
Supplementary Information:
The SIR dynamic model of infectious disease transmission and its

analogy with chemical kinetics

S1 Early exponential growth of [I](t)

See Fig. S1 to see how the approximation of [I](t) in eqn. 9 fares.
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Figure S1: The [I](t) curve from Fig. 2 along with eqn. 9 (gray, dashed line) to show that

[I](t) exhibits, approximately, exponential growth in the early stage of the epidemic. The

fraction of the population that is infectious, [I](t), is shown on both a (a) linear and (b) log

scale.
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S2 An alternative visualization of SIR model dynamics

Fig. S2 presents an alternative visualization of SIR model dynamics that emphasizes [S](t)+

[I](t) + [R](t) = 1 for all t > 0.
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Figure S2: Numerical approximation of the solution to the SIR model in eqns. 1-3 and initial

conditions in eqns 6-8. At any given time t, the proportion of the panel colored green, red,

and blue, respectively, represents the fraction of the population in the susceptible, infectious,

and removed compartment.
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