CONTENTS:

1 Overview .. 3
 1.1 Publications .. 3
 1.2 Description of the package functionality .. 3
 1.3 Versions change log .. 3

2 Getting Started .. 7
 2.1 Installation .. 7
 2.2 Loading the package .. 7

3 User Functions .. 9
 3.1 Primary tools ... 10
 3.2 Extraction tools .. 13
 3.3 Visualization tools .. 16

4 Core class .. 29

5 Visualization functions API ... 47
 5.1 Cell type markers pie plot .. 47
 5.2 Projection plot ... 48
 5.3 Marker subplots ... 48
 5.4 Quality control histogram plot .. 49
 5.5 Histogram null distribution plot ... 50
 5.6 Sankey diagram .. 52
 5.7 Stacked bar plot .. 53
 5.8 Annotation Results Matrix plot ... 53
 5.9 Marker expression plot ... 55
 5.10 t-test plot ... 55
 5.11 Plot of new markers ... 56

6 Generic functions ... 57

7 Dependencies ... 59

8 Data preparation ... 61
 8.1 Output from kallisto-bustools (kp-python) ... 61
 8.2 Output from CellRanger .. 62
 8.3 Import from kallisto-bustools (kp-python) ... 63
 8.4 Import from CellRanger .. 63
 8.5 Function readMTXdata ... 63
 8.6 Human Cell Atlas tools ... 64
Identification of hematological cell types from heterogeneous single cell RNA-seq data.

1.1 Publications

Identification of hematological cell types from heterogeneous single cell RNA-seq data.

1.2 Description of the package functionality

The main class of DigitalCellSorter. The class includes tools for:

1. **Pre-preprocessing** of single cell RNA sequencing data
2. Quality control
3. Batch effects correction
4. Cells anomaly score evaluation
5. Dimensionality reduction
6. Clustering
7. Annotation of cell types
8. Visualization
9. Post-processing

1.3 Versions change log

- **1.3.7**
 - Added a function to import data from kallisto-bustools and cellranger
 - Updated documentation
- **1.3.6**
 - Added quick-demo materials
- **1.3.5**
• Miscellaneous code improvements and bug fixes

• 1.3.4.0-1.3.4.11
 • Integrated plotly offline figure saving (when orca is unavailable)
 • Added Quality Control pre-cut

• 1.3.2
 • Added Hopfield landscape visualization capability
 • Added network of underlying biological gene-gene interaction to the Hopfield annotation scheme

• 1.3.1
 • Minor API modifications

• 1.3.0
 • Modified pDCS algorithm for cell type identification to account for markers that should not be expressed in a given cell type (negative markers)
 • Modified pDCS celltype/marker matrix normalization
 • Modified pDCS algorithm account for low quality scores
 • Added Hopfield classifier for cell type annotation
 • Added ratio method for cell type annotation
 • Added options for consensus cell type annotation
 • Added cell markers pie summary function and plot
 • Added t-test for individual gene plot
 • Added several new user functions, for efficient and flexible extraction of cells, genes, clusters, etc.
 • Added anomaly score calculation and visualization
 • Refactored function for extraction of new markers based on cell type annotations to separate it from function process() of class DigitalCellSorter
 • Optimized implementation (for higher performance) of various function of this package
 • Detailed visualization functions API
 • Incorporated different clustering methods in addition to the widely-utilized hierarchical clustering
 • Incorporated several types of high-dimensional data projection methods, such as efficient t-SNE, UMAP and simple PCA components.
 • Extended options for input data format
 • Included a set of functions to load data from Human Cell Atlas (HCA) and prepare it for processing

• 1.2.3
 • API updates, documentation updates

• 1.2.1
 • Minor updates, reshaped DigitalCellSorter into a stand-alone package

• 1.2.0
 • More features, better runtime efficiency

• 1.1
– Updated method, signature matrices

• 1.0

– First Release
GETTING STARTED

These instructions will get you a copy of the project up and running on your machine for data analysis, development or testing purposes.

2.1 Installation

Install of the latest release of DigitalCellSorter:

```
$ pip install DigitalCellSorter
```

For detailed instructions and other ways to install DigitalCellSorter as well as list of optional packages and instructions on how to install them see Prerequisites section at https://github.com/sdomanskyi/DigitalCellSorter

2.2 Loading the package

In your script import the package:

```
import DigitalCellSorter
```

Create an instance of class DigitalCellSorter. Here, for simplicity, we use Default parameter values:

```
DCS = DigitalCellSorter.DigitalCellSorter()
```
User functions from DigitalCellSorter.core.DigitalCellSorter class.

Note: All of the tools listed below in this section are intended to use from an instance of a DigitalCellSorter class. For example:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.dataName = 'my_data_name'
DCS.saveDir = os.path.join(os.path.dirname(__file__), 'output', DCS.dataName, '')
data = DCS.prepare(raw_data)
DCS.process(DCS.prepare(data))
DCS.makeIndividualGeneExpressionPlot('CCL5')
DCS.makeIndividualGeneTtestPlot('CCL5', analyzeBy='celltype')
cells = DCS.getCells(celltype='T cell')
DCS.makeAnomalyScoresPlot(cells)
# ...
```

Direct use of function from where they are stored may result in undefined behavior.

Description of the package functionality

The main class of DigitalCellSorter. The class includes tools for:

1. **Pre-preprocessing** of single cell RNA sequencing data
2. **Quality control**
3. **Batch effects correction**
4. **Cells anomaly score evaluation**
5. **Dimensionality reduction**
6. **Clustering**
7. **Annotation of cell types**
8. **Visualization**
9. **Post-processing**
3.1 Primary tools

Primary tools are used for pre-processing of the input data, quality control, batch correction, dimensionality reduction, clustering and cell type annotation.

Note: We recommend to use only functions `prepare()`, `process()`, and `visualize()` of the Primary tools. All processing workflow is contained within `process()`. If you wish to modify the workflow use the other components of the Primary tools, such as `cluster()`, `project()` etc.

References to DigitalCellSorter class:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>prepare(obj)</code></td>
<td>Prepare pandas.DataFrame for input to function <code>process()</code>. If input is pd.DataFrame validate the input whether it has correct structure.</td>
</tr>
<tr>
<td><code>convert([nameFrom, nameTo])</code></td>
<td>Convert index to hugo names, if any names in the index are duplicated, remove duplicates</td>
</tr>
<tr>
<td><code>clean()</code></td>
<td>Clean pandas.DataFrame: validate index, remove index duplicates, replace missing with zeros, remove all-zero rows and columns</td>
</tr>
<tr>
<td><code>project([PCAonly, do_fast_tsne])</code></td>
<td>Project pandas.DataFrame to lower dimensions</td>
</tr>
<tr>
<td><code>cluster()</code></td>
<td>Cluster PCA-reduced data into a desired number of clusters</td>
</tr>
<tr>
<td><code>annotate([mapNonexpressedCelltypes])</code></td>
<td>Produce cluster voting results, annotate cell types, and update marker expression with cell type labels</td>
</tr>
<tr>
<td><code>process([dataIsNormalized, cleanData])</code></td>
<td>Process data before using any annotation of visualization functions</td>
</tr>
<tr>
<td><code>visualize()</code></td>
<td>Aggregate of visualization tools of this class.</td>
</tr>
</tbody>
</table>

Function `prepare()`: prepare input data for function `process()`

DigitalCellSorter.**prepare**(obj)

Prepare pandas.DataFrame for input to function `process()`. If input is pd.DataFrame validate the input whether it has correct structure.

Parameters:

- **obj**: str, pandas.DataFrame, pandas.Series Expression data in a form of pandas.DataFrame, pandas.Series, or name and path to a csv file with data

Returns: None

Usage:

```python
dCS = DigitalCellSorter.DigitalCellSorter()
dCS.prepare('data.csv')
```

Function `convert()`: convert gene index of a DataFrame prepared by function `prepare()` from one naming
DigitalCellSorter Documentation, Release 1.3.7

Function `convert(nameFrom=None, nameTo=None, **kwargs)`

Convert index to hugo names, if any names in the index are duplicated, remove duplicates

Parameters:
- `nameFrom`: str, Default ‘alias’ Gene name type to convert from
- `nameTo`: str, Default ‘hugo’ Gene name type to convert to
- Any parameters that function ‘mergeIndexDuplicates’ can accept

Returns: None

 DCS.convertIndex()

Function `clean()`

Clean pandas.DataFrame: validate index, remove index duplicates, replace missing with zeros, remove all-zero rows and columns

Parameters: None

Returns: None

 DCS.clean()

Function `normalize(median=None)`

Normalize pandas.DataFrame: rescale all cells, log-transform data, remove constant genes, sort index

Parameters:
- `median`: float, Default None Scale factor, if not provided will be computed as median across all cells in data

Returns: None

 DCS.normalize()

Function `project()`

Project data to lower dimensions

3.1. Primary tools

11
DigitalCellSorter.\texttt{project} ($\texttt{PCAonly=False, do_fast_tsne=True}$)

Project pandas.DataFrame to lower dimensions

Parameters:

- $\texttt{PCAonly}$: boolean, Default False
 Perform Principal component analysis only

- $\texttt{do_fast_tsne}$: boolean, Default True
 Do FI-tSNE instead of “exact” tSNE This option is ignored if layout is not ‘TSNE’

Returns:

- \texttt{tuple}
 Processed data

Usage:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
xPCA, PCs, tSNE = DCS.project()
```

Function \texttt{cluster}(): cluster PCA-reduced data into a desired number of clusters

DigitalCellSorter.\texttt{cluster}()

Cluster PCA-reduced data into a desired number of clusters

Parameters: None

Returns: None

Usage:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.cluster()
```

Function \texttt{annotate}(): produce cluster voting results

DigitalCellSorter.\texttt{annotate} ($\texttt{mapNonexpressedCelltypes=True}$)

Produce cluster voting results, annotate cell types, and update marker expression with cell type labels

Parameters:

- $\texttt{mapNonexpressedCelltypes}$: boolean, Default True
 If True then cell types coloring will be consistent across all datasets, regardless what cell types are annotated in all datasets for a given input marker list file.

Returns:

- \texttt{dictionary}
 Voting results, a dictionary in form of: {cluster label: assigned cell type}

Usage:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
results = DCS.annotate(df_markers_expr, df_marker_cell_type)
```

Function \texttt{process}(): main function

Chapter 3. User Functions
DigitalCellSorter.process (dataIsNormalized=False, cleanData=True)
Process data before using any annotation of visualization functions

Parameters:
 dataIsNormalized: boolean, Default False Whether DCS.df_expr is normalized or not
 cleanData: boolean, Default True Whether to clean the data

Returns: None
 DCS.process()

Function visualize(): make all default plots of to visualize results of function process()

DigitalCellSorter.visualize()
Aggregate of visualization tools of this class.

Parameters: None
Returns: None
 DCS.process()
 DCS.visualize()

3.2 Extraction tools

Warning: Use these functions only after process()

References to DigitalCellSorter class:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getExprOfGene(gene[, analyzeBy])</td>
<td>Get expression of a gene.</td>
</tr>
<tr>
<td>getExprOfCells(cells)</td>
<td>Get expression of a set of cells.</td>
</tr>
<tr>
<td>getCells([celltype, clusterIndex, clusterName])</td>
<td>Get cell annotations in a form of pandas.Series</td>
</tr>
<tr>
<td>getAnomalyScores(trainingSet, testingSet[, ...])</td>
<td>Function to get anomaly score of cells based on some reference set</td>
</tr>
<tr>
<td>getNewMarkerGenes([cluster, top, ...])</td>
<td>Extract new marker genes based on the cluster annotations</td>
</tr>
<tr>
<td>getIndexOfGoodQualityCells([QCplotsSubDir])</td>
<td>Get index of sells that satisfy the QC criteria</td>
</tr>
<tr>
<td>getCountsDataframe(se1, se2[, tagForMissing])</td>
<td>Get a pandas.DataFrame with cross-counts (overlaps) between two pandas.Series</td>
</tr>
</tbody>
</table>

Function getExprOfGene(): Get expression of a gene

DigitalCellSorter.getExprOfGene(gene, analyzeBy='cluster')
Get expression of a gene. Run this function only after function process()

Parameters:

- **cells**: `pandas.MultiIndex` Index of cells of interest
- **analyzeBy**: `str`, Default ‘cluster’ What level of labels to include. Other possible options are ‘label’ and ‘celltype’

Returns:

- `pandas.DataFrame` With expression of the cells of interest

Usage:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.getExprOfGene(‘SDC1’)
```

Function `getExprOfCells()`: Get expression of a set of cells

```
DigitalCellSorter.getExprOfCells(cells)
```

Get expression of a set of cells. Run this function only after function process()

Parameters:

- **cells**: `pandas.MultiIndex` 2-level Index of cells of interest, must include levels ‘batch’ and ‘cell’

Returns:

- `pandas.DataFrame` With expression of the cells of interest

Usage:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.getExprOfCells(cells)
```

Function `getCells()`: get cells index by celltype, clusterIndex or clusterName

```
DigitalCellSorter.getCells(celltype=None, clusterIndex=None, clusterName=None)
```

Get cell annotations in a form of pandas.Series

Parameters:

- **celltype**: `str`, Default None Cell type to extract
- **clusterIndex**: `int`, Default None Cell type to extract
- **clusterName**: `str`, Default None Cell type to extract

Returns:

- `pandas.MultiIndex` Index of labelled cells
DCS.process()
labels = DCS.getCells()

Function getAnomalyScores(): get anomaly score of cells based on some reference set

DigitalCellSorter.getAnomalyScores(trainingSet, testingSet, printResults=False)
Function to get anomaly score of cells based on some reference set

Parameters:

- **trainingSet**: pandas.DataFrame With cells to trail isolation forest on
- **testingSet**: pandas.DataFrame With cells to score
- **printResults**: boolean, Default False Whether to print results

Returns:

- **1d numpy.array** Anomaly score(s) of tested cell(s)

cutoff = DCS.getAnomalyScores(df_expr.iloc[:, 5:], df_expr.iloc[:, :5])

Function getNewMarkerGenes(): extract new markers from the annotated clusters and produce plot of the new markers

DigitalCellSorter.getNewMarkerGenes(cluster=None, top=100, zScoreCutoff=None, removeUnknown=False, **kwargs)
Extract new marker genes based on the cluster annotations

Parameters:

- **cluster**: int, Default None Cluster #, if provided genes of only this culster will be returned
- **top**: int, Default 100 Upper bound for number of new markers per cell type
- **zScoreCutoff**: float, Default 0.3 Lower bound for a marker z-score to be significant
- **removeUnknown**: boolean, Default False Whether to remove type “Unknown”

Any parameters that function ‘makePlotOfNewMarkers’ can accept

Returns: None

DCS.extractNewMarkerGenes()

Function getIndexOfGoodQualityCells(): Get index of sells that satisfy the QC criteria
DigitalCellSorter.getIndexOfGoodQualityCells(QCplotsSubDir='QC_plots', **kwargs)

Get index of cells that satisfy the QC criteria

Parameters:

- count_depth_cutoff: float, Default 0.5 Fraction of median to take as count depth cutoff
- number_of_genes_cutoff: float, Default 0.5 Fraction of median to take as number of genes cutoff
- mitochondrial_genes_cutoff: float, Default 3.0 The cutoff is median + standard_deviation * this_parameter

Any parameters that function 'makeQualityControlHistogramPlot' can accept

Returns:

- pandas.Index Index of cells

Usage:

DCS = DigitalCellSorter.DigitalCellSorter()
index = DCS.getIndexOfGoodQualityCells()

Function getCountsDataframe(): Get a pandas.DataFrame with cross-counts (overlaps) between two pandas.Series

DigitalCellSorter.getCountsDataframe(se1, se2, tagForMissing='N/A')

Get a pandas.DataFrame with cross-counts (overlaps) between two pandas.Series

Parameters:

- se1: pandas.Series Series with the first set of items
- se2: pandas.Series Series with the second set of items
- tagForMissing: str, Default ‘N/A’ Label to assign to non-overlapping items

Returns:

- pandas.DataFrame Contains counts

Usage:

DCS = DigitalCellSorter.DigitalCellSorter()
df = DCS.getCountsDataframe(se1, se2)

3.3 Visualization tools

Warning: Use these functions only after process()

References to DigitalCellSorter class:

- makeProjectionPlotAnnotated(**kwargs) Produce projection plot colored by cell types

Continued on next page
Table 3 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>makeProjectionPlotByBatches(**kwargs)</code></td>
<td>Produce projection plot colored by batches</td>
</tr>
<tr>
<td><code>makeProjectionPlotByClusters(**kwargs)</code></td>
<td>Produce projection plot colored by clusters</td>
</tr>
<tr>
<td><code>makeProjectionPlotsQualityControl(**kwargs)</code></td>
<td>Produce Quality Control projection plots</td>
</tr>
<tr>
<td><code>makeMarkerSubplots(**kwargs)</code></td>
<td>Produce subplots on each marker and its expression on all clusters</td>
</tr>
<tr>
<td><code>makeAnomalyScoresPlot([cells, suffix, noPlot])</code></td>
<td>Make anomaly scores plot</td>
</tr>
<tr>
<td><code>makeIndividualGeneTtestPlot(gene, analyzeBy)</code></td>
<td>Produce individual gene t-test plot of the two-tailed p-value.</td>
</tr>
<tr>
<td><code>makeIndividualGeneExpressionPlot(genes, **kwargs)</code></td>
<td>Produce individual gene expression plot on a 2D layout</td>
</tr>
</tbody>
</table>

References to VisualizationFunctions class:

- `makeQualityControlHistogramPlot(*args, **kwargs)`
- `makeHistogramNullDistributionPlot(*args, ...)`
- `makeAnnotationResultsMatrixPlot(*args, **kwargs)`
- `makeMarkerExpressionPlot(*args, **kwargs)`
- `makeStackedBarplot(*args, **kwargs)`
- `makeSankeyDiagram(*args, **kwargs)`

Function `makeProjectionPlotAnnotated()`: Produce t-SNE plot colored by cell types

```python
digitalcellsorter.DigitalCellSorter().makeProjectionPlotAnnotated(**kwargs)
```

Parameters: Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:

```python
dcs = digitalcellsorter.DigitalCellSorter()
dcs.process()
dcs.makeProjectionPlotAnnotated()
```

Example output:

Function `makeProjectionPlotByBatches()`: Produce t-SNE plot colored by batches

```python
digitalcellsorter.DigitalCellSorter().makeProjectionPlotByBatches(**kwargs)
```

Parameters: Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:

```python
dcs = digitalcellsorter.DigitalCellSorter()
dcs.process()
```
DCS.makeProjectionPlotByBatches()

Example output:

Function `makeProjectionPlotByClusters()`: Produce t-SNE plot colored by clusters

`DigitalCellSorter.makeProjectionPlotByClusters(**kwargs)`

Produce projection plot colored by clusters

- **Parameters:** Any parameters that function `makeProjectionPlot` can accept
- **Returns:** None

DCS.process()

DCS.makeProjectionPlotByClusters()

Example output:

```
Function makeQualityControlHistogramPlot(): Produce Quality Control histogram plots

DigitalCellSorter.makeQualityControlHistogramPlot(*args, **kwargs)
```

3.3. Visualization tools 19
Example output:

Function `makeProjectionPlotsQualityControl()`: Produce Quality Control t-SNE plots

DigitalCellSorter.makeProjectionPlotsQualityControl(**kwargs)

Produce Quality Control projection plots

Parameters: Any parameters that function ‘makeProjectionPlot’ can accept
Returns: None

Usage:
```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.makeProjectionPlotsQualityControl()
```

Example output:
Function `makeMarkerSubplots()`: Produce subplots on each marker and its expression on all clusters

DigitalCellSorter.makeMarkerSubplots(**kwargs)

Produce subplots on each marker and its expression on all clusters

Parameters: Any parameters that function ‘internalMakeMarkerSubplots’ can accept

Returns: None

 DCS.process()
 DCS.makeMarkerSubplots()

Example output:
Function `makeAnomalyScoresPlot()`: Make anomaly scores plot

DigitalCellSorter.makeAnomalyScoresPlot (cells='All', suffix='', noPlot=False, **kwargs)
Make anomaly scores plot

Parameters:
- **cells**: pandas.MultiIndex, Default ‘All’ Index of cells of interest
- Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
cells = DCS.getCells(celltype='T cell')
DCS.makeAnomalyScoresPlot(cells)

Example output:

Function `makeIndividualGeneTtestPlot()`: Produce individual gene t-test plot of the two-tailed p-value

DigitalCellSorter.makeIndividualGeneTtestPlot (gene, analyzeBy='label', **kwargs)
Produce individual gene t-test plot of the two-tailed p-value.

Parameters:
- **gene**: str Name of gene of interest
- **analyzeBy**: str, Default ‘label’ What level of labels to include. Other possible options are ‘label’ and ‘celltype’
- Any parameters that function ‘makeTtestPlot’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.makeIndividualGeneTtestPlot('SDC1')

Example output:
Function `makeIndividualGeneExpressionPlot()`: Produce individual gene expression plot on a 2D layout

DigitalCellSorter.makeIndividualGeneExpressionPlot *(genes, **kwargs)*

Produce individual gene expression plot on a 2D layout

Parameters:

- **gene**: `str, or list-like`
 Name of gene of interest. E.g. ‘CD4, CD33’, ‘PECAM1’, ['CD4’, ‘CD33’]
- **hideClusterLabels**: `boolean, Default False`
 Whether to hide the clusters labels
- **outlineClusters**: `boolean, Default True`
 Whether to outline the clusters with circles

Any parameters that function ‘internalMakeMarkerSubplots’ can accept

Returns: None

Usage:

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.makeIndividualGeneExpressionPlot('CD4')
```

Example output:
Function `makeHistogramNullDistributionPlot()`: Produce histogram plot of the voting null distributions

```python
DigitalCellSorter.makeHistogramNullDistributionPlot(*args, **kwargs)
```

Example output:
Function `makeAnnotationResultsMatrixPlot()`: Produce voting results voting matrix plot

```python
DigitalCellSorter.makeAnnotationResultsMatrixPlot(*args, **kwargs)
```

Example output:

Function `makeMarkerExpressionPlot()`: Produce image on marker genes and their expression on all clusters

```python
DigitalCellSorter.makeMarkerExpressionPlot(*args, **kwargs)
```

Example output:

Function `makeStackedBarplot()`: Produce stacked barplot with cell fractions

```python
DigitalCellSorter.makeStackedBarplot(*args, **kwargs)
```

Example output:

Function `makeSankeyDiagram()`: Make a Sankey diagram, also known as ‘river plot’ with two groups of nodes

```python
DigitalCellSorter.makeSankeyDiagram(*args, **kwargs)
```

Example output:
Submodule core

Description of the package functionality

The main class of DigitalCellSorter. The class includes tools for:

1. **Pre-preprocessing** of single cell RNA sequencing data
2. Quality control
3. Batch effects correction
4. Cells anomaly score evaluation
5. Dimensionality reduction
6. Clustering
7. Annotation of cell types
8. Visualization
9. Post-processing
class DigitalCellSorter (df_expr=None, dataName='dataName', species='Human', geneNamesType='alias', geneListFileName=None, mitochondrialGenes=None, sigmaOverMeanSigma=0.01, nClusters=10, nFineClusters=3, doFineClustering=True, splitFineClusters=False, subSplitSize=100, medianScaleFactor=10000, minSizeForFineClustering=50, clusteringFunction=<class 'sklearn.cluster.agglomerative.AgglomerativeClustering'>, nComponentsPCA=200, nSamples_pDCS=3000, nSamples_Hopfield=200, saveDir='', makeMarkerSubplots=False, availableCPUsCount=1, zScoreCutoff=0.3, subclusteringName=None, doQualityControl=True, doBatchCorrection=False, makePlots=True, useUnderlyingNetwork=True, minimumNumberOfMarkersPerCelltype=10, nameForUnknown='Unassigned', nameForLowQC='Failed QC', matplotlibMode='Agg', countDepthCutoffQC=0.5, numberOfGenesCutoffQC=0.5, mitochondrialGenesCutoffQC=1.5, excludedFromQC=None, countDepthPrecutQC=500, numberOfGenesPrecutQC=250, precutQC=False, minSubclusterSize=25, thresholdForUnknown_pDCS=0.0, thresholdForUnknown_Hopfield=0.0, thresholdForUnknown_ratio=0.2, layout='TSNE', safePlotting=True, HopfieldTemperature=0.1, annotationMethod='ratio-pDCS-Hopfield', useNegativeMarkers=True, removeLowQualityScores=True, updateConversionDictFile=True, verbose=1)

Bases: DigitalCellSorter.VisualizationFunctions.VisualizationFunctions

Class of Digital Cell Sorter with methods for processing single cell RNA-seq data. Includes analyses and visualization tools.

Parameters:

- df_expr: pandas.DataFrame, Default None Gene expression in a form of a table, where genes are rows, and cells/batches are columns
- dataName: str, Default ‘dataName’ Name used in output files
- geneNamesType: str, Default ‘alias’ Input gene name convention
- geneListFileName: str, Default None Name of the marker genes file
- mitochondrialGenes: list, Default None List of mitochondrial genes to use in quality control
- sigmaOverMeanSigma: float, Default 0.1 Threshold to consider a gene constant
- nClusters: int, Default 10 Number of clusters
- nFineClusters: int, Default 3 Number of fine clusters to determine with Spectral Co-clustering routine. This option is ignored if doFineClustering is False.
- doFineClustering: boolean, Default True Whether to do fine clustering or not
- minSizeForFineClustering: int, Default 50 Minimum number of cells required to do fine clustering of a cluster. This option is ignored if doFineClustering is False.
- clusteringFunction: function, Default AgglomerativeClustering Clustering function to use. Other options: KMeans, [k_neighbors:40], etc. Note: the function should have .fit method and same input and output. For Network-based clustering pass a dictionary {‘k_neighbors’:40, metric:’euclidean’, ‘clusterExpression’:True}, this way the best number of clusters will be determined automatically
- nComponentsPCA: int, Default 200 Number of pca components
- nSamples_pDCS: int, Default 3000 Number of random samples in distribution for pDCS annotation method
- nSamples_Hopfield: int, Default 500 Number of repetitions for Hopfield annotation method
saveDir: str, Default os.path.join('') Directory for output files

makeMarkerSubplots: boolean, Default False Whether to make subplots on markers

makePlots: boolean, Default True Whether to make all major plots

availableCPUsCount: int, Default min(12, os.cpu_count()) Number of CPUs used in pDCS method

zScoreCutoff: float, Default 0.3 Z-Score cutoff when setting expression of a cluster as significant

thresholdForUnknown: float, Default 0.3 Threshold when assigning label “Unknown”. This option is used only with a combination of 2 or more annotation methods

thresholdForUnknown_pDCS: float, Default 0.1 Threshold when assigning label “Unknown” in pDCS method

thresholdForUnknown_ratio: float, Default 0.1 Threshold when assigning label “Unknown” in ratio method

thresholdForUnknown_Hopfield: float, Default 0.1 Threshold when assigning label “Unknown” in Hopfield method

annotationMethod: str, Default ‘ratio-pDCS-Hopfield’ Method to use for annotation of cell types to clusters. Options are: ‘pDCS’: main DCS voting scheme with null testing
 ‘ratio’: simple voting score
 ‘Hopfield’: Hopfield Network classifier
 ‘pDCS-ratio’: ‘pDCS’ adjusted with ‘ratio’
 ‘pDCS-Hopfield’: ‘pDCS’ adjusted with ‘Hopfield’
 ‘ratio-Hopfield’: ‘ratio’ adjusted with ‘Hopfield’
 ‘pDCS-ratio-Hopfield’: ‘pDCS’ adjusted with ‘ratio’ and ‘Hopfield’

subclusteringName: str, Default None Parameter used in for certain labels on plots

doQualityControl: boolean, Default True Whether to remove low quality cells

doBatchCorrection: boolean, Default False Whether to correct data for batches

minimumNumberOfMarkersPerCelltype: int, Default 10 Minimum number of markers per cell type to keep that cell type in annotation options

nameForUnknown: str, Default ‘Unassigned’ Name to use for clusters where label assignment yielded uncertain results

nameForLowQC: str, Default ‘Failed QC’ Name to use for cell that do not pass quality control

 ‘PCA’: use two largest principal components
 ‘UMAP’: use uniform manifold approximation, McInnes, L., Healy, J., UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018
 df_data = DCS.Clean(df_data)

Methods:

KeyInFile(key, file) Check is a key exists in a HDF file.
alignSeries(se1, se2, tagForMissing) Align two pandas.Series
annotate([mapNonexpressedCelltypes]) Produce cluster voting results, annotate cell types, and update marker expression with cell type labels
annotateWith_Hopfield_Scheme(...) Produce cluster annotation results
annotateWith_pDCS_Scheme(df_markers_expr, ...) Produce cluster annotation results
annotateWith_ratio_Scheme(df_markers_expr, ...) Produce cluster annotation results
batchEffectCorrection([method]) Batch effect correction.
calculateQCmeasures() Calculate Quality Control (QC) measures
calculateV(args) Calculate the voting scores (celltypes by clusters)
clean() Clean pandas.DataFrame: validate index, remove index duplicates, replace missing with zeros, remove all-zero rows and columns
cluster() Cluster PCA-reduced data into a desired number of clusters
convert([nameFrom, nameTo]) Convert index to hugo names, if any names in the index are duplicated, remove duplicates
convertColormap(colormap) Convert colormap from the form (1.,1.,1.,1.) to ‘rgba(255,255,255,1.)’
createReverseDictionary(inputDictionary) Efficient way to create a reverse dictionary from a dictionary.
getAnomalyScores(trainingSet, testingSet[, ...]) Function to get anomaly score of cells based on some reference set
cells([celltype, clusterIndex, clusterName]) Get cell annotations in a form of pandas.Series
countsDataframe(se1, se2[, tagForMissing]) Get a pandas.DataFrame with cross-counts (overlaps) between two pandas.Series
gexprOfCells(cells) Get expression of a set of cells.
gexprOfGene(gene[, analyzeBy]) Get expression of a gene.
gtHugoName(gene[, printAliases]) Get gene hugo name(s).
gindexOfGoodQualityCells([QCplotsSubDir]) Get index of sells that satisfy the QC criteria
gnewMarkerGenes([cluster, top, ...]) Extract new marker genes based on the cluster annotations
getQualityControlCutoff(se, cutoff[, ...]) Function to calculate QC quality cutoff
getSubnetworkOfPCN(subnetworkGenes[, ...]) Extract subnetwork of PCN network
loadAnnotatedLabels([detailed, ...]) Load cell annotations resulted from function ‘annotate’
loadExpressionData() Load processed expression data from the internal HDF storage.
makeAnomalyScoresPlot([cells, suffix, noPlot]) Make anomaly scores plot
makeHopfieldLandscapePlot([...]) Make and plot Hopfield landscape
makeIndividualGeneExpressionPlot(genes, **kwargs) Produce individual gene expression plot on a 2D layout
Continued on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>makeIndividualGeneTtestPlot(gene, analyzeBy)</td>
<td>Produce individual gene t-test plot of the two-tailed p-value.</td>
</tr>
<tr>
<td>makeMarkerSubplots(**kwargs)</td>
<td>Produce subplots on each marker and its expression on all clusters.</td>
</tr>
<tr>
<td>makeProjectionPlotAnnotated(**kwargs)</td>
<td>Produce projection plot colored by cell types.</td>
</tr>
<tr>
<td>makeProjectionPlotByBatches(**kwargs)</td>
<td>Produce projection plot colored by batches.</td>
</tr>
<tr>
<td>makeProjectionPlotByClusters(**kwargs)</td>
<td>Produce projection plot colored by clusters.</td>
</tr>
<tr>
<td>makeProjectionPlotsQualityControl(**kwargs)</td>
<td>Produce Quality Control projection plots.</td>
</tr>
<tr>
<td>mergeIndexDuplicates(df_expr, method, ...)</td>
<td>Merge index duplicates.</td>
</tr>
<tr>
<td>normalize([median])</td>
<td>Normalize pandas.DataFrame: rescale all cells, log-transform data, remove constant genes, sort index</td>
</tr>
<tr>
<td>prepare(obj)</td>
<td>Prepare pandas.DataFrame for input to function process() If input is pd.DataFrame validate the input whether it has correct structure.</td>
</tr>
<tr>
<td>prepareMarkers([expressedGenes, ...])</td>
<td>Get dictionary of markers for each cell types.</td>
</tr>
<tr>
<td>process([dataIsNormalized, cleanData])</td>
<td>Process data before using any annotation of visualization functions.</td>
</tr>
<tr>
<td>project([PCAonly, do_fast_tsne])</td>
<td>Project pandas.DataFrame to lower dimensions.</td>
</tr>
<tr>
<td>propagateHopfield([sigma, xi, T, tmax, ...])</td>
<td>Function is used internally to propagate Hopfield network over a set number of time steps.</td>
</tr>
<tr>
<td>qualityControl(**kwargs)</td>
<td>Remove low quality cells.</td>
</tr>
<tr>
<td>readMarkerFile([mergeFunction, mergeCut-off])</td>
<td>Read markers file, prepare markers.</td>
</tr>
<tr>
<td>recordAnnotationResults(df_marker_cell_type, ...)</td>
<td>Record cell type annotation results to spreadsheets.</td>
</tr>
<tr>
<td>recordExpressionData()</td>
<td>Record expression data from the internal HDF storage.</td>
</tr>
<tr>
<td>visualize()</td>
<td>Aggregate of visualization tools of this class.</td>
</tr>
<tr>
<td>zScoreOfSeries(se)</td>
<td>Calculate z-score of pandas.Series and modify the Series in place.</td>
</tr>
</tbody>
</table>

Attributes:

- df_expr
- fileHDFpath
- geneListFileName
- saveDir

```python
property saveDir
property fileHDFpath
property df_expr
property geneListFileName
prepare(obj)
    Prepare pandas.DataFrame for input to function process() If input is pd.DataFrame validate the input whether it has correct structure.

Parameters:

- obj: str, pandas.DataFrame, pandas.Series Expression data in a form of pandas.DataFrame, pan-
```
Das.Series, or name and path to a csv file with data

Returns: None

Usage:
```python
dCS = DigitalCellSorter.DigitalCellSorter()
dCS.preapre('data.csv')
```

convert *(nameFrom=None, nameTo=None, **kwargs)*
Convert index to hugo names, if any names in the index are duplicated, remove duplicates

Parameters:
- **nameFrom:** str, Default ‘alias’ Gene name type to convert from
- **nameTo:** str, Default ‘hugo’ Gene name type to convert to
- Any parameters that function ‘mergeIndexDuplicates’ can accept

Returns: None

Usage:
```python
dCS = DigitalCellSorter.DigitalCellSorter()
dCS.convertIndex()
```

clean
Clean pandas.DataFrame: validate index, remove index duplicates, replace missing with zeros, remove all-zero rows and columns

Parameters: None

Returns: None

Usage:
```python
dCS = DigitalCellSorter.DigitalCellSorter()
dCS.clean()
```

normalize *(median=None)*
Normalize pandas.DataFrame: rescale all cells, log-transform data, remove constant genes, sort index

Parameters:
- **median:** float, Default None Scale factor, if not provided will be computed as median across all cells in data

Returns: None

Usage:
```python
dCS = DigitalCellSorter.DigitalCellSorter()
dCS.normalize()
```

project *(PCAonly=False, do_fast_tsne=True)*
Project pandas.DataFrame to lower dimensions

Parameters:
- **PCAonly:** boolean, Default False Perform Principal component analysis only
- **do_fast_tsne:** boolean, Default True Do FI-tSNE instead of “exact” tSNE This option is ignored if layout is not ‘TSNE’

Returns:
- **tuple** Processed data

Usage:
```python
dCS = DigitalCellSorter.DigitalCellSorter()
xPCA, PCs, tSNE = DCS.project()```
cluster()  
Cluster PCA-reduced data into a desired number of clusters  

Parameters: None  
Returns: None  
Usage:  
DCS = DigitalCellSorter.DigitalCellSorter()  
DCS.cluster()  

annotate(mapNonexpressedCelltypes=True)  
Produce cluster voting results, annotate cell types, and update marker expression with cell type labels  

Parameters:  
  
  mapNonexpressedCelltypes: boolean, Default True  
  If True then cell types coloring will be consistent across all datasets, regardless what cell types are annotated in all datasets for a given input marker list file.  

Returns:  
  dictionary  
  Voting results, a dictionary in form of: {cluster label: assigned cell type}  
Usage:  
DCS = DigitalCellSorter.DigitalCellSorter()  
results = DCS.annotate(df_markers_expr, df_marker_cell_type)  

process(dataIsNormalized=False, cleanData=True)  
Process data before using any annotation of visualization functions  

Parameters:  
  
  dataIsNormalized: boolean, Default False  
  Whether DCS.df_expr is normalized or not  

Returns: None  
Usage:  
DCS = DigitalCellSorter.DigitalCellSorter()  
DCS.process()  

visualize()  
Aggregate of visualization tools of this class.  

Parameters: None  
Returns: None  
Usage:  
DCS = DigitalCellSorter.DigitalCellSorter()  
DCS.process()  
DCS.visualize()  

makeProjectionPlotAnnotated(**kwargs)  
Produce projection plot colored by cell types  

Parameters: Any parameters that function `makeProjectionPlot` can accept  
Returns: None  
Usage:  
DCS = DigitalCellSorter.DigitalCellSorter()  
DCS.process()  
DCS.makeProjectionPlotAnnotated()  

makeProjectionPlotByBatches(**kwargs)  
Produce projection plot colored by batches
Parameters: Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.makeProjectionPlotByBatches()

makeProjectionPlotByClusters (**kwargs)
Produce projection plot colored by clusters

Parameters: Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.makeProjectionPlotByClusters()

makeProjectionPlotsQualityControl (**kwargs)
Produce Quality Control projection plots

Parameters: Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.makeProjectionPlotsQualityControl()

makeMarkerSubplots (**kwargs)
Produce subplots on each marker and its expression on all clusters

Parameters: Any parameters that function ‘internalMakeMarkerSubplots’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.makeMarkerSubplots()

makeAnomalyScoresPlot (cells='All', suffix='', noPlot=False, **kwargs)
Make anomaly scores plot

Parameters:

   cells: pandas.MultiIndex, Default ‘All’  Index of cells of interest

Any parameters that function ‘makeProjectionPlot’ can accept

Returns: None

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
cells = DCS.getCells(celltype='T cell')
DCS.makeAnomalyScoresPlot(cells)

makeIndividualGeneTtestPlot (gene, analyzeBy='label', **kwargs)
Produce individual gene t-test plot of the two-tailed p-value.
Parameters:

gene: str  Name of gene of interest
analyzeBy: str, Default ‘label’  What level of labels to include. Other possible options are ‘label’ and ‘celltype’

Any parameters that function ‘makeTtestPlot’ can accept

Returns: None
DCS.makeIndividualGeneTtestPlot(‘SDC1’)

makeIndividualGeneExpressionPlot (genes, **kwargs)
Produce individual gene expression plot on a 2D layout

Parameters:

gene: str, or list-like  Name of gene of interest. E.g. ‘CD4, CD33’, ‘PECAM1’, ['CD4', 'CD33']
hideClusterLabels: boolean, Default False  Whether to hide the clusters labels
outlineClusters: boolean, Default True  Whether to outline the clusters with circles

Any parameters that function ‘internalMakeMarkerSubplots’ can accept

Returns: None
DCS.makeIndividualGeneExpressionPlot(‘CD4’)

makeHopfieldLandscapePlot (meshSamplingRate=1000, plot3D=True, reuseData=False, **kwargs)
Make and plot Hopfield landscape

Parameters:

meshSamplingRate: int, Default 1000  Defines quality of sampling around attractor states
plot3D: boolean, Default False  Whether to plot 2D or 3D figure
reuseData: boolean, Default False  Whether to attempt using precalculated data.

Any parameters that function ‘HopfieldLandscapePlot’ or ‘HopfieldLandscapePlot3D’ can accept

Returns: None
Usage: DCS = DigitalCellSorter.DigitalCellSorter() DCS.makeHopfieldLandscapePlot()

getAnomalyScores (trainingSet, testingSet, printResults=False)
Function to get anomaly score of cells based on some reference set

Parameters:

trainingSet: pandas.DataFrame  With cells to train isolation forest on
testingSet: pandas.DataFrame  With cells to score
printResults: boolean, Default False  Whether to print results

Returns:

1d numpy.array  Anomaly score(s) of tested cell(s)
cutoff = DCS.getAnomalyScores(df_expr.iloc[:, 5:], df_expr.iloc[:, :5])


getHugoName (gene, printAliases=False)
Get gene hugo name(s).

Parameters:

gene: str 'hugo' or 'alias' name of a gene

Returns:

str Hugo name if found, otherwise input name

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.getHugoName('CD138')

getExprOfGene (gene, analyzeBy='cluster')
Get expression of a gene. Run this function only after function process()

Parameters:

cells: pandas.MultiIndex Index of cells of interest

analyzeBy: str, Default 'cluster' What level of labels to include. Other possible options are 'label' and 'celltype'

Returns:

pandas.DataFrame With expression of the cells of interest

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.getExprOfGene('SDC1')

getExprOfCells (cells)
Get expression of a set of cells. Run this function only after function process()

Parameters:

cells: pandas.MultiIndex 2-level Index of cells of interest, must include levels 'batch' and 'cell'

Returns:

pandas.DataFrame With expression of the cells of interest

Usage:
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.process()
DCS.getExprOfCells(cells)

getCells (celltype=None, clusterIndex=None, clusterName=None)
Get cell annotations in a form of pandas.Series

Parameters:

celltype: str, Default None Cell type to extract

clusterIndex: int, Default None Cell type to extract

clusterName: str, Default None Cell type to extract

Returns:

pandas.MultiIndex Index of labelled cells
        DCS.process()
        labels = DCS.getCells()

getIndexOfGoodQualityCells (QCplotsSubDir='QC_plots', **kwargs)
Get index of sells that satisfy the QC criteria

Parameters:

  count_depth_cutoff: float, Default 0.5 Fraction of median to take as count depth cutoff
  number_of_genes_cutoff: float, Default 0.5 Fraction of median to take as number of genes cutoff
  mitochondrial_genes_cutoff: float, Default 3.0 The cutoff is median + standard_deviation * this_parameter

Any parameters that function ‘makeQualityControlHistogramPlot’ can accept

Returns:

  pandas.Index Index of cells

        index = DCS.getIndexOfGoodQualityCells()

getQualityControlCutoff (se, cutoff, precut=1.0, mito=False, MakeHistogramPlot=True, **kwargs)
Function to calculate QC quality cutoff

Parameters:

  se: pandas.Series With data to analyze
  cutoff: float Parameter for calculating the quality control cutoff
  mito: boolean, Default False Whether the analysis of mitochondrial genes fraction
  plotPathAndName: str, Default None Text to include in the figure title and file name
  MakeHistogramPlot: boolean, Default True Whether to make a histogram plot

Any parameters that function ‘makeQualityControlHistogramPlot’ can accept

Returns:

  float Cutoff value

        cutoff = DCS.getQualityControlCutoff(se)

getCountsDataframe (se1, se2, tagForMissing='N/A')
Get a pandas.DataFrame with cross-counts (overlaps) between two pandas.Series

Parameters:

  se1: pandas.Series Series with the first set of items
  se2: pandas.Series Series with the second set of items
  tagForMissing: str, Default ‘N/A’ Label to assign to non-overlapping items

Returns:

  pandas.DataFrame Contains counts
    df = DCS.getCountsDataframe(se1, se2)

getNewMarkerGenes (cluster=None, top=100, zScoreCutoff=None, removeUnknown=False, **kwargs)
Extract new marker genes based on the cluster annotations

Parameters:
    cluster: int, Default None  Cluster #, if provided genes of only this cluster will be returned
    top: int, Default 100  Upper bound for number of new markers per cell type
    zScoreCutoff: float, Default 0.3  Lower bound for a marker z-score to be significant
    removeUnknown: boolean, Default False  Whether to remove type “Unknown”

Any parameters that function ‘makePlotOfNewMarkers’ can accept

Returns: None
    DCS.extractNewMarkerGenes()

classmethod calculateV (args)
Calculate the voting scores (celltypes by clusters)

Parameters:
    args: tuple  Tuple of sub-arguments
        df_M: pandas.DataFrame  Marker cell type DataFrame
        df_X: pandas.DataFrame  Markers expression DataFrame
        cluster_index: 1d numpy.array  Clustering index
        cutoff: float  Significance cutoff, i.e. a threshold for a given marker to be significant
        giveSignificant: boolean  Whether to return the significance matrix along with the scores
        removeLowQCscores: boolean  Whether to remove low quality scores, i.e. those with less than 10% of markers that are supporting

Returns:
    pandas.DataFrame  Contains voting scores per celltype per cluster
Usage: Function is used internally.
    df = calculateV((df_M, df_X, cluster_index, 0.3, False, True))

annotateWith_pDCS_Scheme (df_markers_expr, df_marker_cell_type)
Produce cluster annotation results

Parameters:
    df_markers_expr: pandas.DataFrame  Data with marker genes by cells expression
    df_marker_cell_type: pandas.DataFrame  Data with marker genes by cell types

Returns: tuple
Usage: Function should be called internally only

annotateWith_ratio_Scheme (df_markers_expr, df_marker_cell_type)
Produce cluster annotation results
Parameters:

   df_markers_expr: pandas.DataFrame  Data with marker genes by cells expression
   df_marker_cell_type: pandas.DataFrame  Data with marker genes by cell types

Returns:  tuple

Usage:  Function should be called internally only

annotateWith_Hopfield_Scheme (df_markers_expr, df_marker_cell_type)
Produce cluster annotation results

Parameters:

   df_markers_expr: pandas.DataFrame  Markers expression DataFrame
   df_marker_cell_type: pandas.DataFrame  Marker cell type DataFrame

Returns:  tuple

Usage:  Function should be called internally only

recordAnnotationResults (df_marker_cell_type, df_markers_expr, df_L, df_V, dict_expressed_markers, df_null_distributions=None)
Record cell type annotation results to spreadsheets.

Parameters:

   df_marker_cell_type: pandas.DataFrame  Markers to cell types table
   df_markers_expr: pandas.DataFrame  Markers expression in each cluster
   df_L: pandas.DataFrame  Annotation scores along with other information
   df_V: pandas.DataFrame  Annotation scores along with other information
   dict_expressed_markers: dictionary  Dictionary of markers signigicantly expressed in each cluster
   df_null_distributions: pandas.DataFrame, Default None  Table with null distributions

Returns:  None

Usage:  This function is intended to be used internally only

propagateHopfield (sigma=None, xi=None, T=0.2, tmax=200, fractionToUpdate=0.5, mode=4, meshSamplingRate=200, underlyingNetwork=None, typesNames=None, clustersNames=None, printInfo=False, recordTrajectories=True, id=None, printSwitchingFraction=False, path=None, verbose=0)
Function is used internally to propagate Hopfield network over a set number of time steps

Parameters:

   sigma: pandas.DataFrame, Default None  Markers expression
   xi: pandas.DataFrame, Default None  Marker cell type DataFrame
   T: float, Default 0.2  Noise (Temperature) parameter
   tmax: int, Default 200  Number of step to iterate through
   fractionToUpdate: float, Default 0.5  Fraction of nodes to randomly update at each iteration
   mode: int, Default 4

   Options are:  1: non-orthogonalized, non-weighted attractors 2: orthogonalized, non-weighted attractors 3: orthogonalized, weighted attractors 4: orthogonalized, weighted attractors, asymmetric and diluted dynamics
meshSamplingRate: int, Default 100  Visualization parameter to control the quality of the color mesh near the attractors
underlyingNetwork: 2d numpy.array, Default None  Network of underlying connections between genes
typesNames: list-like, Default None  Names of cell types
clustersNames: list-like, Default None  Names or identifiers of the clusters
printInfo: boolean, Default False  Whether to print details
recordTrajectories: boolean, Default True  Whether to record trajectories data to files
id: int, Default None  Identifier of this function call
printSwitchingFraction: boolean, Default False  Whether to print fraction of clusters that switch their maximum overlapping attractor
path: str, Default None  Path for saving trajectories data

Returns:
2d numpy.array  Overlaps

Usage: result = propagateHopfield(sigma=sigma, xi=df_attrs)

**classmethod convertColormap**(colormap)
Convert colormap from the form (1.,1.,1.,1.) to ‘rgba(255,255,255,1.)’

Parameters:
  colormap: dictionary  Colormap to convert

Returns:
dictionary  Converted colormap

colormap = DCS.convertColormap(colormap)

**classmethod zScoreOfSeries**(se)
Calculate z-score of pandas.Series and modify the Series in place

Parameters:
  se: pandas.Series  Series to process

Returns:
pandas.Series  Processed series

se = DCS.zScoreOfSeries(se)

**classmethod KeyInFile**(key, file)
Check is a key exists in a HDF file.

Parameters:
  key: str  Key name to check
  file: str  HDF file name to check

Returns:
boolean  True if the key is found False otherwise
DCS.KeyInFile(‘df_expr’, ‘data/file.h5’)

getSubnetworkOfPCN (subnetworkGenes, min_shared_first_targets=30)
Extract subnetwork of PCN network

Parameters:

subnetworkGenes: list-like  Set of genes that the subnetwork should contain

min_shared_first_targets: int, Default 30  Number of minimum first shared targets to connect two
nodes

Returns:

pandas.DataFrame  Adjacency matrix

df_subnetwork = DCS.getSubnetworkOfPCN(genes)

alignSeries (se1, se2, tagForMissing)
Align two pandas.Series

Parameters:

se1: pandas.Series  Series with the first set of items
se2: pandas.Series  Series with the second set of items

tagForMissing: str, Default ‘Missing’  Label to assign to non-overlapping items

Returns:

pandas.DataFrame  Contains two aligned pandas.Series

’F’]).to_series())

createReverseDictionary (inputDictionary)
Efficient way to create a reverse dictionary from a dictionary. Utilizes Pandas.DataFrame.groupby and
Numpy arrays indexing.

Parameters:

inputDictionary: dictionary  Dictionary to reverse

Returns:

dictionary  Reversed dictionary

revDict = DCS.createReverseDictionary(Dict)

readMarkerFile (mergeFunction=’mean’, mergeCutoff=0.25)
Read markers file, prepare markers

Parameters:

mergeCutoff: str, Default ‘mean’

Function used for grouping of the cell sub-types. Options are: ‘mean’: average of the values
‘max’: maximum of the values, effectively a logiacal OR function
mergeCutoff: float, Default 0.25  Values below cutoff are set to zero. This option is used if merge-Cutoff is ‘mean’

Returns:

pandas.DataFrame  Celltype/markers matrix

        df_marker_cell_type = DCS.readMarkerFile()

mergeIndexDuplicates (df_expr, method='average', printDuplicates=False, verbose=1)
Merge index duplicates

Parameters:

df_expr: pandas.DataFrame  Gene expression table
method: str, Default None
       How to deal with index duplicates. Option are: ‘average’: average values of duplicates
       ‘first’: keep only first of duplicates, discard rest

Returns:

pandas.DataFrame  Gene expression table

        df_expr = DCS.mergeIndexDuplicates(df_expr)

recordExpressionData ()
Record expression data from the internal HDF storage.

Parameters:  None

Returns:  None

        DCS.recordExpressionData()

loadAnnotatedLabels (detailed=False, includeLowQC=True, infoType='label')
Load cell annotations resulted from function ‘annotate’

Parameters:

detailed: boolean, Default False  Whether to give cluster- or celltype- resolution data
includeLowQC: boolean, Default False  Whether to include low quality cells in the output

Returns:  pandas.Series

        DCS.loadAnnotatedLabels()

loadExpressionData ()
Load processed expression data from the internal HDF storage.

Parameters:  None

Returns:  None

        DCS.loadExpressionData()
**prepareMarkers** *(expressedGenes=None, createColormapForCelltypes=True)*

Get dictionary of markers for each cell types.

**Parameters:**

- **expressedGenes:** `pandas.Index`, *Default None*  
  If not None then the marker DataFrame will be intersected with this index, i.e. all non-expressed genes will be filtered from the marker file.

- **createColormapForCelltypes:** `boolean`, *Default True*  
  Create (or update) a colormap for cell types based on a marker-celltype matrix. This will make coloring of cell clusters consistent across all plots.

**Usage:**

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.prepareMarkers()
```

**calculateQCmeasures()**

Calculate Quality Control (QC) measures

**Parameters:** None

**Returns:** None

**Usage:**

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.calculateQCmeasures()
```

**qualityControl(**kwargs)**

Remove low quality cells

**Parameters:** None

**Returns:** Any parameters that function `getIndexOfGoodQualityCells` can accept

**Usage:**

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.qualityControl()
```

**batchEffectCorrection**(method='COMBAT')

Batch effect correction.

**Parameters:**

- **method:** `str`, *Default 'COMBAT'*  

**Returns:** None

**Usage:**

```python
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.batchEffectCorrection()
```
CHAPTER
FIVE

VISUALIZATION FUNCTIONS API

The package contains a set of visualization functions that are used at the stage of post-processing.

**Note:** These functions are not intended to be accessed directly by a user. See **User Functions** for the list of visualization tools that utilize visualization functions detailed here.

Submodule VisualizationFunctions

### 5.1 Cell type markers pie plot

This visualization function can be launched from *class DigitalCellSorter* at the stage of pre- and post-processing.

From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1)
```

Class of visualization functions for DigitalCellSorter

```python
makeCellMarkersPiePlot (*args, **kwargs)
```

Example output:
5.2 Projection plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing. From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1):
 Class of visualization functions for DigitalCellSorter
 makeProjectionPlot (*args, **kwargs)
```

Example output:

5.3 Marker subplots

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing. From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1):
 Class of visualization functions for DigitalCellSorter
 internalMakeMarkerSubplots (*args, **kwargs)
```

Example output:
5.4 Quality control histogram plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1)

Class of visualization functions for DigitalCellSorter

makeQualityControlHistogramPlot (*args, **kwargs)

Example output:
5.5 Histogram null distribution plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

```python
class VisualizationFunctions(
 dataName='dataName',
 saveDir='',
 matplotlibMode='Agg',
 safePlotting=True,
 verbose=1)
```

Class of visualization functions for DigitalCellSorter

```python
makeHistogramNullDistributionPlot(*args, **kwargs)
```

Example output:
5.5. Histogram null distribution plot
5.6 Sankey diagram

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing. From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1)
 Class of visualization functions for DigitalCellSorter
 makeSankeyDiagram (*args, **kwargs)
```

Example output:
5.7 Stacked bar plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='\', matplotlibMode='Agg', safePlotting=True, verbose=1)
 Class of visualization functions for DigitalCellSorter

 makeStackedBarplot (*args, **kwargs)
```

Example output:

5.8 Annotation Results Matrix plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='\', matplotlibMode='Agg', safePlotting=True, verbose=1)
 Class of visualization functions for DigitalCellSorter

 makeAnnotationResultsMatrixPlot (*args, **kwargs)
```

Example output:
5.9 Marker expression plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1)

Class of visualization functions for DigitalCellSorter

makeMarkerExpressionPlot (*args, **kwargs)

Example output:

![Marker expression plot example](image)

5.10 t-test plot

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

class VisualizationFunctions (dataName='dataName', saveDir='', matplotlibMode='Agg', safePlotting=True, verbose=1)

Class of visualization functions for DigitalCellSorter

makeTtestPlot (*args, **kwargs)

Example output:
5.11 Plot of new markers

This visualization function can be launched from class DigitalCellSorter at the stage of post-processing.

From submodule VisualizationFunctions:

```python
class VisualizationFunctions (dataName='dataName', saveDir='saveDir', matplotlibMode='Agg', safePlotting=True, verbose=1)

Class of visualization functions for DigitalCellSorter

makePlotOfNewMarkers (*args, **kwargs)
```

Example output:
A set of generic tools grouped here are used by the Class of DigitalCellSorter.

**Submodule GenericFunctions**

General functions for convenience of use

**Functions:**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>extractFromZipOfGz()</code></td>
<td>Print total elapsed time (in minutes) elapsed from the reference point</td>
</tr>
<tr>
<td><code>getElapsedTime(start)</code></td>
<td>Get time (in seconds) elapsed from the epoch</td>
</tr>
<tr>
<td><code>read(fileName[, compressed, jsonFormat])</code></td>
<td>Unpickle object from a (binary) file</td>
</tr>
<tr>
<td><code>timeMark()</code></td>
<td>Print total time elapsed from the beginning of the process from which the function is called</td>
</tr>
<tr>
<td><code>write(data, fileName[, compressed, jsonFormat])</code></td>
<td>Pickle object into a (binary) file</td>
</tr>
</tbody>
</table>

**write (data, fileName, compressed=False, jsonFormat=False)**

Pickle object into a (binary) file

- **Parameters:** data: any Python object, e.g. list, dictionary, file, method, variable, etc. fileName: path and name of the file to store binary data in
- **Returns:** None
- **Usage:**

```
data = [['A', 'B', 'C'], pd.DataFrame()] write(data, os.path.join('some dir 1', 'some dir 2', 'File with my data'))
```

**read (fileName, compressed=False, jsonFormat=False)**

Unpickle object from a (binary) file

- **Parameters:** fileName: path and name of the file with binary data stored in
- **Returns:** Data stored in the provided file
- **Usage:**

```
read(os.path.join('some dir 1', 'some dir 2', 'File with my data'))
```

**timeMark()**

Print total time elapsed from the beginning of the process from which the function is called

- **Parameters:** None
- **Returns:** None
- **Usage:** timeMark()

**getStartTime()**

Get time (in seconds) elapsed from the epoch

- **Parameters:** None
- **Returns:** None
- **Usage:** getStartTime()
Parameters: None

Returns: Time (in seconds)

Usage: start = getStartTime()

getElapsedTime (start)
Print total elapsed time (in minutes) elapsed from the reference point

Parameters:

  start: float or int  Reference time (in seconds)

Returns: None

Usage: getElapsedTime(start)

extractFromZipOfGz (filepath, removeDownloadedZipFile=False)
This graph was generated with Python module dependency visualization tool pydeps, see GitHub, by running the following (after installation of the necessary components):

```
pydeps DigitalCellSorter --reverse --max-bacon=2 --cluster --max-cluster-size=6 --min--
-cluster-size=2 -T=png -o=docs/DigitalCellSorter_pydeps_current.png
```
8.1 Output from kallisto-bustools (kp-python)

In this example we use raw sequencing data stored in .fastq format, from 1000 PBMC, the data can be accessed at https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_1k_v3

Note: This is by no means a tutorial for processing scRNA-seq data. We only demonstrate the workflow of connecting upstream analysis software and DCS.

Download the data and unpack the .tar file (~5.17 GB):

```bash
curl https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_fastqs.tar.gz | tar -xvf
```

To process sequencing data one could use kallisto bus tool to generate BUS file following by bustools count to generate count matrices from a BUS file. However, we prefer to use kb-python, a package that wraps the kallisto and bustools single-cell RNA-seq workflow (Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nature biotechnology, 34(5), 525) kb-python can be installed with pip.

```bash
kallisto index -i kallisto_index/homo_sapiens/transcriptome.idx \
 -g kallisto_index/homo_sapiens/transcripts_to_genes.txt \
 -x 10xv3 \
 --filter \
 -t 4 \
 pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L001_R1_001.fastq.gz \
 pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L001_R2_001.fastq.gz \
 pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L002_R1_001.fastq.gz \
 pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L002_R2_001.fastq.gz
```

Output from kb count command above

[2020-11-20 14:32:51,136] INFO Using index kallisto_index/homo_sapiens/transcriptome.idx to generate BUS file to . from

[2020-11-20 14:32:51,136] INFO pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L001_R1_001.fastq.gz
[2020-11-20 14:32:51,136] INFO pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L001_R2_001.fastq.gz
[2020-11-20 14:32:51,136] INFO pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L002_R1_001.fastq.gz
[2020-11-20 14:32:51,136] INFO pbmc_1k_v3_fastqs/pbmc_1k_v3_S1_L002_R2_001.fastq.gz
The output directory that we are interested in is `counts_filtered/`. Rename it:

```bash
mv counts_filtered/ kb_1k_PBMC_output/
```

This will generate counts data in the directory `kb_1k_PBMC_output/`.

### 8.2 Output from CellRanger

Here we use CellRanger-processed data stored in `.mtx` format, from 1000 PBMC, the data can be accessed at [https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_1k_v3](https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_1k_v3)

Download the data and unpack the `.tar.gz` file (~9 MB):

```bash
wget https://cf.10xgenomics.com/samples/cell-exp/3.0.0/pbmc_1k_v3/pbmc_1k_v3_filtered_
├── feature_bc_matrix.tar.gz
├── tar -xzvf pbmc_1k_v3_filtered_feature_bc_matrix.tar.gz && mv filtered_feature_bc_
└── matrix/ cellranger_1k_PBMC_output/
```

These two commands will prepare the processed counts data in the directory `cellranger_1k_PBMC_output/`.  

---

**Figure 8.2:** Image of cell with DNA. The nucleus is stained blue, and the cytoplasm is stained pink. The mitochondria are shown in green. (Credit: Image courtesy of Dr. Jane Smith, Department of Biology, University of XYZ)
8.3 Import from kallisto-bustools (kp-python)

```python
import DigitalCellSorter
from DigitalCellSorter.core import readMTXdata

Read the MTX data
df = readMTXdata(dataDir='kb_1k_PBMC_output/', origin='kb-python')

(Optional) Convert gene names to HUGO
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.prepare(df)
DCS.convert('ensembl', 'hugo')

Check the DCS data
print(DCS.df_expr)
```

8.4 Import from CellRanger

```python
import DigitalCellSorter
from DigitalCellSorter.core import readMTXdata

Read the MTX data
df = readMTXdata(dataDir='cellranger_1k_PBMC_output/', origin='cellranger')

(Optional) Convert gene names to HUGO
DCS = DigitalCellSorter.DigitalCellSorter()
DCS.prepare(df)
DCS.convert('ensembl', 'hugo')

Check the DCS data
print(DCS.df_expr)
```

8.5 Function readMTXdata

Function to read data in MTX format (see usage examples above).

```python
readMTXdata(dataDir, origin, fileMatrix=None, fileBarcodes=None, fileGenes=None, headerRows=None, sampleName=None, stripGeneVersions=True, saveData=True, dropGeneDuplicates=True, dropCellDuplicates=True)
```

Read MTX format into pandas DataFrame compatible with DCS input format.

**Parameters**

- `dataDir`: str  
  Path to gene expression counts data

- `origin`: str  
  Name of the software where the data was generated. Supported options are: ‘kb-python’ for kallisto-bustools ‘cellranger’ for cellRanger

- `fileMatrix`: str, Default None  
  Name of the matrix file

- `fileBarcodes`: str, Default None  
  Name of the cell barcodes file

- `fileGenes`: str, Default None  
  Name of the genes file
headerRows: list, Default None  List of rows in matrix file to skip
sampleName: str, Default None  Name of the data sample to include in the batch level
stripGeneVersions: boolean, Default True  Remove ensembl gene version. E.g. “ENSG00000236246.1” -> “ENSG00000236246”
saveData: boolean, Default True  Whether to save data in hdf format. If True then the data is saved to a compressed hdf at the same location as matrix data
dropGeneDuplicates: boolean, Default True  Whether to remove gene duplicates (keep first)
dropBarcodeDuplicates: boolean, Default True  Whether to remove barcode duplicates (keep first)

Returns:
pandas.DataFrame  Table that has genes in rows and cells in columns

Usage: df = readMTX(dataDir='filtered_feature_bc_matrix/', origin='cellranger')  # df = readMTX(dataDir='counts_filtered/', origin='kb-python')
DCS = DigitalCellSorter.DigitalCellSorter()  DCS.prepare(df)  DCS.convert('ensembl', ‘hugo’)
print(DCS.df_expr)

8.6 Human Cell Atlas tools

Set of generic tools for retrieving, loading, and preparation of Human Cell Atlas (HCA) datasets is contained in this module.

Example:

```python
import os
import DigitalCellSorter.ReadPrepareDataHCA as prep

Example URL of a relatively small dataset of scRNA-seq of human pancreas
url = "https://data.humancellatlas.org/project-assets/project-matrices/cddab57b-6868-4be4-806f-395ed9dd635a.homo_sapiens.mtx.zip"

Path of directories where the data will be placed
extractPath = os.path.join(os.path.join(os.path.dirname(__file__), ''), 'data', os.path.splitext(os.path.basename(url))[0])

Download data and unpack it to a specified directory
prep.getHCAdataByURL(url, extractPath)

Record *.h5 files of individual donor IDs
IDs = prep.recordFilesOfIndividualDonors(extractPath, organName='islet of Langerhans')

Load ready-to-use dataset of the first donor ID
df = prep.getDataframeByDonorID(extractPath, IDs[0])

Print the shape of just loaded dataset
print(df.shape)
```

Submodule ReadPrepareDataHCA

Functions:
**PrepareDataOnePatient_PREVIEW_DATASET**(...) Prepare data from Human Cell Atlas (HCA) preview dataset h5 data file.

**extractFromZipOfGz**(filepath[, ...])

**getDataFrameByDonorID**(extractPath, donorID) Get pandas.DataFrame by Donor ID

**getHCAdataByUrl**(url, extractPath[, extractData]) Download and extract data from Human Cell Atlas Portal

**prepareDemo5kData**(dir)

**read**(fileName[, compressed, jsonFormat]) Unpickle object from a (binary) file

**recordFilesOfIndividualDonors**(extractPath[, ...]) Record h5 files of HCA individual donors in a dataset

**write**(data, fileName[, compressed, jsonFormat]) Pickle object into a (binary) file

### `getHCAdataByUrl` (url, extractPath, extractData=True)

Download and extract data from Human Cell Atlas Portal

**Parameters:**

- **url**: str URL of the data of interest
- **extractPath**: str Path where to save and extract data to
- **extractData**: boolean, Default True Whether to extract downloaded data

**Returns**: None

**Usage**: `getHCAdataByUrl(url, extractPath)`

### `recordFilesOfIndividualDonors` (extractPath, organName=None, donorIDcolumn='donor_organism.provenance.document_id', organColumn='derived_organ_parts_label', useHogoGeneNames=True)

Record h5 files of HCA individual donors in a dataset

**Parameters:**

- **extractPath**: str Path of directories where HCA matrix files were downloaded and extracted. See function `getHCAdataByUrl()` for detail.
- **organName**: str, Default None Name of the organ name. E.g. ‘pancreas’, ‘bone marrow’, etc.
- **donorIDcolumn**: str, Default `donor_organism.provenance.document_id` Column with unique IDs of donors in the file. Another option is `specimen_from_organism.provenance.document_id` IDs at samples level is needed.
- **organColumn**: str, Default `derived_organ_parts_label` ‘derived_organ_label’ ‘derived_organ_parts_label’ This option is ignored when organName parameter is None.
- **useHogoGeneNames**: boolean, Default True Whether to use HUGO gene names.

**Returns**: list List of donor IDs

**Usage**: `recordFilesOfIndividualDonors(extractPath, organName='retina')`

### `getDataFrameByDonorID` (extractPath, donorID)

Get pandas.DataFrame by Donor ID

**Parameters:**

- **extractPath**: str Path of directories where HCA matrix files were downloaded and extracted. See function `getHCAdataByUrl()` for detail.
**donorID**: `str` Donor ID.

**Returns:**
- `pandas.DataFrame` Matrix corresponding to the Donor ID

**Usage:** `getDataframeByDonorID(extractPath, donorID)`

**`PrepareDataOnePatient_PREVIEW_DATASET`**

Prepare data from Human Cell Atlas (HCA) preview dataset h5 data file. The user can download the file `ica_bone_marrow_h5.h5` from https://preview.data.humancellatlas.org/ (Raw Counts Matrix - Bone Marrow) and place in folder data. The file is ~485Mb and contains all 378000 cells from 8 bone marrow donors (BM1-BM8). Note: this data file is no longer available at HCA data server, however, some users may have a copy of it and need to extract data from it.

**Parameters:**
- **filename**: `str` Path and name of the file to store binary data in
- **saveFolderName**: `str` Path where to save prepared data file
- **useAllData**: `boolean`, Default `True` Whether to use all data or a subset
- **cellsLimitToUse**: `int`, Default `1000` Number of cells to use if useAllData=False
- **randomlySample**: `boolean`, Default `True` Whether to sample cell randomly of pick top number
- **randomSeed**: `int`, Default `0` Random seed

**Returns:** None

**Usage:** `PrepareDataOnePatient(os.path.join('data', 'ica_bone_marrow_h5.h5'), 'BM1', os.path.join('data', ''), useAllData=False, cellsLimitToUse=5000)`

**`prepareDemo5kData`**

66 Chapter 8. Data preparation
Gene Expression Data Format

The input gene expression data is expected in one of the following formats:

1. Spreadsheet of comma-separated values csv containing condensed matrix in a form ('cell', 'gene', 'expr'). If there are batches in the data the matrix has to be of the form ('batch', 'cell', 'gene', 'expr'). Columns order can be arbitrary.

```
cell gene expr
C1 G1 3
C1 G2 2
C1 G3 1
C2 G1 1
C2 G4 5
...
```
or:

```
batch cell gene expr
batch0 C1 G1 3
batch0 C1 G2 2
batch0 C1 G3 1
batch1 C2 G1 1
batch1 C2 G4 5
...
```

2. Spreadsheet of comma-separated values csv where rows are genes, columns are cells with gene expression counts. If there are batches in the data the spreadsheet the first row should be 'batch' and the second 'cell'.

```
cell C1 C2 C3 C4
G1 3 1 7
G2 2 2
G3 3 1 5
G4 10 5 4
...
```
3. Pandas DataFrame where axis 0 is genes and axis 1 are cells. If the are batched in the data then the index of axis 1 should have two levels, e.g. ("batch", "cell"), with the first level indicating patient, batch or experiment where that cell was sequenced, and the second level containing cell barcodes for identification.

```python
df = pd.DataFrame(data=[[2, np.nan], [3, 8], [3, 5], [np.nan, 1]],
 index=['G1', 'G2', 'G3', 'G4'],
 columns=pd.MultiIndex.from_arrays([['batch0', 'batch1'], ['C1', 'C2']], names=['batch', 'cell']))
```

4. Pandas Series where index should have two levels, e.g. ("cell", "gene"). If there are batched in the data the first level should be indicating patient, batch or experiment where that cell was sequenced, the second level cell barcodes for identification and the third level gene names.

```python
se = pd.Series(data=[1, 8, 3, 5],
 index=pd.MultiIndex.from_arrays([['batch0', 'batch0', 'batch1', 'batch1', 'batch1'],
 ['C1', 'C1', 'C1', 'C2', 'C2'],
 ['G1', 'G2', 'G3', 'G1', 'G4']], names=['batch', 'cell', 'gene']))
```

Any of the data types outlined above need to be prepared/validated with a function `prepare()`.
import sys
sys.path.append("..")

import os
import DigitalCellSorter
import DigitalCellSorter.ReadPrepareDataHCA as prep

if __name__ == '__main__':
    here = os.path.dirname(__file__)
    url = "https://data.humancellatlas.org/project-assets/project-matrices/cc95ff89-˓
          2e68-4a08-a234-480eca21ce79.homo_sapiens.mtx.zip"
    extractPath = os.path.join(here, 'data', os.path.splitext(os.path.˓
          basename(url))[0])

    # Download and unpack data
    prep.getHCAdataByURL(url, extractPath)

    # Call function recordFilesOfIndividualDonors to load the data from HCA Data Portal
    id = prep.recordFilesOfIndividualDonors(extractPath, organName='bone marrow')[0]

    # Load gene expression data from h5 file
    df_expr = prep.getDataframeByDonorID(extractPath, id)
    df_expr.columns.names = ['batch', 'cell']

    # Create an instance of class DigitalCellSorter.
    # Here we use Default parameter values for most of the parameters
    DCS = DigitalCellSorter.DigitalCellSorter(dataName='BM1',
                                              saveDir=os.path.join(here, 'output', 'BM1', ''),
                                              geneListFileName='CIBERSORT_LM22_7')

    # Validate the expression data, so that it has correct form
    DCS.prepare(df_expr)

    # Delete df_expr as now DCS contains the master copy of it
    del df_expr

    # Process the expression data, i.e. quality control, dimensionality reduction, clustering
    DCS.process()
# Load marker genes and annotate cells
DCS.annotate()

# Make plots of annotated data
DCS.visualize()

# Make CD19 gene expression plot
for name in DCS.getHugoName('CD19'):
    DCS.makeIndividualGeneExpressionPlot(name)

# Make CD33 gene expression plot
for name in DCS.getHugoName('CD33'):
    DCS.makeIndividualGeneExpressionPlot(name)

# Further analysis can be done on cell types of interest, e.g. here 'T cell' and 'B cell'.
# Let's create a new instance of DigitalCellSorter to run "sub-analysis" with it.
# It is important to disable Quality control, because the low quality cells have already been identified and filtered with DCS.
# Parameter dataName points to the location processed with DCS.
DCSsub = DigitalCellSorter.DigitalCellSorter(dataName='BM1',
                                            nClusters=10,
                                            doQualityControl=False,
                                            layout='PHATE',
                                            subclusteringName='T cell')

# Modify a few other attributes
DCSsub.saveDir = os.path.join(here, 'output', 'BM1', 'subclustering T cell', '')
DCSsub.geneListFileName = os.path.join(here, 'docs', 'examples', 'CIBERSORT_T_SUB.xlsx')

# Get index of T cells
indexOfTcells = DCS.getCells(celltype='T cell')

# Get expression of these T cells using their index
df_expr = DCS.getExprOfCells(indexOfTcells)

# Insert expression data into DCSsub
DCSsub.prepare(df_expr)

# Process subtype 'T cell'
DCSsub.process(dataIsNormalized=True)

# Load marker genes and annotate cells
DCSsub.annotate()

# Make plots of annotated data
DCSsub.visualize()}
CHAPTER
ELEVEN

INDICES AND TABLES

- genindex
- modindex
- search
d

DigitalCellSorter.GenericFunctions, 57
DigitalCellSorter.ReadPrepareDataHCA, 64
INDEX

A
alignSeries() (DigitalCellSorter method), 43
annotate() (DigitalCellSorter method), 35
annotateWith_Hopfield_Scheme() (DigitalCellSorter method), 41
annotateWith_pDCS_Scheme() (DigitalCellSorter method), 40
annotateWith_ratio_Scheme() (DigitalCellSorter method), 40

B
batchEffectCorrection() (DigitalCellSorter method), 45

calculateQCmeasures() (DigitalCellSorter method), 45
calculateV() (DigitalCellSorter class method), 40
clean() (DigitalCellSorter method), 34
cluster() (DigitalCellSorter method), 34
convert() (DigitalCellSorter method), 34
convertColormap() (DigitalCellSorter class method), 42
createReverseDictionary() (DigitalCellSorter method), 43

D
df_expr() (DigitalCellSorter property), 33
DigitalCellSorter (class in DigitalCellSorter.core), 29
DigitalCellSorter.GenericFunctions (module), 57
DigitalCellSorter.ReadPrepareDataHCA (module), 64

E
eextractFromZipOfGz() (in module DigitalCellSorter.GenericFunctions), 58

F
fileHDFpath() (DigitalCellSorter property), 33

g
geneListFileName() (DigitalCellSorter property), 33
getAnomalyScores() (DigitalCellSorter method), 37
getCells() (DigitalCellSorter method), 38
getCodeCountsDataframe() (DigitalCellSorter method), 39
getElapsedTime() (in module DigitalCellSorter.ReadPrepareDataHCA), 65
getElapasedTime() (in module DigitalCellSorter.GenericFunctions), 58
getExprOfCells() (DigitalCellSorter method), 38
getExprOfGene() (DigitalCellSorter method), 38
getHCAdatabyURL() (in module DigitalCellSorter.ReadPrepareDataHCA), 65
getHugoName() (DigitalCellSorter method), 37
getIndexOfGoodQualityCells() (DigitalCellSorter method), 39
getNewMarkerGenes() (DigitalCellSorter method), 40
getQualityControlCutoff() (DigitalCellSorter method), 39
getStartTime() (in module DigitalCellSorter.GenericFunctions), 57
getSubnetworkOfPCN() (DigitalCellSorter method), 43

I
internalMakeMarkerSubplots() (VisualizationFunctions method), 48

K
KeyInFile() (DigitalCellSorter class method), 42

L
loadAnnotatedLabels() (DigitalCellSorter method), 44
loadExpressionData() (DigitalCellSorter method), 44
makeAnnotationResultsMatrixPlot() *(VisualizationFunctions method)*, 53
makeAnomalyScoresPlot() *(DigitalCellSorter method)*, 36
makeCellMarkersPiePlot() *(VisualizationFunctions method)*, 47
makeHistogramNullDistributionPlot() *(VisualizationFunctions method)*, 50
makeHopfieldLandscapePlot() *(DigitalCellSorter method)*, 37
makeIndividualGeneExpressionPlot() *(DigitalCellSorter method)*, 37
makeIndividualGeneTtestPlot() *(DigitalCellSorter method)*, 36
makeMarkerExpressionPlot() *(VisualizationFunctions method)*, 55
makeMarkerSubplots() *(DigitalCellSorter method)*, 36
makePlotOfNewMarkers() *(VisualizationFunctions method)*, 56
makeProjectionPlot() *(VisualizationFunctions method)*, 48
makeProjectionPlotAnnotated() *(DigitalCellSorter method)*, 35
makeProjectionPlotByBatches() *(DigitalCellSorter method)*, 35
makeProjectionPlotByClusters() *(DigitalCellSorter method)*, 36
makeProjectionPlotsQualityControl() *(DigitalCellSorter method)*, 36
makeQualityControlHistogramPlot() *(VisualizationFunctions method)*, 49
makeSankeyDiagram() *(VisualizationFunctions method)*, 52
makeStackedBarplot() *(VisualizationFunctions method)*, 53
makeTtestPlot() *(VisualizationFunctions method)*, 55
mergeIndexDuplicates() *(DigitalCellSorter method)*, 44

normalize() *(DigitalCellSorter method)*, 34

prepare() *(DigitalCellSorter method)*, 33
PrepareDataOnePatient_Preview DATASET() *(in module DigitalCellSorter.ReadPrepareDataHCA)*, 66
prepareDemo5kData() *(in module DigitalCellSorter.ReadPrepareDataHCA)*, 66
prepareMarkers() *(DigitalCellSorter method)*, 44
process() *(DigitalCellSorter method)*, 35
project() *(DigitalCellSorter method)*, 34
propagateHopfield() *(DigitalCellSorter method)*, 41

qualityControl() *(DigitalCellSorter method)*, 45

read() *(in module DigitalCellSorter.GenericFunctions)*, 57
readMarkerFile() *(DigitalCellSorter method)*, 43
readMTXdata() *(in module DigitalCellSorter.core)*, 63
recordAnnotationResults() *(DigitalCellSorter method)*, 41
recordExpressionData() *(DigitalCellSorter method)*, 44
recordFilesOfIndividualDonors() *(in module DigitalCellSorter.ReadPrepareDataHCA)*, 65

saveDir() *(DigitalCellSorter property)*, 33

timeMark() *(in module DigitalCellSorter.GenericFunctions)*, 57

visualize() *(DigitalCellSorter method)*, 35
write() *(in module DigitalCellSorter.GenericFunctions)*, 57

zScoreOfSeries() *(DigitalCellSorter class method)*, 42