives (FP) as non-GSS
wrongly classified as GSS, false negative (FN) as GSS wrongly classified as non-GSS and true negative
(TN) as non-GSS correctly classified as non-GSS.

Precision is the ratio of correctly predicted GSS to the total predicted positive observations: \(Pr = \frac{TP}{TP + FP} \). Thus, the high precision relates to the low false positive rate. Recall (or sensitivity) is the
ratio of correctly predicted GSS to the all observations in positive class: \(Re = \frac{TP}{TP + FN} \). F1-score is the
weighted average of precision and recall, which takes equally both false positives and false negatives
into account: \(F1\text{-score} = 2 \times \frac{Re \times Pr}{Re + Pr} \). Specificity is the true negative rate or the proportion of non-GSS
that are correctly identified \(Sp = \frac{TN}{TN + FP} \). Accuracy is the most intuitive performance measure and it is
defined by a ratio of correctly predicted observations (true positives and true negatives) to the total
positive and negative observations: \(\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN} \). However, accuracy is not a reliable
measure to assess model performance for datasets with unevenly distributed classes such as the unequal
proportion of GSS and non-GSS samples. F1-score measure is usually more adequate than accuracy
in uneven class distribution. Matthews Correlation Coefficient (MCC) is also used in bioinformatics
as a performance metric and is often more reliable than the other measures for unbalanced data [?].
This measure takes into account the unbalance in the classes (in binary classification) and is defined as
\[MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \]. The MCC is a correlation coefficient value between \(-1\) and
+1, where a coefficient of +1 signifies an ideal prediction, \(-1\) an inverse prediction and 0 an average
2 SUPPLEMENTARY RESULTS

2.1 Conventional measures for model performance assessment do not reflect genome-wide performances

While we focus in this paper on applying our trained models on full chromosome sequences with a sliding window, we also performed a more conventional machine learning analysis for the sake of completeness. To compare conventional performance metrics explained in [1,1] with our λ score, we evaluate the performance of all Q^* models (with $Q = 1, 10, 20, 30, 50, 70, 100$). To evaluate these models, we split each dataset in training (70%), test (15%) and validation (15%) sets. As reported in Figure Supplementary Figure 3, the CNN model applied on the balanced data (1*) yields the best performance on the test set regarding the precision/recall curve (PR) with respect to other Q^* models. Counter intuitively, the model giving the best scores on a conventional test set yields the poorest predictions when applied on the genome-wide scale.

Following this observation, we verify whether this holds also for other metrics commonly used to evaluate the performance of the CNN models over test sets. Supplementary Figure 4a recapitulates the results presented in Supplementary Figure 3. The Area Under Precision/Recall Curve (AUPRC) reveals an uppermost score for the balanced dataset but it deteriorates across the limited unbalanced datasets. The AUROC on the other hand presents stationary scores across all models. Given that there are many more true negatives than true positives within unbalanced datasets, PR is considered as a trustworthy measure because it does not take into account the true negatives. Indeed, AUPRC curve is misleading when applied to strongly unbalanced datasets, because the false positive rate (FP/total real negatives) does not decrease drastically when the total real negatives is huge. Whereas AUPRC is highly sensitive to FP, it is not impacted by a large total real negative denominator. In Supplementary Figure 4b, F1-score reports a weighted average between precision and recall per class. While, the F1-score enhances for non-GSS class across the datasets an opposite trend is observed for GSS class. This means that the more negative samples are introduced in the datasets, the more the model has the difficulty to return efficient predictions for GSS class. Figure Supplementary Figure 4c shows the scores for binary cross entropy, MCC and accuracy measures for all models. Binary Cross Entropy is the loss function that is used in this work the by back-propagation algorithm during training process. Cross entropy loss thus decreases as the predicted probability converges to the ground truth data. This metric improves when adding more negative examples into the balanced dataset, i.e. when Q increases. Regarding the accuracy score, it reaches its maximum for unbalanced datasets as well. In the unbalanced data scenario, accuracy is not any more a reliable measure. As a matter of fact, machine learning algorithms are usually designed to improve accuracy by reducing the error. Thus, facing unbalanced datasets, they produce inadequate predictions, since they do not consider the class distribution. This leads to achieving high overall accuracy, while it only reflects the accuracy of the majority class.
Figure 1. Precision-Recall curve for model 1* and 100* on the human chromosome X. The predictions are binned with a binning size of 600 bp. A threshold is applied to the binned prediction signal to identify predicted GSS and non-GSS containing bins. The true label of each bin as GSS or non-GSS is based on the presence or absence of a real GSS in the bin. The precision-recall curve is then obtained by changing the value of the threshold and computing the corresponding precision and recall.
Figure 2. Overview of human and mouse models performances over the chromosome X. (a) and (c) Heat maps depict the standard score of the predictions for respectively the 1* model trained on mouse and applied on mouse (a), human (b) and for the 1* model trained on human and applied on mouse (c). (e) and (g) Similar to (a) and (c) with the 100* model. (h) and (j) Averaged standard score of the predictions over of the heat maps over all TSS, for the models 1* and 100* similar to (a) and (c).
Figure 3. Results on ROC and PR obtained over test sets. The model 1* corresponds to a balanced dataset.
Figure 4. Evaluation the performance of CNN models for different values of Q. For each value of $Q = 1, 10, 20, 30, 50, 70 \text{and} 100$, sample sets were divided into train, validation and test sets. The results reports the performance of the models on test sets. (a) AUPRC and AUROC. (b) F1-score. (c) Variation of binary cross entropy (computed using the same weighting scheme as for training), MCC and accuracy measure.