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ABSTRACT14

These supplementary materials provide extended and complimentary materials in support of the main
research findings. First is an extended introduction covering coronavirus history and biology, followed
by additional methodological details and results. We emphasize the novelty of the first usage of the
Reciprocal Perspective method as Combination of Multiple Experts within this work. We additionally
provide guidance on the interpretation and use of the landscape matricies for subsequent use in the
identification of putative sites that may mediate a physical interaction. Finally, these appendix materials
contain many of the intermediate and auxiliary findings of this work.
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INTRODUCTION22

The novel coronavirus (CoV) pandemic has galvanized the research community into the investigation of23

the SARS-CoV-2 virus and the COVID-19 disease it manifests in humans (Guarner, 2020). Research has24

progressed with unprecedented speed due, in large part, to the rapid determination of the SARS-CoV-225

genome and proteome. These data enable the research community to collectively contribute to the study26

and understanding of SARS-CoV-2 and its disease pathogenesis.27

This family of viruses has previously emerged as lethal human pathogens during the 2002-200428

severe acute respiratory syndrome (SARS) and the 2012 Middle East respiratory syndrome (MERS)29

outbreaks. These human-afflicting coronaviruses (HCoVs) are concerning not only as causative agents30

of mild respiratory illness but additionally for the severity of disease. Notably, since the 1960s two31

HCoVs have been known to regularly circulate among the human population and cause 15-20% of the32

common cold cases (Monto, 1974). Besides human infections, CoVs are causative agents of disease in33

domesticated animals with a symptomology comprising respiratory disease and enteritis in the infected34

hosts. To demonstrate the range of species infected by this virus subfamily, well-studied CoVs include35

the canine respiratory CoV (CRCoV), the mouse hepatitis virus (MHV), the bovine CoV (BCV), the36

canine CoV (CCoV), and the feline CoV (FCoV) (Erles et al., 2003; Weiner, 1973; Bridger et al., 1978;37

Binn et al., 1974; Pedersen et al., 1984). As discussed later, animal species (including humans) serve38

as “factories” for CoV reproduction and evolution. Given the emergence of three HCoVs causative of39

severe disease of epidemic or pandemic proportions within the last two decades, it is critical to expand40

our fundamental understanding of these viruses to rapidly identify putative therapeutic targets, facilitate41

complimentary research, and inform public discussions.42

Coronavirus Classification, Structure, Hosts, and Genome43

The Coronavirinae and Torovirinae subfamilies of the Coronaviridae family belonging to the Nidovirales44

order of viruses (Payne, 2017). The CoV subfamily is further divided into the four genera Alphacoro-45
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Supplementary Figure S1. Historical Overview of Coronavirus Biology. Panel (A) depicts a
taxonometric tree of the family Coronaviridae. Panel (B) presents the structure and composition of
coronaviruses; the Coronavirus structure depicted is representative of CoVs from all four genera and
lineages, whereas the structure depicted by Betacoronavirus (Lineage A) is specific to CoV species within
this taxon. Panel (C) depicts the discovery of HCoVs throughout history in combination with the animal
origin and the known, suspected, or unknown intermediate host prior to infection and propagation within
the human population. For each virus we depict the initial attachment (orange) and main fusion (blue)
receptors utilized by HCoVs for cell entry. Finally, we illustrate the genomic organization of each of the
HCoVs. ORF1a and ORF1b (blue) encode for polyproteins. A ribosomal frameshift occurs at a slippery
sequence and pseudoknot structure located between ORF1a and ORF1b (open circle). Downstream open
reading frames encode the Spike (S), Envelope (E), Membrane (M), Nucleocapsid (N), and
Hemagglutinin Esterase (HE) structural proteins (red), as well as accessory proteins (light blue box, black
text). Gene mappings not shown to scale. This figure was created with biorender.com.

navirus (αCoV), Betacoronavirus (βCoV), Gammacoronavirus (γCoV), and Deltacoronavirus (δCoV)46

(Payne, 2017). Species within the βCoV genera are further divided into four A, B, C, and D lineages47

(Figure S1A).48

Coronaviruses share many similarities to the influenza viruses in that they are both enveloped, single-49

stranded, and helical RNA-viruses among the Group IV viral families (Baltimore, 1971). The four50

coronaviruses known to commonly infect humans are believed to have evolved to maximize proliferation51

within a population. This evolved strategy involves sickening, but not ultimately killing, their hosts. By52

contrast, the two prior novel coronavirus outbreaks (SARS and MERS) arose in humans after cross-species53

jumps from animals, as has H5N1 (the avian influenza). These latter diseases were highly fatal to humans,54

with a few mild or asymptomatic cases. A greater proportion of mild or asymptomatic cases would have55

resulted in wide-spread disease, however, and SARS and MERS each ultimately killed fewer than 1,00056

people (World Health Organization, 2020; Regional Office for the Eastern Mediterranean, 2011).57

To date, seven HCoV species have been identified (Figure S1). Beginning in the mid-1960s, HCoV-58

229E and HCoV-OC43 were the first HCoVs isolated from patients with mild respiratory illness (Hamre59

and Procknow, 1966; McIntosh et al., 1967). It was not until the start of the 21st century that the remaining60

five HCoVs were discovered (Figure S1). All known HCoVs arise from zoonotic origins (i.e. from other61
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animal species). The wide diversity of CoVs within the animal kingdom stems from the high genomic62

mutation rates high frequency of recombination between different CoV genomes (Makino et al., 1986;63

Van Der Most et al., 1992). In fact, different genotypes of HCoV-OC43 and HCoV-HKU1 have evolved64

due to natural recombination events occurring during human infection (Woo et al., 2006; Lau et al., 2011).65

Such genetic modifications occurring in animal CoVs facilitate a “host jump” and are the primary reason66

for inter-species and animal-to-human transmission (Cui et al., 2019). The HCoVs that are endemic to67

the human population are causative agents of more mild disease (e.g. common cold) and there is less68

urgency to identify the animal reservoirs of these viruses. Currently, the ecological route of transmission69

of these HCoVs into individual humans is likely entirely due to human-to-human transmission. However,70

similarity between these HCoVs and other animals’ CoVs provides insight into their animal origins,71

modes of transmission, and cellular entry.72

CoVs are enveloped viruses with a mostly spherical membrane approximately 120 nm in diameter73

and comprised of 4-5 structural proteins (Figure S1B). The single-stranded RNA genome is encapsulated74

by the Nucleocapsid (N) protein, which functions to package the viral genome into CoV particles during75

assembly (Chang et al., 2006). The Membrane (M) protein plays a central role in assembly of the viral76

particles, largely by promoting membrane curvature (Neuman et al., 2011). The Envelope (E) protein is77

multi-functional, playing key roles in viral assembly and maintenance, such as mediating ion-channel78

activity (Schoeman and Fielding, 2019). The specific naming of these viruses was due to the protrusions79

of approximately 20 nm above the virion surface which give the virus a crown-like appearance (“corona”80

in Latin) in electron micrographs (Lai and Cavanagh, 1997). These large projections are trimers of81

the Spike (S) glycoprotein, responsible for attachment and entry into target cells. Additional smaller82

8 nm projections, composed of hemagglutinin esterase (HE) dimers are inherent to lineage A βCoVs83

(Figure S1B). The HE projections have implications in viral attachment and spread via attachment and84

modification of sugars, such as sialic acids, on target hosts cells (Klausegger et al., 1999).85

The major viral determinant of cell entry is that of the 20 nm Spike protein projections. This projection86

is a trimer of the Spike glycoprotein, and different regions of this protein play a role in facilitating viral87

entry. The Spike protein has two main functionally distinct regions denoted as S1 and S2, which play roles88

in host cell attachment and membrane fusion, respectively (Heald-Sargent and Gallagher, 2012). Although89

these regions belong to the same polypeptide, a critical step in viral entry is the covalent separation of90

S1 and S2 by proteolytic cleavage at the S1/S2 boundary by host cell proteases. Proteolytic cleavage at91

the S1/S2 boundary is critical for activating the function of S2 to trigger viral-host membrane fusion and92

release the CoV genome into the cell.93

The S1 region, responsible for cell attachment, is subdivided into two regions; the S1 N-terminal94

domain (NTD) and the S1 C-terminal domain (CTD, also known as the receptor-binding domain (RBD)).95

Overall, the S1 region specifies the range of hosts capable of interacting with CoVs through specific96

interactions with host cell surface biomolecules. The S1-NTD plays a role in initial adhesion to the cell97

surface via binding to sugars and adhesion molecules. This role of the S1-NTD has primarily been studied98

in the context of other animal CoVs (Krempl et al., 1997; Kubo et al., 1994), however it is also believed99

that at least three HCoVs (i.e. HCoV-NL63, SARS-CoV, MERS-CoV) utilize surface sugars or proteins100

as initial attachment receptors for adhesion to the cell surface Lang et al. (2011); Milewska et al. (2014);101

Chan et al. (2016).102

The CoV RNA genome resembles that of a canonical eukaryotic mRNA, due to the presence of103

a 5’-terminal cap structure (methylated N7 position of the guanine cap and methylated ribose at 2’-O104

position of the first nucleotide) and 3’-terminal poly-adenine(A) tail (Chen et al., 2013). Within these105

large RNA genomes of approximately 27-32 kb, multiple open reading frames encode for the previously106

mentioned structural proteins, as well as polyproteins and accessory proteins (Figure S1C). The first107

two-thirds of the genome encode for pp1a and pp1ab polyproteins, translated from ORF1a and the -1108

frameshifted ORF1b, respectively. Specifically, translation may continue through the -1 frameshifted109

ORF1b due to a slippery sequence and pseudoknot structure, enabling translation of pp1ab (Baranov110

et al., 2005; Brierley et al., 1989). These polyproteins are further processed into 16 non-structural proteins111

(NSP1-16) by autoproteolytic activity inherent to NSP3 and NSP5 within the polyproteins (Ziebuhr et al.,112

2000). This is essential for formation of a viral replicase-transcriptase complex (RTC). NSP12 possesses113

RNA-dependent RNA polymerase (RdRp) activity within the RTC, whereas NSP7 and NSP8 function114

as processivity clamps. The last-third of the genome contains ORFs encoding for the structural proteins115

(e.g. S, E, M, N, and HE), as well as accessory proteins that are not essential for CoV life cycle. It is of116
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critical importance that the cellular entry mechanism and viral replication pathways of SARS-CoV-2 and117

the role of accessory proteins be rapidly elucidated to develop anti-viral therapies to mitigate the spread118

and infectivity of the virus in the present pandemic.119

Computational Prediction of SARS-CoV-2 Targets120

Promisingly, many computational approaches have been rapidly deployed to increase our understanding121

of SARS-CoV-2, including protein function, three-dimensional (3D) protein structures, and possible122

target regions for small inhibitory molecules (Senior et al., 2020; Smith and Smith, 2020). Two notable123

examples include the use of DeepMind’s recently published AlphaFold protein structure predictor by124

Senior et al. (2020) to predict the 3D protein structure of each of the SARS-CoV-2 proteins, and the use125

of the SUMMIT high-performance computing (HPC) infrastructure to perform large-scale virtual docking126

simulations as a form of high-throughput screening to identify small inhibitory molecules (Smith and127

Smith, 2020). Given that the Spike protein from the original SARS coronavirus, SARS-CoV, is known to128

interact with the human Angiotensin-Converting Enzyme 2 (ACE2), current efforts are focused to better129

characterize the SARS-CoV-2 Spike protein and its putative interaction with the ACE2 protein.130

The computational prediction of PPIs is a diverse field which encompasses multiple paradigms (e.g.131

sequence-, structure-, evolution-, and network-based methods) (Kotlyar et al., 2017). The shortcomings of132

one approach are often the strength of another and certain paradigms can be useful in generating insightful133

interaction interface information (Dick and Green, 2016). Here, we will discuss the two paradigms with134

specific relevance to the SARS-CoV-2 pandemic given the current focus of the research community in an135

effort to develop therapeutics that might slow the progression and impact of COVID-19. Structure-based136

methods require knowledge the 3D structure of each of the proteins from the set of known PPIs and also137

for each of the proteins for which one wishes to make inferences (Kotlyar et al., 2017). Consequently,138

these methods suffer from low coverage throughout a complete proteome and are generally unsuitable for139

comprehensive interactome predictions. Furthermore, many structure-based methods rely on de novo or140

template-based modelling, which tend to be computationally taxing. Promisingly, the DeepMind team that141

developed the AlphaFold computation protein structure predictor have publicly released their predictions142

of the 14 proteins in the SARS-CoV-2 proteome for use by the scientific community, enabling the use143

of structure-based prediction methods (Jumper et al., 2020). However, high quality structures are not144

available for all human proteins and, even with complete 3D structural information of each protein in both145

organisms’ proteomes, the computational time complexity to elucidate all possible inter-species pairings146

make these methods prohibitive beyond modestly sized networks. Promisingly, these methods are highly147

complimentary to other prediction paradigms and can be applied following the initial screening using148

other, more computationally efficient and high-throughput PPI prediction methods.149

At the other computational extreme, sequence-based predictors rely solely upon primary sequence150

data making them amenable to the investigation of proteome-wide networks. Furthermore, these methods151

tend to be highly efficient, where individual PPIs can be predicted in a fraction of a second.152

The rapidity of our response is thanks in part to having produced an analogous study during the153

Zika Virus outbreak of 2015, where our sequence-based PPI prediction method (PIPE) was used to154

identify putative human-Zika inter-species PPIs and inform possible synthetic biology approaches for155

novel interventions and therapeutics Kazmirchuk et al. (2017). In the present study, of the ∼285,000156

predicted pairs, we leverage three prediction schemas and two independent PPI predictors to select a157

highly conservative set of predicted interactions for each of the 14 SARS-CoV-2 proteins considered in158

this study resulting in the identification of several putative human protein targets. We publicly released159

these predictions and related meta-data for use by the broader scientific community in the following160

DataVerse repository: 10.5683/SP2/JZ77XA, Dick et al. (2020).161

METHODS162

Determining an Appropriate Per-Protein Decision Threshold163

For each of the 14 SARS-CoV-2 proteins, we predicted their interaction with each of the 20,366 human164

proteins resulting in 285,124 unique predictions from each of the two predictors considered. While each165

method, through a form of cross-validation, might determinate a highly-conservative global decision166

threshold, we know from our work in (Dick and Green, 2018) that such thresholds are sub-optimal.167

Consequently, we for the first time, adapt the method for the determination of a global decision threshold168
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for the PIPE4 and SPRINT algorithms to a RP-inspired method to determine local decision thresholds on169

a per-protein basis.170

From the predicted interactomes (leveraging the CPM), we can plot the rank-ordered distribution of171

the putative interaction scores involving each of the single SARS-CoV-2 proteins separately. This presents172

an opportunity to develop protein-specific local decision thresholds, where only those interactions scoring173

significantly above baseline are reported. These one-to-all score curves are based on the underlying174

assumption that we expect true SARS-CoV-2 vs. human PPIs to be rare, such that the vast majority of175

prediction scores should fall below the decision threshold. Furthermore, by also plotting the one-to-all176

curves for each human protein, we can apply the same local decision logic to the reciprocal perspective177

(while not performed within the all and proximal schema, this analysis is leveraged within the RP-PPI178

schema) (Dick and Green, 2018).179

Thus, for each one-to-all score curve, a score threshold delineating the “high-scoring” pairs from the180

baseline was identified and used to determine the high-confidence predicted interactions. In the absence181

of known PPIs between SARS-CoV-2 and human, it is difficult to determine a suitable global decision182

threshold. By instead examining the morphology of the one-to-all score curves for both perspectives,183

we can qualitatively identify high-scoring pairs. This process can be further automated through the184

identification of the baseline/knee for each view under the assumption that true PPIs are rare and high-185

scoring, while non-interacting pairs tend to generate scores residing below the knee in the baseline. In186

Figure S2, we overlay the one-to-all score curves for each SARS-CoV-2 protein and “zoom” into the187

high-score/low-rank region to emphasize that the selection of a single global top-k or score threshold188

would inappropriately exclude relatively high-scoring pairs within specific SARS-CoV-2 proteins, while189

admitting too many low-scoring putative PPI for other proteins.190

Furthermore, our use of the one-to-oll score curves assumes that the vast majority of pairs are not191

likely to interact and consequently the distribution of scores about its baseline represent a proxy for a192

statistical null model. That is, by considering the ∼20,000 naturally-occurring and biologically plausible193

sequences within the human proteome as our “null model”, our identification of “significantly” high-194

scoring pairs would be a more robust comparison than to consider an alternatice statistical approach which195

would compare a predicted pair with an equivalent number (i.e. 20,000) randomly generated sequences196

that wouldn’t be biologically plausible. It is important to note that our combined use of the one-to-all197

score curve and Kneedle algorithm is not a statistics-based method but rather a machine learning-based198

approach.199

We automated the selection of this operational decision threshold for the 14 SARS-CoV-2 proteins200

using the Kneedle algorithm, applied to its top-1000 predictions, using a sensitivity parameter of 2.0. The201

cut-offs for each protein are tabulated in Table S1.202

Predicted PPI Site of Interaction using PIPE-Sites & the New Similarity Weighted Land-203

scape204

The list of PPIs generated from both methods can be used to inform the design of anti-SARS-CoV-2205

therapeutics by using peptide sequences from the predicted PPI site, which we refer to as the PPI-Site.206

We define the PPI-Site as the peptide sequence that is responsible for mediating a given PPI, which is207

here estimated using the PIPE-Sites method. A conceptual overview of the PIPE4 landscape matrix and208

PIPE-Site prediction is illustrated in Figure S3.209

The Reciprocal Perspective Cascaded Classifier: Combination of Multiple Experts210

In previous work, we demonstrated that the use of a the Reciprocal Perspective PPI cascaded classifier (RP-211

PPI) produced statistically significant improvement in performance (Dick and Green, 2018). Moreover,212

the RP-PPI method, as a cascaded machine learning algorithm, can we leveraged to combine features from213

multiple expert models. Here, for the first time, we jointly combine the features derived from the PIPE214

and SPRINT models and demonstrate the resulting improvement in performance as part of the RP-PPI215

schema. Furthermore, following from the work of Kyrollos et al. (2020), we implement the cascaded216

model as an eXtreme Gradient Boosting (XGBoost) regression model as opposed to the Random Forest217

classifier originally proposed.218

To evaluate the performance increase of the combined classifier, we perform Leave-One-Family-Out219

cross-validation (LOFOCV), and plot the average Reciever Operating Characteristic (ROC) curve with220

confidence intervals of one standard deviation. Given certain families had relatively few PPIs, we omitted221

those with fewer than 50 PPIs from this analysis (a negligible number of pairs were left out). The222
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PIPE4 SPRINT

Supplementary Figure S2. One-to-All Score Curves by Top-k. The top panels depict the
combination of one-to-all score curves for each protein, by each predictor and each subplot is a top-k
subset of the previous; highlighted in blue. Selected example from the all schema.

determination that the combined use of PIPE4 and SPRINT features from their respectively predicted223

CPMs does, in fact, result in improved performance, we then performed extensive hyper-parameter224

tuning, evaluated via 10-fold cross-validation, to obtain the most performant model to then generate our225

SARS-CoV-2 vs. human predictions. Varying maximum tree depth ([3,4,5, ...,18]), number of estimators226

([50,75,100, ...,600]), and the learning rate (9 values considered), we trained and evaluated 29,700 models227

to arrive to the final model that was used to generate the comprehensive set of prediction as part of the228

RP-PPI schema.229

High-Performance Computing Infrastructure230

In order to generate the ∼ 280,000 PPI predictions for three independent schemas, high-performance231

computing infrastructure was required. Two https://www.computecanada.ca/ heterogeneous clusters were232

leveraged to generate these predictions: Graham and Cedar. The former has more than 41,000 cores and233

520 GPU devices across 1,185 nodes and the latter boasts over 94,000 cores and 1,352 GPU devices234

across 2,470 nodes. In combination, these HPC clusters enabled the rapid computation and compilation of235

these predictions. Computational research related to the COVID-19 pandemic has been assigned increased236

priority which expedited the generation of these predictions.237

RESULTS & DISCUSSION238

It is of critical importance that the global research community focus its efforts on the rapid understanding239

the SARS-CoV-2 virus and the pathogenesis of COVID-19 in order to develop anti-viral therapeutics and240

vaccine targets. Fortunately, the prior decades of research into related viral families provide a wealth241

of data with which to guide current and future studies, such as with the elucidation of the SARS-CoV242

vs. human inter-species interactome in 2011 using the high-throughput (though false positive-prone)243

yeast-two hybrid method to highlight cyclophilins as a target for pan-coronavirus inhibitors (Pfefferle244

et al., 2011). Previous knowledge of related coronaviruses within the Coronaviridae family provide245

training samples with which we can identify a number of new high-confidence PPIs that contribute to our246
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understanding of COVID-19 disease pathogenesis and which may represent targets for novel inhibitory247

therapeutics.248

Predictions from the All and Proximal Schemas249

As part of the first two schemas (all and proximal), for each of the 14 viral proteins, we sort the250

20,366 scores (for each human protein) into a monotonically decreasing rank-order which enables the251

identification of the subset of high scoring putative interactors with that one viral protein.252

Rather than apply a globally defined decision threshold (i.e. top-k or minimum threshold), we253

automatically detected a highly conservative “knee” for each curve (the point of greatest rate of change) to254

delineate those rare high-scoring pairs from the remaining baseline. For example, within the all schema,255

the union of the n = 1,209 predicted PIPE4 and SPRINT high-confidence putative PPIs comprises256

only ∼0.42% of all possible pairs, and their intersection of n = 279 putative pairs comprises a highly257

conservative < 0.098%. These data are tabulated in TableS1.258

Predictions from the RP-PPI Schema259

Following from the experimental design of the all and proximal schemas, the independent predictions from260

the RP-PIPE4 model and the RP-SPRINT models would have been combined into a single intersection261

set. However, we for the first time, jointly combined the RP features derived from the PIPE4 O2As with262

those derived from the SPRINT O2As to train and evaluate a “combination of muliple experts” (CME)263

RP-PPI model. The joint model (using default hyperparameter settings) demonstrated an improvement264

over the RP-predictor model alone. Interestingly, as illustrated in Figure S4 the improvement does not265

appear to be symmetric: the improvement of performance when SPRINT features are joined with the266

PIPE4 features (A, blue & grey) is greater than when the PIPE4 features are joined with SPRINT features267

(B, blue & grey).268

Having established that the combination of multiple experts RP-PPI approach produces improved269

models, we performed extensive hyperparameter tuning to determine model parameters. Each experiment270

was evaluated via 10-fold cross-validation with performance measure using the F1 score. Following the271
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Supplementary Table S1. Summary of the Number of Predicted Interactions for the All and Proximal
Schemas.

Schema Predictor SARS-CoV-2
Protein

Cut-Off Rank
(i.e. Num. Predicted) Cut-Off Score

P0DTC8 39 0.17616893
P0DTC9 31 0.45052419

A0A663DJA2 23 0.00868677
P0DTD8 80 0.19851291
P0DTD3 86 0.51450285
P0DTD2 43 0.03406663

All PIPE4 P0DTC2 21 0.12438851
P0DTC3 72 0.10978781
P0DTC4 111 0.42306311
P0DTC5 64 0.1712625
P0DTC7 124 0.05241327
P0DTC6 7 0.08283571

P0DTC8 117 1.43286
P0DTC9 16 8.54969

A0A663DJA2 22 0.164667
P0DTD8 78 0.614801
P0DTD3 37 5.10505
P0DTD2 27 1.61548
P0DTD1 17 2.47021

All SPRINT P0DTC2 23 3.86361
P0DTC3 28 3.64141
P0DTC1 16 3.41798
P0DTC4 48 13.5018
P0DTC5 24 1.94603
P0DTC7 44 2.61779
P0DTC6 12 1.91867

P0DTC8 80 0.05152177
P0DTC9 12 2.08759585
P0DTD1 2 4.52125180
P0DTC1 3 3.72194125

Proximal PIPE4 P0DTC2 20 0.14253816
P0DTC3 53 0.02177234
P0DTC4 13 0.12761254
P0DTC5 81 0.27192328

P0DTC8 78 0.84881
P0DTC9 14 8.33724

A0A663DJA2 68 0.0332739
P0DTD8 54 0.15322
P0DTD3 87 0.115683
P0DTD2 71 0.361557
P0DTD1 13 2.10023

Proximal SPRINT P0DTC2 31 1.08007
P0DTC3 38 0.276883
P0DTC1 17 2.42659
P0DTC4 32 0.0546491
P0DTC5 53 1.32324
P0DTC7 104 0.183356
P0DTC6 86 0.218939
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A B

Supplementary Figure S4. RP-PPI Combination of Multiple Experts (Joint) Improvement in
Predictive Performance using Leave-One-Family-Out Cross-Validation. The combined use of
PIPE4 and SPRINT features within the RP-PPI Joint model depicts an overall average improvement in
performance. Interestingly, the improvement does not appear to be symmetric: the improvement of
performance when SPRINT features are joined with the PIPE4 features (A, blue & grey) is greater than
when the PIPE4 features are joined with SPRINT features (B, blue & grey).

training and evaluation of 29,700 models, we identified the best performing model parameters as having a272

learning rate of 0.1, a maximum tree-depth of 17 and 550 estimators (Figure S5).273

To better understand the features focused upon by the RP-PPI model, we plot the relative feature274

importance, measured by average information gain in Figure S6. Many of the original features from the275

work of (Dick and Green, 2018) are leveraged in addition to new “statistics-type” features where a given276

pairs’ score is measured in standard deviations away from the identified baseline of a given one-to-all277

score curve. Notably, baseline scores and ranks for Element A (the SARS-CoV-2 protein) of both methods278

are among the most distinguishing features (top-4).279

On the Interpretation of PIPE-Sites Predictions280

When interpreting the landscapes, it is important to note that the PIPE-Sites algorithm used here is281

simplistic in its implementation. Briefly, a maximum of three potential peaks in the landscape are282

identified and a walk algorithm expands the predicted site of interaction until the score falls below a given283

threshold (Amos-Binks et al., 2011).284

The highlighted sites may appear “shifted” relative to the highlighted cells (typically in the bottom-285

left); this is due to the algorithm’s use of a window of 20 amino acids in length that extends both to the left286

(along the x-axis) and upwards (along the y-axis). Consequently, the minimum PIPE-Site size is 20×20287

with the peak in the bottom-left corner. Additionally, this implementation may result in the predicted site288

extending past the coloured matrix, either to the right or above. This defined window size additionally289

prevents predictions within the terminal 20 amino acids of both sequences given that the widow sizes290

in these regions would necessarily be less than 20 amino acids in length. Finally, the PIPE-Sites may291

overlap when numerous hits appear within close proximity, as is the case when a “band” of hits appears in292

the matrix. Finally, when the peak of the landscape comprises only a few hits (generally < 3) the entire293

landscape is predicted as a site of interaction; evidently, these should be disregarded (Amos-Binks et al.,294

2011).295

Therefore, when interpreting the landscapes, it is important not to solely rely on these proposed296

regions; they function as an initial guide, yet other high-scoring, or “hot-spot”, regions of interest may297

exist in the landscape. We additionally provide the SW landscapes to compliment the determination of298

putative regions mediating a given interaction. By providing the matrices of raw scores (in the form of a299

space-separated .mat file), visual interpretation of the results promise to reveal notable subsequences as300

well as enable the application of related interaction site predictors to identify putative sites of interaction.301
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F1
Score

Joint RP-PPI XGBoost Hyperparameter Tuning 

17
550

Supplementary Figure S5. Hyperparameter Tuning of the RP-PPI XGBoost Model. Each of the
nine subplots depicts the results keeping the learning rate fixed as we vary the maximum tree depth
(x-axis) between [3,18] by increments of 1 and the number of estimators (y-axis) between [50,600] by
increments of 25. Within each subplot, we highlight the maximum value with a black bounding box and
the median value with a white bounding box. All results are normalized to the same colour range where
lighter values represent better performing models. The best performance is achieved with a learning rate
of 0.1, a maximum tree-depth of 17 and 550 estimators.
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Supplementary Figure S6. Feature Importance of the RP-PPI CME Model. The combined RP
features from each model are sorted by relative importance, measured as the average information gain.

CONCLUSIONS302

The purpose of this work is to help guide the broader research community in the collective pursuit to303

understand the SARS-CoV-2 viral pathogenesis. To that end, we assessed 285,124 protein pairs using304

two state-of-the-art sequence-based PPI predictors within three prediction schemas, thereby creating305

the comprehensive SARS-CoV-2 vs. human interactome. For each of the 14 SARS-CoV-2 proteins306

considered in this study, a highly conservative locally defined decision threshold was determined to obtain307

a predicted interactome comprising putative PPIs within the predicted intersection of the PIPE4 and308

SPRINT methods. Furthermore, the PIPE-Sites algorithm was used to predict the putative interaction309

interfaces to identify the subsequence regions of interest that might mediate these interactions.310

Beyond a highly applied study focused on countering the COVID19 pandemic, this work introduces311

for the first time a number of methodological contributions:312

1. RP-Inspired Local Decision Threshold of Model Predictions: to delineate the rare and high-313

scoring predicted pairs (most likely to be positives) from the common and low-scoring predicted314

pairs (most likely to be negative), a single perspective one-to-all score curve is generated and315

baseline detection applied to identify a local decision threshold.316

2. RP as an Ensembling Method (Combination of Multiple Experts): the joint use of RP features317

derived from independent predictors (RP-PIPE4 and RP-SPRINT) demonstrated improved perfor-318

mance suggesting that the RP framework may be an effective ensembling method of independent319

models.320

3. The Similarity Weighted Landscape: published in this work for the first time are the SW land-321

scapes that differ from the original PIPE hit landscape in that subsequence frequency is normalized322

according to the SW score.323

These predictions have been deposited in this public DataVerse repository for use by the broader324

scientific community in this collective effort to combat the COVID-19 pandemic (Dick et al., 2020). All325

data and metadata are released under a CC-BY 4.0 licence and we re-emphasize that the information326

provided is theoretical modelling only and caution should be exercised in its use. It is intended only as a327

resource for the scientific community at large in furthering our understanding of SARS-CoV-2.328
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APPENDIX441



Supplementary Figure S7. Compilation of the One-to-All Score Curves for each SARS-CoV-2
protein by PIPE4 (blue) and SPRINT (green) in the All Schema. Each of the subplots depicts a
characteristic “L”-shape, where there are a relatively small number of high-scoring pairs as compared to a
large number of low-scoring pairs within the baseline. Note that the y-axes are not shared among subplots.
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Supplementary Figure S8. Compilation of the Detected Knee of each One-to-All Score Curves
for each SARS-CoV-2 protein by PIPE4 and SPRINT in the All Schema. Each of the subplots
highlights the detected knee of the normalized top-1000 predictions obtained using the Kneedle algorithm.
The differences curve plots the value obtained from subtracting the perpendicular distance of each point
to y = x from the distance of each point vertically to y = x of the normalized plot. The peak of this curve,
parameterized by S, estimates the location of the knee.
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Supplementary Figure S9. Compiled plot of all the Predicted Interactions for each Protein and
each Method in the All Schema.
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Supplementary Figure S10. Compilation of the One-to-All Score Curves for each SARS-CoV-2
protein by PIPE4 (blue) and SPRINT (green) in the Proximal Schema. Each of the subplots depicts
a characteristic “L”-shape, where there are a relatively small number of high-scoring pairs as compared to
a large number of low-scoring pairs within the baseline. Note that the y-axes are not shared among
subplots.
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Supplementary Figure S11. Compilation of the Detected Knee of each One-to-All Score
Curves for each SARS-CoV-2 protein by PIPE4 and SPRINT in the Proximal Schema. Each of the
subplots highlights the detected knee of the normalized top-1000 predictions obtained using the Kneedle
algorithm. The differences curve plots the value obtained from subtracting the perpendicular distance of
each point to y = x from the distance of each point vertically to y = x of the normalized plot. The peak of
this curve, parameterized by S, estimates the location of the knee.
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Supplementary Table S2. Proteomes of the Majority of Organisms Considered in the All Schema.

Organism Taxonomy Id Proteome Acc.

Rotavirus A 9913 UP000106064
Sindbis virus (SINV) 11034 UP000006710
Rubella virus (strain M33) (RUBV) 11043 UP000007143
Dengue virus 1 11053 UP000101782
Dengue virus 2 11060 UP000096836
Dengue virus type 2 (strain Thailand/NGS-C/1944) (DENV-2) 11065 UP000007196
Japanese encephalitis virus 11072 UP000121923
Kunjin virus 11077 UP000100779
Kunjin virus (strain MRM61C) 11078 UP000099558
West Nile virus (WNV) 11082 UP000102709
Tick-borne encephalitis virus 11084 UP000140821
Classical swine fever virus 11096 UP000106488
Bovine viral diarrhea virus (BVDV) (Mucosal disease virus) 11099 UP000155116
Hepatitis C virus genotype 1a (isolate H) (HCV) 11103 UP000000518
Hepatitis C virus genotype 1a (isolate 1) (HCV) 11104 UP000008855
Hepatitis C virus genotype 1b (isolate BK) (HCV) 11105 UP000007413
Hepatitis C virus genotype 1a (isolate H) (HCV) 11108 UP000000518
Hepatitis C virus genotype 2a (isolate HC-J6) (HCV) 11113 UP000002682
Hepatitis C virus genotype 1b (isolate Japanese) (HCV) 11116 UP000008095
Human coronavirus 229E (HCoV-229E) 11137 UP000006716
Hepatitis E virus (HEV) 12461 UP000106507
Porcine reproductive and respiratory syndrome virus (PRRSV) 28344 UP000146080
Dengue virus type 2 (strain Thailand/16681/1984) (DENV-2) 31634 UP000180751
Dengue virus type 2 (strain 16681-PDK53) (DENV-2) 31635 UP000008390
Hepatitis C virus genotype 1b (isolate Taiwan) (HCV) 31645 UP000002679
Hepatitis E virus genotype 1 (isolate Human/Burma) (HEV-1) 31767 UP000007243
Hepatitis E virus genotype 2 (isolate Human/Mexico) (HEV-2) 31768 UP000007245
Bovine viral diarrhea virus 2 54315 UP000129869
Alkhumra hemorrhagic fever virus (ALKV) 172148 UP000097483
Human SARS coronavirus (SARS-CoV) 227859 UP000000354
Porcine epidemic diarrhea virus (strain CV777) (PEDV) 229032 UP000008159
SARS coronavirus Frankfurt 1 229992 UP000113286
Porcine torovirus 237020 UP000269215
Human coronavirus NL63 (HCoV-NL63) 277944 UP000103541
Hepatitis C virus genotype 1b (isolate Con1) (HCV) 333284 UP000007414
Hepatitis C virus genotype 2a (isolate JFH-1) (HCV) 356411 UP000008096
Breda virus 1 (BRV-1) 360393 UP000000355
Dengue virus type 4 (strain Dominica/814669/1981) (DENV-4) 408871 UP000108177
Hepatitis C virus genotype 1b (strain HC-J4) (HCV) 420174 UP000008094
Hepatitis C virus genotype 1b (isolate HC-J1) (HCV) 421877 UP000008093
Hepatitis C virus genotype 1b (isolate HCR6) (HCV) 421879 UP000008100
Hepatitis E virus genotype 4 (isolate Human/China/T1) (HEV-4) 509627 UP000007242
Hepatitis E virus genotype 1 (isolate Human/India/Hyderabad) 512346 UP000007244
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Supplementary Figure S12. Compiled plot of all the Predicted Interactions for each Protein
and each Method in the Prox Schema.
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Supplementary Table S3. PANTHER GO-Term Analysis of Molecular Function Over/Under-Representation for the 225 Predicted Human Interactors in the All Schema.

PANTHER GO Molecular Function Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

peptidase activator activity (GO:0016504) 6 4 0.06 + 64.65 2.11E-06 4.88E-05
tumor necrosis factor receptor superfamily binding
(GO:0032813)

9 5 0.09 + 53.88 1.96E-07 6.53E-06

TBP-class protein binding (GO:0017025) 9 3 0.09 + 32.33 2.15E-04 3.28E-03
ubiquitin-like protein ligase binding (GO:0044389) 46 14 0.47 + 29.52 9.96E-16 1.77E-13
protein tyrosine kinase activity (GO:0004713) 61 17 0.63 + 27.03 2.71E-18 7.20E-16
ubiquitin protein ligase binding (GO:0031625) 41 9 0.42 + 21.29 1.77E-09 1.05E-07
signal sequence binding (GO:0005048) 33 7 0.34 + 20.57 1.47E-07 6.00E-06
heat shock protein binding (GO:0031072) 30 5 0.31 + 16.16 2.67E-05 4.91E-04
ATP binding (GO:0005524) 40 5 0.41 + 12.12 9.26E-05 1.54E-03
unfolded protein binding (GO:0051082) 58 6 0.6 + 10.03 4.83E-05 8.28E-04
endopeptidase activity (GO:0004175) 307 24 3.17 + 7.58 6.01E-14 5.33E-12
ATPase activity, coupled (GO:0042623) 117 8 1.21 + 6.63 4.37E-05 7.75E-04
peptidase activity (GO:0008233) 415 28 4.28 + 6.54 1.35E-14 1.43E-12
peptidase activity, acting on L-amino acid peptides
(GO:0070011)

407 27 4.2 + 6.43 6.06E-14 4.61E-12

ubiquitin-protein transferase activity (GO:0004842) 239 14 2.46 + 5.68 3.57E-07 1.00E-05
peptide binding (GO:0042277) 194 11 2 + 5.5 8.82E-06 1.80E-04
ubiquitin-like protein transferase activity
(GO:0019787)

249 14 2.57 + 5.45 5.70E-07 1.52E-05

ubiquitin protein ligase activity (GO:0061630) 145 8 1.5 + 5.35 1.80E-04 2.91E-03
cytokine receptor binding (GO:0005126) 93 5 0.96 + 5.21 3.33E-03 4.43E-02
ubiquitin-like protein ligase activity (GO:0061659) 149 8 1.54 + 5.21 2.15E-04 3.36E-03
amide binding (GO:0033218) 211 11 2.18 + 5.06 1.86E-05 3.67E-04
catalytic activity, acting on a protein (GO:0140096) 1400 65 14.44 + 4.5 5.29E-25 2.81E-22
ATPase activity (GO:0016887) 262 12 2.7 + 4.44 2.65E-05 5.04E-04
phosphotransferase activity, alcohol group as acceptor
(GO:0016773)

519 21 5.35 + 3.92 1.77E-07 6.28E-06

protein kinase activity (GO:0004672) 435 17 4.49 + 3.79 4.31E-06 9.56E-05
enzyme binding (GO:0019899) 610 23 6.29 + 3.66 1.50E-07 5.71E-06
kinase activity (GO:0016301) 559 21 5.76 + 3.64 5.71E-07 1.45E-05
signaling receptor binding (GO:0005102) 629 23 6.49 + 3.55 2.53E-07 7.49E-06
transferase activity, transferring phosphorus-containing
groups (GO:0016772)

665 21 6.86 + 3.06 7.94E-06 1.69E-04

S
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Supplementary Table S4. PANTHER GO-Term Analysis of Biological Process Over/Under-Representation for the 225 Predicted Human Interactors in the All Schema.

PANTHER GO Biological Process Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

antigen processing and presentation of exogenous pep-
tide antigen via MHC class Ib (GO:0002477)

2 2 0.02 + 96.98 6.14E-04 1.53E-02

nerve growth factor production (GO:0032902) 2 2 0.02 + 96.98 6.14E-04 1.53E-02
neurotrophin production (GO:0032898) 2 2 0.02 + 96.98 6.14E-04 1.52E-02
positive regulation of endoplasmic reticulum calcium
ion concentration (GO:0032470)

2 2 0.02 + 96.98 6.14E-04 1.52E-02

entry of viral genome into host nucleus through nuclear
pore complex via importin (GO:0075506)

2 2 0.02 + 96.98 6.14E-04 1.52E-02

positive regulation of telomerase RNA reverse transcrip-
tase activity (GO:1905663)

2 2 0.02 + 96.98 6.14E-04 1.52E-02

positive regulation of fast-twitch skeletal muscle fiber
contraction (GO:0031448)

2 2 0.02 + 96.98 6.14E-04 1.51E-02

regulation of fast-twitch skeletal muscle fiber contrac-
tion (GO:0031446)

2 2 0.02 + 96.98 6.14E-04 1.51E-02

calcium ion transport from cytosol to endoplasmic retic-
ulum (GO:1903515)

2 2 0.02 + 96.98 6.14E-04 1.51E-02

multi-organism nuclear import (GO:1902594) 4 3 0.04 + 72.74 3.56E-05 1.18E-03
viral penetration into host nucleus (GO:0075732) 4 3 0.04 + 72.74 3.56E-05 1.18E-03
nerve growth factor processing (GO:0032455) 4 3 0.04 + 72.74 3.56E-05 1.18E-03
adenine transport (GO:0015853) 4 3 0.04 + 72.74 3.56E-05 1.18E-03
proteasomal ubiquitin-independent protein catabolic
process (GO:0010499)

23 16 0.24 + 67.47 2.42E-22 3.01E-20

histamine secretion by mast cell (GO:0002553) 3 2 0.03 + 64.65 1.02E-03 2.33E-02
histamine secretion involved in inflammatory response
(GO:0002441)

3 2 0.03 + 64.65 1.02E-03 2.33E-02

positive regulation of caveolin-mediated endocytosis
(GO:2001288)

3 2 0.03 + 64.65 1.02E-03 2.33E-02

histamine production involved in inflammatory re-
sponse (GO:0002349)

3 2 0.03 + 64.65 1.02E-03 2.32E-02

regulation of telomerase RNA reverse transcriptase ac-
tivity (GO:1905661)

3 2 0.03 + 64.65 1.02E-03 2.32E-02

positive regulation of translation in response to endo-
plasmic reticulum stress (GO:0036493)

3 2 0.03 + 64.65 1.02E-03 2.32E-02

calcium ion import into sarcoplasmic reticulum
(GO:1990036)

3 2 0.03 + 64.65 1.02E-03 2.31E-02

positive regulation of ATPase-coupled calcium trans-
membrane transporter activity (GO:1901896)

5 3 0.05 + 58.19 5.65E-05 1.80E-03



Supplementary Table S5. PANTHER GO-Term Analysis of Cellular Component Over/Under-Representation for the 225 Predicted Human Interactors in the All Schema..

PANTHER GO Cellular Component Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

MHC class Ib protein complex (GO:0032398) 2 2 0.02 + 96.98 6.14E-04 1.13E-02
proteasome core complex, alpha-subunit complex
(GO:0019773)

8 8 0.08 + 96.98 1.24E-12 8.33E-11

proteasome activator complex (GO:0008537) 3 3 0.03 + 96.98 2.05E-05 5.04E-04
spermatoproteasome complex (GO:1990111) 5 4 0.05 + 77.59 1.28E-06 4.02E-05
phosphopyruvate hydratase complex (GO:0000015) 4 3 0.04 + 72.74 3.56E-05 8.64E-04
proteasome core complex (GO:0005839) 21 15 0.22 + 69.27 3.82E-21 5.50E-19
proteasome core complex, beta-subunit complex
(GO:0019774)

11 7 0.11 + 61.72 3.03E-10 1.60E-08

proteasome regulatory particle, base subcomplex
(GO:0008540)

12 7 0.12 + 56.57 4.75E-10 2.33E-08

MHC class I protein complex (GO:0042612) 9 5 0.09 + 53.88 1.96E-07 6.82E-06
eukaryotic translation elongation factor 1 complex
(GO:0005853)

4 2 0.04 + 48.49 1.51E-03 2.44E-02

cytosolic proteasome complex (GO:0031597) 9 4 0.09 + 43.1 7.02E-06 1.94E-04
protein phosphatase type 1 complex (GO:0000164) 9 4 0.09 + 43.1 7.02E-06 1.91E-04
PTW/PP1 phosphatase complex (GO:0072357) 7 3 0.07 + 41.56 1.19E-04 2.67E-03
proteasome complex (GO:0000502) 65 26 0.67 + 38.79 8.25E-31 3.32E-28
proteasome accessory complex (GO:0022624) 25 10 0.26 + 38.79 1.46E-12 9.49E-11
endopeptidase complex (GO:1905369) 66 26 0.68 + 38.2 1.14E-30 3.83E-28
CD40 receptor complex (GO:0035631) 11 4 0.11 + 35.27 1.32E-05 3.36E-04
platelet dense tubular network membrane
(GO:0031095)

9 3 0.09 + 32.33 2.15E-04 4.62E-03

cytoplasmic side of lysosomal membrane
(GO:0098574)

6 2 0.06 + 32.33 2.79E-03 4.01E-02

proteasome regulatory particle (GO:0005838) 22 7 0.23 + 30.86 1.35E-08 5.91E-07
peptidase complex (GO:1905368) 91 26 0.94 + 27.71 1.18E-27 2.64E-25
glycogen granule (GO:0042587) 7 2 0.07 + 27.71 3.56E-03 4.98E-02
platelet dense tubular network (GO:0031094) 11 3 0.11 + 26.45 3.51E-04 7.01E-03
pseudopodium (GO:0031143) 17 4 0.18 + 22.82 5.51E-05 1.31E-03
postsynaptic specialization, intracellular component
(GO:0099091)

22 5 0.23 + 22.04 7.11E-06 1.91E-04

integral component of lumenal side of endoplasmic
reticulum membrane (GO:0071556)

29 6 0.3 + 20.07 1.34E-06 4.14E-05

lumenal side of endoplasmic reticulum membrane
(GO:0098553)

29 6 0.3 + 20.07 1.34E-06 4.08E-05

MHC protein complex (GO:0042611) 28 5 0.29 + 17.32 1.99E-05 4.94E-04
COP9 signalosome (GO:0008180) 36 6 0.37 + 16.16 4.07E-06 1.21E-04
lumenal side of membrane (GO:0098576) 36 6 0.37 + 16.16 4.07E-06 1.19E-04
extrinsic component of cytoplasmic side of plasma
membrane (GO:0031234)

93 15 0.96 + 15.64 3.15E-13 2.19E-11



Supplementary Table S6. PANTHER GO-Term Analysis of Molecular Function Over/Under-Representation for the 123 Predicted Human Interactors in the Proximal Schema.

PANTHER GO Molecular Function Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

heat shock protein binding (GO:0031072) 30 6 .18 + 33.90 6.07E-08 2.02E-06
ubiquitin-like protein ligase binding (GO:0044389) 46 9 .27 + 33.17 3.09E-11 1.37E-09
ATP binding (GO:0005524) 40 6 .24 + 25.43 2.78E-07 8.22E-06
unfolded protein binding (GO:0051082) 58 8 .34 + 23.38 4.80E-09 1.83E-07
protein tyrosine kinase activity (GO:0004713) 61 8 .36 + 22.23 6.89E-09 2.44E-07
purine ribonucleoside triphosphate binding
(GO:0035639)

154 20 .91 + 22.02 1.89E-20 1.00E-17

GTP binding (GO:0005525) 114 14 .67 + 20.82 2.64E-14 1.41E-12
purine ribonucleotide binding (GO:0032555) 180 20 1.06 + 18.84 3.15E-19 8.39E-17
ribonucleotide binding (GO:0032553) 186 20 1.10 + 18.23 5.70E-19 1.01E-16
purine nucleotide binding (GO:0017076) 192 20 1.13 + 17.66 1.01E-18 1.35E-16
ubiquitin protein ligase binding (GO:0031625) 41 4 .24 + 16.54 1.39E-04 2.96E-03
nucleoside phosphate binding (GO:1901265) 236 20 1.39 + 14.37 4.21E-17 4.48E-15
nucleotide binding (GO:0000166) 236 20 1.39 + 14.37 4.21E-17 3.73E-15
carbohydrate derivative binding (GO:0097367) 255 20 1.50 + 13.30 1.70E-16 1.29E-14
structural molecule activity (GO:0005198) 215 14 1.27 + 11.04 7.75E-11 3.17E-09
small molecule binding (GO:0036094) 377 21 2.22 + 9.44 1.73E-14 1.15E-12
ATPase activity, coupled (GO:0042623) 117 6 .69 + 8.69 8.74E-05 2.11E-03
drug binding (GO:0008144) 121 6 .71 + 8.41 1.04E-04 2.31E-03
anion binding (GO:0043168) 484 23 2.86 + 8.06 2.14E-14 1.27E-12
ion binding (GO:0043167) 717 25 4.23 + 5.91 1.10E-12 5.33E-11
ATPase activity (GO:0016887) 262 9 1.55 + 5.82 3.20E-05 8.12E-04
phosphotransferase activity, alcohol group as acceptor
(GO:0016773)

519 10 3.06 + 3.27 1.13E-03 2.30E-02

kinase activity (GO:0016301) 559 10 3.30 + 3.03 1.93E-03 3.54E-02
organic cyclic compound binding (GO:0097159) 1677 27 9.89 + 2.73 1.57E-06 4.41E-05
heterocyclic compound binding (GO:1901363) 1646 26 9.71 + 2.68 3.62E-06 9.62E-05
protein binding (GO:0005515) 2440 30 14.39 + 2.08 1.02E-04 2.35E-03
binding (GO:0005488) 4589 53 27.07 + 1.96 2.73E-07 8.55E-06
molecular function (GO:0003674) 8266 67 48.76 + 1.37 1.13E-03 2.23E-02
Unclassified (UNCLASSIFIED) 12585 56 74.24 - .75 1.13E-03 2.15E-02



Supplementary Table S7. PANTHER GO-Term Analysis of Biological Process Over/Under-Representation for the 123 Predicted Human Interactors in the Proximal Schema.

PANTHER GO Biological Process Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

neuron migration (GO:0001764) 6 3 .04 + 84.76 1.61E-05 1.19E-03
protein sumoylation (GO:0016925) 16 5 .09 + 52.98 1.21E-07 1.24E-05
chaperone-mediated protein folding
(GO:0061077) 30 7 .18 + 39.55 1.79E-09 3.35E-07
response to unfolded protein (GO:0006986) 32 7 .19 + 37.08 2.64E-09 4.20E-07
cellular response to unfolded protein (GO:0034620) 32 7 .19 + 37.08 2.64E-09 3.90E-07
peptidyl-tyrosine phosphorylation (GO:0018108) 43 8 .25 + 31.54 5.73E-10 1.48E-07
peptidyl-tyrosine modification (GO:0018212) 45 8 .27 + 30.14 7.90E-10 1.81E-07
glycolytic process (GO:0006096) 18 3 .11 + 28.25 2.42E-04 1.52E-02
nucleotide phosphorylation (GO:0046939) 18 3 .11 + 28.25 2.42E-04 1.47E-02
cellular response to topologically incorrect protein
(GO:0035967)

43 7 .25 + 27.60 1.63E-08 1.87E-06

response to topologically incorrect protein
(GO:0035966)

43 7 .25 + 27.60 1.63E-08 1.77E-06

protein folding (GO:0006457) 96 9 .57 + 15.89 1.14E-08 1.39E-06
response to peptide hormone (GO:0043434) 57 4 .34 + 11.90 4.54E-04 2.53E-02
response to peptide (GO:1901652) 57 4 .34 + 11.90 4.54E-04 2.47E-02
transmembrane receptor protein tyrosine kinase signal-
ing pathway (GO:0007169)

129 9 .76 + 11.83 1.24E-07 1.22E-05

regulation of cell population proliferation
(GO:0042127)

136 9 .80 + 11.22 1.89E-07 1.78E-05

peptidyl-lysine modification (GO:0018205) 91 6 .54 + 11.18 2.30E-05 1.64E-03
microtubule cytoskeleton organization (GO:0000226) 315 19 1.86 + 10.23 8.97E-14 1.85E-10
cell population proliferation (GO:0008283) 153 9 .90 + 9.97 4.86E-07 4.36E-05
mitotic cell cycle (GO:0000278) 278 16 1.64 + 9.76 1.82E-11 1.25E-08
mitotic cell cycle process (GO:1903047) 278 16 1.64 + 9.76 1.82E-11 9.39E-09
mitotic nuclear division (GO:0140014) 278 16 1.64 + 9.76 1.82E-11 7.51E-09
nuclear division (GO:0000280) 321 16 1.89 + 8.45 1.38E-10 4.76E-08
organelle fission (GO:0048285) 340 16 2.01 + 7.98 3.10E-10 9.13E-08
microtubule-based process (GO:0007017) 408 19 2.41 + 7.89 6.87E-12 7.09E-09
peptidyl-amino acid modification (GO:0018193) 318 14 1.88 + 7.46 9.64E-09 1.24E-06
enzyme linked receptor protein signaling pathway
(GO:0007167)

216 9 1.27 + 7.06 7.32E-06 6.04E-04

cell cycle process (GO:0022402) 430 17 2.54 + 6.70 1.07E-09 2.21E-07
cell cycle (GO:0007049) 477 17 2.81 + 6.04 4.81E-09 6.61E-07
cytoskeleton organization (GO:0007010) 587 19 3.46 + 5.49 2.54E-09 4.37E-07
cellular response to organic substance (GO:0071310) 444 12 2.62 + 4.58 1.57E-05 1.20E-03
cellular response to chemical stimulus (GO:0070887) 569 14 3.36 + 4.17 8.41E-06 6.67E-04
cellular response to stress (GO:0033554) 464 11 2.74 + 4.02 1.13E-04 7.29E-03
response to organic substance (GO:0010033) 514 12 3.03 + 3.96 6.30E-05 4.19E-03
phosphorylation (GO:0016310) 592 13 3.49 + 3.72 5.67E-05 3.90E-03



Supplementary Table S8. PANTHER GO-Term Analysis of Cellular Component Over/Under-Representation for the 123 Predicted Human Interactors in the Proximal Schema.

PANTHER GO Cellular Component Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

COP9 signalosome (GO:0008180) 14 4 .08 + 48.43 3.23E-06 8.85E-05
PML body (GO:0016605) 8 2 .05 + 42.38 1.49E-03 2.35E-02
integral component of mitochondrial outer membrane
(GO:0031307)

10 2 .06 + 33.90 2.17E-03 3.22E-02

extrinsic component of cytoplasmic side of plasma
membrane (GO:0031234)

56 8 .33 + 24.22 3.74E-09 2.43E-07

cytoplasmic side of plasma membrane (GO:0009898) 62 8 .37 + 21.87 7.74E-09 4.47E-07
cytoplasmic side of membrane (GO:0098562) 67 8 .40 + 20.24 1.35E-08 7.02E-07
proton-transporting two-sector ATPase complex
(GO:0016469)

26 3 .15 + 19.56 6.43E-04 1.19E-02

extrinsic component of plasma membrane
(GO:0019897)

77 8 .45 + 17.61 3.67E-08 1.59E-06

integral component of mitochondrial membrane
(GO:0032592)

35 3 .21 + 14.53 1.43E-03 2.32E-02

microtubule (GO:0005874) 168 14 .99 + 14.13 3.51E-12 1.83E-09
intrinsic component of mitochondrial membrane
(GO:0098573)

37 3 .22 + 13.74 1.66E-03 2.54E-02

extrinsic component of membrane (GO:0019898) 122 8 .72 + 11.12 9.94E-07 3.04E-05
polymeric cytoskeletal fiber (GO:0099513) 249 15 1.47 + 10.21 4.42E-11 1.15E-08
supramolecular fiber (GO:0099512) 299 15 1.76 + 8.50 4.99E-10 6.49E-08
supramolecular polymer (GO:0099081) 302 15 1.78 + 8.42 5.69E-10 5.92E-08
supramolecular complex (GO:0099080) 302 15 1.78 + 8.42 5.69E-10 4.93E-08
microtubule cytoskeleton (GO:0015630) 382 17 2.25 + 7.54 1.89E-10 3.27E-08
cytoskeletal part (GO:0044430) 492 18 2.90 + 6.20 1.09E-09 8.09E-08
cytoskeleton (GO:0005856) 597 18 3.52 + 5.11 2.01E-08 9.49E-07
side of membrane (GO:0098552) 282 8 1.66 + 4.81 3.16E-04 6.33E-03
leaflet of membrane bilayer (GO:0097478) 282 8 1.66 + 4.81 3.16E-04 6.09E-03
cytosol (GO:0005829) 710 12 4.19 + 2.87 1.11E-03 1.86E-02
intracellular non-membrane-bounded organelle
(GO:0043232)

1284 20 7.57 + 2.64 6.96E-05 1.81E-03

non-membrane-bounded organelle (GO:0043228) 1284 20 7.57 + 2.64 6.96E-05 1.72E-03
intracellular organelle part (GO:0044446) 2610 38 15.40 + 2.47 7.86E-08 3.14E-06
organelle part (GO:0044422) 2695 38 15.90 + 2.39 2.13E-07 7.91E-06
cytoplasm (GO:0005737) 4104 48 24.21 + 1.98 1.02E-06 2.93E-05
intracellular part (GO:0044424) 6630 67 39.11 + 1.71 2.72E-07 9.43E-06
intracellular (GO:0005622) 6661 67 39.29 + 1.71 2.97E-07 9.67E-06
intracellular organelle (GO:0043229) 5308 51 31.31 + 1.63 1.09E-04 2.57E-03
organelle (GO:0043226) 5421 51 31.98 + 1.59 1.89E-04 3.94E-03
cell part (GO:0044464) 8223 70 48.51 + 1.44 1.29E-04 2.91E-03
cell (GO:0005623) 8223 70 48.51 + 1.44 1.29E-04 2.79E-03
cellular component (GO:0005575) 9090 72 53.62 + 1.34 9.82E-04 1.76E-02
Unclassified (UNCLASSIFIED) 11761 51 69.38 - .74 9.82E-04 1.70E-02



Supplementary Table S9. PANTHER GO-Term Analysis of Molecular Function Over/Under-Representation for the 496 Predicted Human Interactors in the RP-PPI Schema (18
Unmapped).

PANTHER GO Molecular Function Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

single-stranded RNA binding (GO:0003727) 31 13 .71 + 18.37 8.01E-12 5.33E-10
mRNA 3’-UTR binding (GO:0003730) 31 12 .71 + 16.96 1.09E-10 6.45E-09
snRNA binding (GO:0017069) 18 5 .41 + 12.17 1.31E-04 2.78E-03
unfolded protein binding (GO:0051082) 58 16 1.32 + 12.08 6.05E-12 4.60E-10
heat shock protein binding (GO:0031072) 30 7 .68 + 10.22 1.52E-05 4.05E-04
mRNA binding (GO:0003729) 139 32 3.17 + 10.08 1.45E-20 2.57E-18
ATP binding (GO:0005524) 40 9 .91 + 9.86 1.18E-06 3.71E-05
ubiquitin-like protein ligase binding (GO:0044389) 46 7 1.05 + 6.67 1.68E-04 3.30E-03
purine ribonucleoside triphosphate binding
(GO:0035639)

154 20 3.52 + 5.69 2.28E-09 9.31E-08

purine ribonucleotide binding (GO:0032555) 180 23 4.11 + 5.60 1.89E-10 1.01E-08
ribonucleotide binding (GO:0032553) 186 23 4.25 + 5.42 3.40E-10 1.64E-08
purine nucleotide binding (GO:0017076) 192 23 4.38 + 5.25 5.98E-10 2.65E-08
drug binding (GO:0008144) 121 14 2.76 + 5.07 2.04E-06 5.72E-05
isomerase activity (GO:0016853) 97 10 2.21 + 4.52 1.42E-04 2.91E-03
RNA binding (GO:0003723) 516 52 11.78 + 4.41 5.09E-18 6.76E-16
nucleoside phosphate binding (GO:1901265) 236 23 5.39 + 4.27 2.17E-08 7.68E-07
nucleotide binding (GO:0000166) 236 23 5.39 + 4.27 2.17E-08 7.20E-07
GTP binding (GO:0005525) 114 11 2.60 + 4.23 1.15E-04 2.55E-03
carbohydrate derivative binding (GO:0097367) 255 24 5.82 + 4.12 1.98E-08 7.52E-07
structural molecule activity (GO:0005198) 215 17 4.91 + 3.46 1.97E-05 4.98E-04
ATPase activity, coupled (GO:0042623) 117 9 2.67 + 3.37 2.10E-03 3.49E-02
small molecule binding (GO:0036094) 377 26 8.61 + 3.02 1.49E-06 4.40E-05
heterocyclic compound binding (GO:1901363) 1646 110 37.58 + 2.93 8.03E-24 2.14E-21
organic cyclic compound binding (GO:0097159) 1677 112 38.28 + 2.93 2.93E-24 1.56E-21
nucleic acid binding (GO:0003676) 1325 86 30.25 + 2.84 9.45E-18 1.00E-15
anion binding (GO:0043168) 484 27 11.05 + 2.44 4.43E-05 1.07E-03
DNA binding (GO:0003677) 806 35 18.40 + 1.90 4.59E-04 7.87E-03
binding (GO:0005488) 4589 176 104.76 + 1.68 2.53E-13 2.24E-11
molecular function (GO:0003674) 8266 229 188.70 + 1.21 2.17E-04 4.13E-03
Unclassified (UNCLASSIFIED) 12585 247 287.30 - .86 2.17E-04 3.99E-03
transmembrane signaling receptor activity
(GO:0004888)

640 4 14.61 - .27 2.50E-03 4.03E-02

signaling receptor activity (GO:0038023) 749 4 17.10 - .23 3.52E-04 6.25E-03
molecular transducer activity (GO:0060089) 820 4 18.72 - .21 9.10E-05 2.11E-03



Supplementary Table S10. PANTHER GO-Term Analysis of Biological Process Over/Under-Representation for the 496 Predicted Human Interactors in the RP-PPII Schema (18
Unmapped).

PANTHER GO Biological Process Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

mRNA stabilization (GO:0048255) 11 5 .25 + 19.91 1.93E-05 7.53E-04
positive regulation of translational initiation
(GO:0045948)

9 4 .21 + 19.47 1.49E-04 4.22E-03

peptide hormone secretion (GO:0030072) 8 3 .18 + 16.43 1.60E-03 2.79E-02
protein sumoylation (GO:0016925) 16 6 .37 + 16.43 6.60E-06 3.40E-04
chaperone-mediated protein folding (GO:0061077) 30 11 .68 + 16.06 1.05E-09 1.45E-07
regulation of mRNA splicing, via spliceosome
(GO:0048024)

56 20 1.28 + 15.64 2.18E-16 4.50E-14

regulation of hormone secretion (GO:0046883) 9 3 .21 + 14.60 2.09E-03 3.63E-02
regulation of mRNA processing (GO:0050684) 67 22 1.53 + 14.38 2.93E-17 1.21E-14
regulation of RNA splicing (GO:0043484) 65 21 1.48 + 14.15 2.04E-16 4.69E-14
mRNA splice site selection (GO:0006376) 13 4 .30 + 13.48 4.63E-04 1.04E-02
regulation of alternative mRNA splicing, via spliceo-
some (GO:0000381)

39 12 .89 + 13.48 9.60E-10 1.42E-07

hormone secretion (GO:0046879) 10 3 .23 + 13.14 2.67E-03 4.35E-02
hormone transport (GO:0009914) 10 3 .23 + 13.14 2.67E-03 4.31E-02
alternative mRNA splicing, via spliceosome
(GO:0000380)

40 12 .91 + 13.14 1.22E-09 1.58E-07

regulation of mRNA metabolic process (GO:1903311) 87 26 1.99 + 13.09 2.58E-19 5.33E-16
regulation of mRNA stability (GO:0043488) 21 6 .48 + 12.52 2.38E-05 9.10E-04
regulation of RNA stability (GO:0043487) 21 6 .48 + 12.52 2.38E-05 8.93E-04
establishment of mitotic spindle orientation
(GO:0000132)

15 4 .34 + 11.68 7.28E-04 1.52E-02

nucleus localization (GO:0051647) 16 4 .37 + 10.95 8.94E-04 1.81E-02
response to unfolded protein (GO:0006986) 32 8 .73 + 10.95 2.38E-06 1.49E-04
nuclear migration (GO:0007097) 16 4 .37 + 10.95 8.94E-04 1.79E-02
establishment of mitotic spindle localization
(GO:0040001)

16 4 .37 + 10.95 8.94E-04 1.77E-02

cellular response to unfolded protein (GO:0034620) 32 8 .73 + 10.95 2.38E-06 1.45E-04
positive regulation of cellular amide metabolic process
(GO:0034250)

25 6 .57 + 10.51 5.49E-05 1.92E-03

positive regulation of translation (GO:0045727) 25 6 .57 + 10.51 5.49E-05 1.89E-03
regulation of mRNA catabolic process (GO:0061013) 25 6 .57 + 10.51 5.49E-05 1.86E-03
establishment of spindle orientation (GO:0051294) 17 4 .39 + 10.31 1.08E-03 2.09E-02
regulation of translational initiation (GO:0006446) 18 4 .41 + 9.73 1.30E-03 2.44E-02



Supplementary Table S11. PANTHER GO-Term Analysis of Cellular Component Over/Under-Representation for the 496 Predicted Human Interactors in the RP-PPI Schema (18 Unmapped).

PANTHER GO Cellular Component Homo sapiens
Reference (N=20,851)

Num.
Predicted

Predicted
Num. Expected

Over/Under
Represented

Fold
Enrichment p-value FDR

Golgi cis cisterna (GO:0000137) 22 7 .50 + 13.94 2.69E-06 7.00E-05
cytoplasmic stress granule (GO:0010494) 16 5 .37 + 13.69 8.21E-05 1.42E-03
polysome (GO:0005844) 13 4 .30 + 13.48 4.63E-04 6.02E-03
COP9 signalosome (GO:0008180) 14 4 .32 + 12.52 5.85E-04 7.24E-03
Golgi cisterna (GO:0031985) 29 7 .66 + 10.57 1.26E-05 2.97E-04
nuclear speck (GO:0016607) 28 6 .64 + 9.39 9.47E-05 1.54E-03
U12-type spliceosomal complex (GO:0005689) 14 3 .32 + 9.39 5.95E-03 4.91E-02
Golgi stack (GO:0005795) 33 7 .75 + 9.29 2.60E-05 5.88E-04
cis-Golgi network (GO:0005801) 33 7 .75 + 9.29 2.60E-05 5.64E-04
cell cortex region (GO:0099738) 20 4 .46 + 8.76 1.83E-03 1.86E-02
nuclear body (GO:0016604) 46 7 1.05 + 6.67 1.68E-04 2.35E-03
cytoplasmic ribonucleoprotein granule (GO:0036464) 69 9 1.58 + 5.71 5.94E-05 1.10E-03
ribonucleoprotein granule (GO:0035770) 69 9 1.58 + 5.71 5.94E-05 1.06E-03
spliceosomal complex (GO:0005681) 109 13 2.49 + 5.22 3.49E-06 8.64E-05
extrinsic component of cytoplasmic side of plasma
membrane (GO:0031234)

56 6 1.28 + 4.69 2.56E-03 2.47E-02

cytoplasmic side of plasma membrane (GO:0009898) 62 6 1.42 + 4.24 4.08E-03 3.53E-02
nuclear chromatin (GO:0000790) 130 12 2.97 + 4.04 8.42E-05 1.41E-03
cytoplasmic side of membrane (GO:0098562) 67 6 1.53 + 3.92 5.78E-03 4.93E-02
centriole (GO:0005814) 145 12 3.31 + 3.63 2.18E-04 2.98E-03
Golgi membrane (GO:0000139) 97 8 2.21 + 3.61 2.45E-03 2.40E-02
microtubule organizing center part (GO:0044450) 146 12 3.33 + 3.60 2.31E-04 3.09E-03
chromatin (GO:0000785) 159 13 3.63 + 3.58 1.35E-04 1.95E-03
ribonucleoprotein complex (GO:1990904) 457 37 10.43 + 3.55 1.47E-10 9.56E-09
Golgi subcompartment (GO:0098791) 99 8 2.26 + 3.54 2.75E-03 2.56E-02
organelle subcompartment (GO:0031984) 104 8 2.37 + 3.37 3.65E-03 3.22E-02
centrosome (GO:0005813) 132 10 3.01 + 3.32 1.35E-03 1.43E-02
polymeric cytoskeletal fiber (GO:0099513) 249 17 5.68 + 2.99 1.09E-04 1.71E-03
supramolecular fiber (GO:0099512) 299 20 6.83 + 2.93 3.62E-05 7.53E-04
supramolecular polymer (GO:0099081) 302 20 6.89 + 2.90 4.13E-05 8.26E-04
supramolecular complex (GO:0099080) 302 20 6.89 + 2.90 4.13E-05 7.95E-04
microtubule (GO:0005874) 168 11 3.84 + 2.87 2.35E-03 2.35E-02
microtubule organizing center (GO:0005815) 184 12 4.20 + 2.86 1.57E-03 1.63E-02
nuclear chromosome (GO:0000228) 228 14 5.20 + 2.69 1.14E-03 1.32E-02
nuclear chromosome part (GO:0044454) 224 13 5.11 + 2.54 2.70E-03 2.55E-02
microtubule cytoskeleton (GO:0015630) 382 22 8.72 + 2.52 1.22E-04 1.86E-03
cytosol (GO:0005829) 710 39 16.21 + 2.41 9.83E-07 2.84E-05
cytoskeletal part (GO:0044430) 492 26 11.23 + 2.31 1.22E-04 1.82E-03
chromosome (GO:0005694) 312 16 7.12 + 2.25 3.61E-03 3.24E-02
chromosomal part (GO:0044427) 300 15 6.85 + 2.19 5.81E-03 4.87E-02
cytoskeleton (GO:0005856) 597 28 13.63 + 2.05 4.87E-04 6.18E-03
intracellular non-membrane-bounded organelle
(GO:0043232)

1284 60 29.31 + 2.05 2.78E-07 9.04E-06

non-membrane-bounded organelle (GO:0043228) 1284 60 29.31 + 2.05 2.78E-07 8.51E-06



Supplementary Table S12. GO-Terms Overlapping with Gordon et al.

GO-term GO-name
GO:0000139 Golgi membrane
GO:0000209 protein polyubiquitination
GO:0000398 mRNA splicing via spliceosome
GO:0000776 kinetochore
GO:0001525 angiogenesis
GO:0001618 virus receptor activity
GO:0001701 in utero embryonic development
GO:0001889 liver development
GO:0001932 regulation of protein phosphorylation
GO:0002020 protease binding
GO:0002576 platelet degranulation
GO:0002931 response to ischemia
GO:0003682 chromatin binding
GO:0003697 single-stranded DNA binding
GO:0003714 transcription corepressor activity
GO:0003723 RNA binding
GO:0003729 mRNA binding
GO:0003730 mRNA 3’-UTR binding
GO:0004842 ubiquitin-protein transferase activity
GO:0005102 signaling receptor binding
GO:0005178 integrin binding
GO:0005201 extracellular matrix structural constituent
GO:0005518 collagen binding
GO:0005524 ATP binding
GO:0005543 phospholipid binding
GO:0005576 extracellular region
GO:0005604 basement membrane
GO:0005615 extracellular space
GO:0005634 nucleus
GO:0005654 nucleoplasm
GO:0005681 spliceosomal complex
GO:0005730 nucleolus
GO:0005737 cytoplasm
GO:0005739 mitochondrion
GO:0005769 early endosome
GO:0005783 endoplasmic reticulum
GO:0005788 endoplasmic reticulum lumen
GO:0005789 endoplasmic reticulum membrane
GO:0005790 smooth endoplasmic reticulum
GO:0005793 endoplasmic reticulum-Golgi intermediate compartment
GO:0005794 Golgi apparatus
GO:0005811 lipid droplet
GO:0005813 centrosome
GO:0005814 centriole
GO:0005829 cytosol
GO:0005886 plasma membrane
GO:0005925 focal adhesion
GO:0006281 DNA repair
GO:0006355 regulation of transcription DNA-templated
GO:0006396 RNA processing
GO:0006397 mRNA processing
GO:0006401 RNA catabolic process
GO:0006405 RNA export from nucleus
GO:0006406 mRNA export from nucleus
GO:0006511 ubiquitin-dependent protein catabolic process
GO:0006515 protein quality control for misfolded or incompletely synthesized proteins
GO:0006874 cellular calcium ion homeostasis
GO:0006888 endoplasmic reticulum to Golgi vesicle-mediated transport
GO:0006898 receptor-mediated endocytosis
GO:0006954 inflammatory response
GO:0006986 response to unfolded protein
GO:0007029 endoplasmic reticulum organization
GO:0007155 cell adhesion

S30/S33



GO:0007160 cell-matrix adhesion
GO:0007161 calcium-independent cell-matrix adhesion
GO:0007229 integrin-mediated signaling pathway
GO:0007283 spermatogenesis
GO:0007399 nervous system development
GO:0007507 heart development
GO:0008017 microtubule binding
GO:0008022 protein C-terminus binding
GO:0008134 transcription factor binding
GO:0008201 heparin binding
GO:0008203 cholesterol metabolic process
GO:0008284 positive regulation of cell population proliferation
GO:0008285 negative regulation of cell population proliferation
GO:0008360 regulation of cell shape
GO:0008543 fibroblast growth factor receptor signaling pathway
GO:0009615 response to virus
GO:0009791 post-embryonic development
GO:0010008 endosome membrane
GO:0010269 response to selenium ion
GO:0010628 positive regulation of gene expression
GO:0010886 positive regulation of cholesterol storage
GO:0016020 membrane
GO:0016021 integral component of membrane
GO:0016032 viral process
GO:0016070 RNA metabolic process
GO:0016192 vesicle-mediated transport
GO:0016234 inclusion body
GO:0016324 apical plasma membrane
GO:0016363 nuclear matrix
GO:0016567 protein ubiquitination
GO:0016605 PML body
GO:0016607 nuclear speck
GO:0016887 ATPase activity
GO:0016925 protein sumoylation
GO:0019221 cytokine-mediated signaling pathway
GO:0019899 enzyme binding
GO:0019900 kinase binding
GO:0019901 protein kinase binding
GO:0019904 protein domain specific binding
GO:0021549 cerebellum development
GO:0030054 cell junction
GO:0030198 extracellular matrix organization
GO:0030301 cholesterol transport
GO:0030308 negative regulation of cell growth
GO:0030433 ubiquitin-dependent ERAD pathway
GO:0030544 Hsp70 protein binding
GO:0030669 clathrin-coated endocytic vesicle membrane
GO:0030674 protein-macromolecule adaptor activity
GO:0030911 TPR domain binding
GO:0030968 endoplasmic reticulum unfolded protein response
GO:0031072 heat shock protein binding
GO:0031093 platelet alpha granule lumen
GO:0031397 negative regulation of protein ubiquitination
GO:0031398 positive regulation of protein ubiquitination
GO:0031625 ubiquitin protein ligase binding
GO:0031647 regulation of protein stability
GO:0031982 vesicle
GO:0032091 negative regulation of protein binding
GO:0032204 regulation of telomere maintenance
GO:0032436 positive regulation of proteasomal ubiquitin-dependent protein catabolic process
GO:0032496 response to lipopolysaccharide
GO:0032757 positive regulation of interleukin-8 production
GO:0032991 protein-containing complex
GO:0033344 cholesterol efflux
GO:0034361 very-low-density lipoprotein particle
GO:0034362 low-density lipoprotein particle
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GO:0034379 very-low-density lipoprotein particle assembly
GO:0034383 low-density lipoprotein particle clearance
GO:0034446 substrate adhesion-dependent cell spreading
GO:0034450 ubiquitin-ubiquitin ligase activity
GO:0034599 cellular response to oxidative stress
GO:0034605 cellular response to heat
GO:0035198 miRNA binding
GO:0035722 interleukin-12-mediated signaling pathway
GO:0035925 mRNA 3’-UTR AU-rich region binding
GO:0035987 endodermal cell differentiation
GO:0036498 IRE1-mediated unfolded protein response
GO:0038128 ERBB2 signaling pathway
GO:0042060 wound healing
GO:0042162 telomeric DNA binding
GO:0042405 nuclear inclusion body
GO:0042632 cholesterol homeostasis
GO:0042789 mRNA transcription by RNA polymerase II
GO:0042802 identical protein binding
GO:0042803 protein homodimerization activity
GO:0042826 histone deacetylase binding
GO:0043025 neuronal cell body
GO:0043066 negative regulation of apoptotic process
GO:0043161 proteasome-mediated ubiquitin-dependent protein catabolic process
GO:0043202 lysosomal lumen
GO:0043231 intracellular membrane-bounded organelle
GO:0043312 neutrophil degranulation
GO:0043392 negative regulation of DNA binding
GO:0043488 regulation of mRNA stability
GO:0043565 sequence-specific DNA binding
GO:0043687 post-translational protein modification
GO:0044267 cellular protein metabolic process
GO:0044389 ubiquitin-like protein ligase binding
GO:0044829 positive regulation by host of viral genome replication
GO:0045070 positive regulation of viral genome replication
GO:0045296 cadherin binding
GO:0045727 positive regulation of translation
GO:0045862 positive regulation of proteolysis
GO:0045893 positive regulation of transcription DNA-templated
GO:0045944 positive regulation of transcription by RNA polymerase II
GO:0046034 ATP metabolic process
GO:0046332 SMAD binding
GO:0046872 metal ion binding
GO:0046982 protein heterodimerization activity
GO:0047485 protein N-terminus binding
GO:0048156 tau protein binding
GO:0048255 mRNA stabilization
GO:0048471 perinuclear region of cytoplasm
GO:0048487 beta-tubulin binding
GO:0050750 low-density lipoprotein particle receptor binding
GO:0050821 protein stabilization
GO:0050900 leukocyte migration
GO:0051028 mRNA transport
GO:0051082 unfolded protein binding
GO:0051085 chaperone cofactor-dependent protein refolding
GO:0051087 chaperone binding
GO:0051092 positive regulation of NF-kappaB transcription factor activity
GO:0051131 chaperone-mediated protein complex assembly
GO:0051170 import into nucleus
GO:0051592 response to calcium ion
GO:0051602 response to electrical stimulus
GO:0051702 biological process involved in interaction with symbiont
GO:0051787 misfolded protein binding
GO:0051865 protein autoubiquitination
GO:0051879 Hsp90 protein binding
GO:0060548 negative regulation of cell death
GO:0061024 membrane organization
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GO:0061158 3’-UTR-mediated mRNA destabilization
GO:0061630 ubiquitin protein ligase activity
GO:0062023 collagen-containing extracellular matrix
GO:0070062 extracellular exosome
GO:0070370 cellular heat acclimation
GO:0070534 protein K63-linked ubiquitination
GO:0070971 endoplasmic reticulum exit site
GO:0071013 catalytic step 2 spliceosome
GO:0071230 cellular response to amino acid stimulus
GO:0071356 cellular response to tumor necrosis factor
GO:0071456 cellular response to hypoxia
GO:0071682 endocytic vesicle lumen
GO:0072562 blood microparticle
GO:0090063 positive regulation of microtubule nucleation
GO:0097157 pre-mRNA intronic binding
GO:0097718 disordered domain specific binding
GO:0120020 cholesterol transfer activity
GO:1900034 regulation of cellular response to heat
GO:1901673 regulation of mitotic spindle assembly
GO:1902236 negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway
GO:1903265 positive regulation of tumor necrosis factor-mediated signaling pathway
GO:1904813 ficolin-1-rich granule lumen
GO:1990837 sequence-specific double-stranded DNA binding
GO:1990904 ribonucleoprotein complex
GO:2001240 negative regulation of extrinsic apoptotic signaling pathway in absence of ligand
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