
SUPPLEMENTARY MATERIALS
Q transformation on Hopfield landscapes
While Fig. 1 represents a landscape obtained without the ma-
trix Qµν , we show in Fig. S2 the Hopfield landscape obtained
using the the matrix Qµν and the Ji j exactly as in Eq. 2. Note
that, in this case, the Principal Component Analysis (PCA)
components for the visualization has to be calculated on the
transformed matrix Q−1ξ T , where ξ is the matrix of genes
and attractors, instead of ξ T as used in calculation of Fig. 1.
From Fig. S2 it is clear how the use of the matrix Qi j improves
the separation between the attractor states, as compared to
Fig. 1. The landscape is only using the first two principal
components. Fig. S3 provides a complete representation of
the overlaps between the cell attractors on the top non-trivial
(non-zero) principal components obtained after the Q trans-
formation.

Integration with existing algorithms
Batch correction
Data often contain noise associated to batch effects due to sys-
tematic experimental errors, collection procedures, and data
handling (Tran et al. (2020); Lähnemann et al. (2020)). It is
important to remove batch variations and technical noise in the
data, yet preserving biologically relevant information. DCS
includes a batch effect correction method, COMBAT, that
has been developed specifically for microarray data, (Johnson
et al. (2007); Stein et al. (2015)) but is also suitable for single
cell transcriptomics data.

Handling of missing values is particularly important when
dealing with batch effects correction in scRNA-seq. In our im-
plementation of COMBAT we record the locations of missing
values, i.e. zeros in the dataset, and perform the COMBAT
transformation. Then, we replace with zeros any values that
were missing and became non-zero after the transformation.
We also replace with zeros any values that became negative.

Fig. S5 demonstrates how scRNA-seq data of plasma cells
from the bone marrow aspirates of 12 patients (MM01-MM12)
split into clusters corresponding to different batches. Process-
ing the data with COMBAT and applying our procedure for
missing values properly aligns the multi-dimensional data.

Clustering
DCS contains functions that implement different clustering
methods:

1. Hierarchical clustering. This is in general a good choice
for clustering single cell datasets (Luecken and Theis
(2019)). However, this method becomes unfeasible
when the size of the datasets goes beyond several tens of
thousands cells. In this case DCS can use approximate
methods such as k-means.

2. Network-based clustering methods. First a network
of cells is constructed. Typically, it is a knn-graph (k
nearest neighbors graph) with a cutoff k on the num-
ber of the nearest neighbors of each node. Then clus-
ters are found using network-based algorithms such

as modularity-based community detection (Newman
(2010)).

3. Spectral co-clustering (Dhillon (2001)). Since this
method is computationally demanding, it is recom-
mended only for small subsets of the data. We have
found that spectral co-clustering can accurately fine-
separate cell sub-types when used with our cell type
identification algorithms. In this case, we perform first
a coarse clustering using one of the two methods above
(e.g. to identify all T cells in the dataset) and then we
use co-clustering to obtain cell subtypes (e.g. T CD8+,
T CD4+, T memory, T naive, etc.).

Projection of high-dimensional data on 2D layout
Visualization of cell clusters can be done in DCS using differ-
ent state-of-the-art methods to represent the results in a 2D
layout:

1. t-SNE, Fig. S6 (a), a well-established nonlinear method
that preserves local data structure (Maaten and Hinton
(2008)).

2. PCA, based on the first two principal components (2nd
PC vs. 1st PC) of the data, see Fig. S6 (b). This is a
simple linear method that preserves the global structure
of the data.

3. UMAP. This approach (McInnes et al. (2018)) has
recently gained popularity because it preserves inter-
cell distance in the dimensionality reduction proce-
dure. This algorithm maintains the global structure
and the continuity of the expression data. UMAP has
been found to resolve cell populations and to produce
equally meaningful representations compared with t-
SNE (Becht et al. (2019)). Layouts produced with
UMAP are more reproducible than other methods, no-
tably more so than those from t-SNE. An example of
visualization using UMAP on PBMC dataset is shown
in Fig. S6 (c).

4. PHATE, showed in Fig. S6 (d). This recently devel-
oped method captures local and global structure using
an information-geometric distance between data points
(Moon et al. (2019)). PHATE has been found to reveal
biological insights into cell developmental branches,
including identification of previously undescribed sub-
populations (Moon et al. (2019)).

Input gene expression data
The input gene expression data is expected in one of the
following formats:

• Spreadsheet of comma-separated values (csv) contain-
ing a condensed matrix in a form (’cell’, ’gene’, ’expr’).
If there are batches in the data, the matrix has to be of
the form (’batch’, ’cell’, ’gene’, ’expr’). Column order
can be arbitrary.
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Figure S2. Hopfield attractor landscape visualization. The
points are colored according to their Hopfield energy. The Q
transformation has improved the separation between the
attractor states compared to Fig. 1.

Figure S3. Plot of the projection of different cell attractors
on PCA components obtained after the Q transformation.

• Spreadsheet of comma-separated values csv where rows
are genes, columns are cells with gene expression counts.
If there are batches in the data the spreadsheet the first
row should be ’batch’ and the second ’cell’.

• Pandas DataFrame where axis 0 is genes and axis 1 are
cells. If there are batched in the data, then the index of
axis 1 should have two levels, e.g. (’batch’, ’cell’), with
the first level indicating patient, batch or experiment
where that cell was sequenced, and the second level
containing cell barcodes.

• Pandas Series where the index should have two levels,
e.g. (’cell’, ’gene’). If there are batched in the data
the first level should be indicating patient, batch or
experiment where that cell was sequenced, the second
level cell barcodes, and the third level gene names.

During and after processing data storage is implemented
using Hierarchical Data Format (HDF).

Miscellaneous analysis tools
The optimized performance of our modular DCS software
allows for an efficient processing of large single cell datasets.
The documentation of our software is built with Sphinx at
ReadTheDocs.org. Any changes to source code and python
code docstrings are automatically reflected at ReadTheDocs.org,
and a new version of the documentation is built.

In DCS we have implemented numerous querying func-
tions for an efficient extraction of cells based on a specific
cluster or cell type. This functionality allows for an easy
selection of data subsets for further analysis.

A specialized function in DCS provides across clusters
comparison via a two-tailed t-test plot of individual genes. See
the example of CD4 expression in PBMC data in the Fig. S7.

Finally, DCS includes a function representing in a pie
chart the role of different markers in a direct comparison
between two cell types. Fig. S8 shows an example of output
for T cells versus NK cells markers. This function can be
useful, for instance, to make the final decision on a cluster for
which the cell type assignment has provided two possible cell
types.
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Table S1. Metadata of samples used in validation of anomaly detection.
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SRS3822686
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SRS3693909

GSM3589360
SRA843432
SRS4322341

Sequencing protocol 10x chromium 10x chromium 10x chromium 10x chromium 10x chromium
Sequencing instrument Illumina HiSeq

2500
Illumina HiSeq
2500

Illumina HiSeq
3000

Illumina HiSeq
2500

NextSeq 500

Tissue origin of the sample PBMC Testicular cells Bone marrow Merkel cell car-
cinoma

Kaposi’s
sarcoma

Number of sequenced genes 27483 28403 30594 28924 26224
Number of sequenced cells 6008 6361 8307 6696 5140
Number of QC-passed cells 3167 1501 5928 5347 3318
Median of genes per cell 1178 1100 1106 1272 1184
Used cell clusters #0: 666 T cells, #1:

564 T cells, #2: 407
Monocytes

#6: 70 En-
dothelial cells

#0: 928 T cells #8: 78 cells #8: 43 cells
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Figure S4. Quality Control. (a) Histogram of the number of
unique genes in each cell. The red line is the spline fit of the
distribution. The cutoff is determined as 50% of the median
of the distribution. Cells that have gene counts in the red
shaded area, i.e. below the cutoff, are discarded before
clustering; (b) Same as in (a) for the number of total reads per
cell; (c) Histogram of fraction of mitochondrial genes in each
cell. Values in the red shaded area are discarded; (d) t-SNE
layout of the analyzed data where the dark blue points are
cells discarded as not passing quality criteria in (a)-(c).
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Figure S5. scRNA-seq data of Bone Marrow plasma cells from 12 patients (MM01-MM12) split into clusters clearly showing
batch-effects in (a) t-SNE layout and (b) PHATE layout. Processing these data sets with COMBAT aligns the
multi-dimensional transcriptomics data mitigating batch effects as seen in (c) t-SNE layout and (d) PHATE layout.
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Figure S6. Two-dimensional projection of PBMC scRNA-seq data on (a) t-SNE, (b) two largest principal components of
PCA, (c) PHATE layout, and (d) UMAP layout.
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Table S2. Inter- and intra-cluster distances for clusters L, M and O, and the Silhouette score for each of the clusters and all the
cells. The measures are the average of a hundred independent realizations with a new set of cell in cluster O every time.

Normal endothelial
cells

Measure Cluster Myeloid (M) Lymphoid (L) Other (O) All (M+L+O)

Average distance

Myeloid (M) 15.99 22.96 41.66
Lymphoid (L) 8.01 36.24

Other (O) 31.81
All (M+L+O) 14.65

Silhouette score 0.30 0.65 0.13 0.56
Normal bone
marrow
lymphocytes

Measure Cluster Myeloid (M) Lymphoid (L) Other (O) All (M+L+O)

Average distance

Myeloid (M) 16.63 23.59 26.10
Lymphoid (L) 8.80 15.59

Other (O) 13.70
All (M+L+O) 14.88

Silhouette score 0.29 0.44 0.12 0.40

Kaposi’s sarcoma
cells

Measure Cluster Myeloid (M) Lymphoid (L) Other (O) All (M+L+O)

Average distance

Myeloid (M) 16.55 23.57 30.49
Lymphoid (L) 8.59 20.31

Other (O) 16.82
All (M+L+O) 14.86

Silhouette score 0.30 0.58 0.18 0.50

Merkel cell
carcinoma cells

Measure Cluster Myeloid (M) Lymphoid (L) Other (O) All (M+L+O)

Average distance

Myeloid (M) 14.80 22.11 39.70
Lymphoid (L) 7.34 33.18

Other (O) 35.21
All (M+L+O) 13.82

Silhouette score 0.33 0.67 -0.05 0.58
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Figure S7. Example of two-tailed t-test analysis for the CD4 gene expression in the 68k PBMC dataset. Black stars denote
where this gene is significantly expressed in a two-cluster cross-comparison.
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